1
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
2
|
Ren Z, Mao X, Wang S, Wang X. Cilia-related diseases. J Cell Mol Med 2023; 27:3974-3979. [PMID: 37830491 PMCID: PMC10746950 DOI: 10.1111/jcmm.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xiaoxiao Mao
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
- School of Basic Medical SciencesXianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Siqi Wang
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xin Wang
- School of Mathematics and StatisticsHubei University of Science and TechnologyXianningP. R. China
| |
Collapse
|
3
|
Pala R, Barui AK, Mohieldin AM, Zhou J, Nauli SM. Folate conjugated nanomedicines for selective inhibition of mTOR signaling in polycystic kidneys at clinically relevant doses. Biomaterials 2023; 302:122329. [PMID: 37722182 PMCID: PMC10836200 DOI: 10.1016/j.biomaterials.2023.122329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent). The NPs increased the efficacy, potency and tolerability of rapamycin resulting in an increased survival rate and improved kidney function by decreasing side effects and reducing biodistribution to other organs in PKD mice. The daily administration of rapamycin-alone (1 mg/kg/day) could now be achieved with a weekly injection of NPs containing rapamycin (379 μg/kg/week). This polycystic kidney-targeting nanotechnology, for the first time, integrated advances in the use of 1) nanoparticles as a delivery cargo, 2) folate for targeting, 3) near-infrared Cy5-fluorophore for in vitro and in vivo live imaging, 4) rapamycin as a pharmacological therapy, and 5) TEMPO as a combinational therapy. The slow sustained-release of rapamycin by polycystic kidney-targeting NPs demonstrates a new era of nanomedicine in treatment for chronic kidney diseases at clinically relevant doses.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Ashraf M Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| |
Collapse
|
4
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
5
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
6
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
7
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
8
|
Kou P, Wei S, Xiong F. Recent Advances of mTOR Inhibitors Use in Autosomal Dominant Polycystic Kidney Disease: Is the Road Still Open? Curr Med Chem 2019; 26:2962-2973. [PMID: 29600752 DOI: 10.2174/0929867325666180330094434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common monogenic kidney disease, is caused by mutations in the PKD1, PKD2 or, in a very limited number of families, GANAB genes. Although cellular and molecular mechanisms of this disease have been understood in the past 20 years, specific therapy approaches remain very little. Both experimental and clinical studies show that the mammalian or mechanistic target of rapamycin (mTOR) pathway plays an important role during cyst formation and enlargement in ADPKD. Studies in rodent models of ADPKD showed that mTOR inhibitors had a significant and long-lasting decrease in kidney volume and amelioration in kidney function. In the past over ten years, researchers have been devoting continuously to test mTOR inhibitors efficacy and safety in both preclinical studies and clinical trials in patients with ADPKD. In this review, we will discuss the mTOR pathway thoroughly, mainly focusing on current advances in understanding its role in ADPKD, especially the recent progress of mTOR inhibitors use in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Pei Kou
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
9
|
Neuerburg C, Mittlmeier LM, Keppler AM, Westphal I, Glass Ä, Saller MM, Herlyn PKE, Richter H, Böcker W, Schieker M, Aszodi A, Fischer DC. Growth factor-mediated augmentation of long bones: evaluation of a BMP-7 loaded thermoresponsive hydrogel in a murine femoral intramedullary injection model. J Orthop Surg Res 2019; 14:297. [PMID: 31488155 PMCID: PMC6727400 DOI: 10.1186/s13018-019-1315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/14/2019] [Indexed: 12/02/2022] Open
Abstract
Background Due to our aging population, an increase in proximal femur fractures can be expected, which is associated with impaired activities of daily living and a high risk of mortality. These patients are also at a high risk to suffer a secondary osteoporosis-related fracture on the contralateral hip. In this context, growth factors could open the field for regenerative approaches, as it is known that, i.e., the growth factor BMP-7 (bone morphogenetic protein 7) is a potent stimulator of osteogenesis. Local prophylactic augmentation of the proximal femur with a BMP-7 loaded thermoresponsive hydrogel during index surgery of an osteoporotic fracture could be suitable to reduce the risk of further osteoporosis-associated secondary fractures. The present study therefore aims to test the hypothesis if a BMP-7 augmented hydrogel is an applicable carrier for the augmentation of non-fractured proximal femurs. Furthermore, it needs to be shown that the minimally invasive injection of a hydrogel into the mouse femur is technically feasible. Methods In this study, male C57BL/6 mice (n = 36) received a unilateral femoral intramedullary injection of either 100 μl saline, 100 μl 1,4 Butan-Diisocyanat (BDI)-hydrogel, or 100 μl hydrogel loaded with 1 μg of bone morphogenetic protein 7. Mice were sacrificed 4 and 12 weeks later. The femora were submitted to high-resolution X-ray tomography and subsequent histological examination. Results Analysis of normalized CtBMD (Cortical bone mineral density) as obtained by X-ray micro-computed tomography analysis revealed significant differences depending on the duration of treatment (4 vs 12 weeks; p < 0.05). Furthermore, within different anatomically defined regions of interest, significant associations between normalized TbN (trabecular number) and BV/TV (percent bone volume) were noted. Histology indicated no signs of inflammation and no signs of necrosis and there were no cartilage damages, no new bone formations, or new cartilage tissues, while BMP-7 was readily detectable in all of the samples. Conclusions In conclusion, the murine femoral intramedullary injection model appears to be feasible and worth to be used in subsequent studies that are directed to examine the therapeutic potential of BMP-7 loaded BDI-hydrogel. Although we were unable to detect any significant osseous effects arising from the mode or duration of treatment in the present trial, the effect of different concentrations and duration of treatment in an osteoporotic model appears of interest for further experiments to reach translation into clinic and open new strategies of growth factor-mediated augmentation. Electronic supplementary material The online version of this article (10.1186/s13018-019-1315-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carl Neuerburg
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Lena M Mittlmeier
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.,Present Address: Department of Urology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander M Keppler
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ines Westphal
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.,LivImplant GmbH, Starnberg, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Research Group Biostatistics, Rostock University Medical Center, Rostock, Germany
| | - Maximilian M Saller
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Philipp K E Herlyn
- Department of Traumatology, Hand- and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Heiko Richter
- LLS ROWIAK LaserLabSolutions GmbH, Hannover, Germany
| | - Wolfgang Böcker
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Schieker
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.,LivImplant GmbH, Starnberg, Germany
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dagmar-C Fischer
- Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Torres JA, Rezaei M, Broderick C, Lin L, Wang X, Hoppe B, Cowley BD, Savica V, Torres VE, Khan S, Holmes RP, Mrug M, Weimbs T. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest 2019; 129:4506-4522. [PMID: 31361604 PMCID: PMC6763267 DOI: 10.1172/jci128503] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of "flushing out" crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.
Collapse
Affiliation(s)
- Jacob A. Torres
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Mina Rezaei
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Caroline Broderick
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Louis Lin
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Xiaofang Wang
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Bernd Hoppe
- University Children’s Hospital Bonn, Division of Pediatric Nephrology, Bonn, Germany
| | - Benjamin D. Cowley
- University of Oklahoma Health Sciences Center, Department of Medicine, Section of Nephrology, Oklahoma City, Oklahoma, USA
| | - Vincenzo Savica
- University of Messina, Department of Clinical and Experimental Medicine, Messina, Italy
| | - Vicente E. Torres
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Saeed Khan
- University of Florida, Department of Pathology, Gainesville, Florida, USA
| | | | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Thomas Weimbs
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| |
Collapse
|
11
|
Kim SW, Kim HI, Thapa B, Nuwormegbe S, Lee K. Critical Role of mTORC2-Akt Signaling in TGF-β1-Induced Myofibroblast Differentiation of Human Pterygium Fibroblasts. ACTA ACUST UNITED AC 2019; 60:82-92. [DOI: 10.1167/iovs.18-25376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sun Woong Kim
- Department of Ophthalmology, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Hye-In Kim
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Bikash Thapa
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Selikem Nuwormegbe
- Department of Ophthalmology, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| |
Collapse
|
12
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
14
|
Paclitaxel-coated stents to prevent hyperplastic proliferation of ureteral tissue: from in vitro to in vivo. Urolithiasis 2018; 48:47-56. [PMID: 30259058 DOI: 10.1007/s00240-018-1081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Ureteric stents have become an indispensable tool in the armamentarium of every urologist. However, they carry their own morbidity resulting mostly from infectious or abacterial fouling and biofilm formation, and/or urothelial hyperplastic reaction. All of these may interact and lead to clinical complications. Many different stent designs and coatings have been proposed. In this study, we focused on the effect of paclitaxel-coated stents on hyperplastic proliferation of ureteral tissue, using as example anastomotic strictures after ureteroureterostomy in a rat model. Human urothelial cells (SV-HUC-1) were used to determine paclitaxel dosages in vitro. Polyurethane stents were coated with a paclitaxel containing biodegradable polymer and studied in a ureteroureterostomy rat model. 48 male 9-week-old Sprague-Dawley rats underwent either sham surgery (n = 16) or ureteroureterostomy with sutured anastomosis, and consecutive stenting with either a paclitaxel-coated or an uncoated stent (16 per group), respectively. The animals received daily intraperitoneal injections of 5-bromo-2-deoxyuridine (20 mg/ml, 100 mg/kg body weight) during the first eight postoperative days, and were sacrificed on day 28. Healing of the ureteral anastomosis and proliferation of urothelial cells was examined histologically and immunohistochemically. In vitro, a concentration of 10 ng/mm2 paclitaxel can be considered as non-toxic, while still exerting an anti-proliferative effect on urothelial cells. Histologically, typical wound healing processes were seen at the site of the ureteral anastomosis in vivo. Proliferation of urothelial cells was significantly lower in animals with paclitaxel-coated stents compared to those with uncoated stents (LI 41.27 vs. 51.58, p < 0.001). Our results indicate that stenting of ureteral anastomoses with paclitaxel-coated stents can reduce hyperplastic proliferation of ureteral tissue. Paclitaxel-coated stents thus might be able to prevent not only scar-induced postoperative stenosis after reconstructive surgery, but also hyperplastic urothelial reaction in non-anastomotic stent patients as part of their inflammatory response to the foreign material.
Collapse
|
15
|
Wu Y, Wang W, Peng XM, He Y, Xiong YX, Liang HF, Chu L, Zhang BX, Ding ZY, Chen XP. Rapamycin Upregulates Connective Tissue Growth Factor Expression in Hepatic Progenitor Cells Through TGF-β-Smad2 Dependent Signaling. Front Pharmacol 2018; 9:877. [PMID: 30135653 PMCID: PMC6092675 DOI: 10.3389/fphar.2018.00877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rapamycin (sirolimus) is a mTOR kinase inhibitor and is widely used as an immunosuppressive drug to prevent graft rejection in organ transplantation currently. However, some recent investigations have reported that it had profibrotic effect in the progression of organ fibrosis, and its precise role in the liver fibrosis is still poorly understood. Here we showed that rapamycin upregulated connective tissue growth factor (CTGF) expression at the transcriptional level in hepatic progenitor cells (HPCs). Using lentivirus-mediated small hairpin RNA (shRNA) we demonstrated that knockdown of mTOR, Raptor, or Rictor mimicked the effect of rapamycin treatment. Mechanistically, inhibition of mTOR activity with rapamycin resulted in a hyperactive PI3K-Akt pathway, whereas this activation inhibited the expression of CTGF in HPCs. Besides, rapamycin activated the TGF-β-Smad signaling, and TGF-β receptor type I (TGFβRI) serine/threonine kinase inhibitors completely blocked the effects of rapamycin on HPCs. Moreover, Smad2 was involved in the induction of CTGF through rapamycin-activated TGF-β-Smad signaling as knockdown completely blocked CTGF induction, while knockdown of Smad4 expression partially inhibited induction, whereas Smad3 knockdown had no effect. Rapamycin also induced ROS generation and latent TGF-β activation which contributed to TGF-β-Smad signaling. In conclusion, this study demonstrates that rapamycin upregulates CTGF in HPCs and suggests that rapamycin has potential fibrotic effect in liver.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Mei Peng
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Modeling Renal Disease "On the Fly". BIOMED RESEARCH INTERNATIONAL 2018; 2018:5697436. [PMID: 29955604 PMCID: PMC6000847 DOI: 10.1155/2018/5697436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.
Collapse
|
17
|
Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic Targets in Polycystic Liver Disease. Curr Drug Targets 2018; 18:950-957. [PMID: 25915482 DOI: 10.2174/1389450116666150427161743] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
Polycystic liver diseases (PLD) are a group of genetic disorders initiated by mutations in several PLD-related genes and characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. PLD co-exists with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive PKD as well as occurs alone (i.e., Autosomal Dominant Polycystic Liver Disease [ADPLD]). PLD associated with ADPKD and ARPKD belong to a group of disorders known as cholangiociliopathies since many disease-causative and disease-related proteins are expressed in primary cilia of cholangiocytes. Aberrant expression of these proteins in primary cilia affects their structures and functions promoting cystogenesis. Current medical therapies for PLD include symptomatic management and surgical interventions. To date, the only available drug treatment for PLD patients that halt disease progression and improve quality of life are somatostatin analogs. However, the modest clinical benefits, need for long-term maintenance therapy, and the high cost of treatment justify the necessity for more effective treatment options. Substantial evidence suggests that experimental manipulations with components of the signaling pathways that influence cyst development (e.g., cAMP, intracellular calcium, receptor tyrosine kinase, transient receptor potential cation channel subfamily V member 4 (TRPV4) channel, mechanistic target of rapamycin (mTOR), histone deacetylase (HDAC6), Cdc25A phosphatase, miRNAs and metalloproteinases) attenuate growth of hepatic cysts. Many of these targets have been evaluated in pre-clinical trials suggesting their value as potential new therapies. This review outlines the current clinical and preclinical treatment strategies for PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, Minnesota, MN 55905, United States
| |
Collapse
|
18
|
Lorenzo Pisarello M, Masyuk TV, Gradilone SA, Masyuk AI, Ding JF, Lee PY, LaRusso NF. Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:981-994. [PMID: 29366679 DOI: 10.1016/j.ajpath.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Hepatic cystogenesis in polycystic liver disease (PLD) is associated with abnormalities in multiple cellular processes, including elevated cAMP and overexpression of histone deacetylase 6 (HDAC6). Disease progression in polycystic kidney (PCK) rats (an animal model of PLD) is attenuated by inhibition of either cAMP production or HDAC6. Therefore, we hypothesized that concurrent targeting of HDAC6 and cAMP would synergistically reduce cyst growth. Changes in hepatorenal cystogenesis were examined in PCK rats treated with a pan-HDAC inhibitor, panobinostat; three specific HDAC6 inhibitors, ACY-1215, ACY-738, and ACY-241; and a combination of ACY-1215 and the somatostatin receptor analogue, pasireotide. We also assessed effects of ACY-1215 and pasireotide alone and in combination on cell proliferation, cAMP production, and expression of acetylated α-tubulin in vitro in cultured cholangiocytes and the length of primary cilia and the frequency of ciliated cholangiocytes in vivo in PCK rats. Panobinostat and all three HDAC6 inhibitors decreased hepatorenal cystogenesis in PCK rats. ACY-1215 was more effective than other HDAC inhibitors and was chosen for combinational treatment. ACY-1215 + pasireotide combination synergistically reduced cyst growth and increased length of primary cilia in PCK rats. In cultured cystic cholangiocytes, ACY-1215 + pasireotide combination concurrently decreased cell proliferation and inhibited cAMP levels. These data suggest that the combination of drugs that inhibit HDAC6 and cAMP may be an effective therapy for PLD.
Collapse
Affiliation(s)
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Jingyi F Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | - Pui-Yuen Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester
| | | |
Collapse
|
19
|
Temmerman F, Chen F, Libbrecht L, Vander Elst I, Windmolders P, Feng Y, Ni Y, De Smedt H, Nevens F, van Pelt J. Everolimus halts hepatic cystogenesis in a rodent model of polycystic-liver-disease. World J Gastroenterol 2017; 23:5499-5507. [PMID: 28852309 PMCID: PMC5558113 DOI: 10.3748/wjg.v23.i30.5499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a MRI-based method for accurate determination of liver volume (LV) and to explore the effect of long-term everolimus (EVR) treatment on LV in PCK rats with hepatomegaly.
METHODS Thirty-one female PCK rats (model for polycystic-liver-disease: PCLD) were randomized into 3 groups and treatment was started at 16 wk, at the moment of extensive hepatomegaly (comparable to what is done in the human disease). Animals received: controls (n = 14), lanreotide (LAN: 3 mg/kg per 2 wk) (n = 10) or everolimus (EVR: 1 mg/kg per day) (n = 7). LV was measured at week 16, 24, 28. At week 28, all rats were sacrificed and liver tissue was harvested. Fibrosis was evaluated using quantitative image analysis. In addition, gene (quantitative RT-PCR) and protein expression (by Western blot) of the PI3K/AkT/mTOR signaling pathway was investigated.
RESULTS LV determination by MRI correlated excellent with the ex vivo measurements (r = 0.99, P < 0.001). The relative changes in LV at the end of treatment were: (controls) +31.8%; (LAN) +5.1% and (EVR) +8.8%, indicating a significantly halt of LV progression compared with controls (respectively, P = 0.01 and P = 0.04). Furthermore, EVR significantly reduced the amount of liver fibrosis (P = 0.004) thus might also prevent the development of portal hypertension. There was no difference in phosphorylation of Akt (Threonine 308) between LAN-treated PCK rats control PCK rats, whereas S6 was significantly more phosphorylated in the LAN group. Phosphorylation of Akt was not different between controls and EVR treated rats, however, for S6 there was significantly less phosphorylation in the EVR treated rats. Thus, both drugs interact with the PI3K/AkT/mTOR signaling cascade but acting at different molecular levels.
CONCLUSION Everolimus halts cyst growth comparable to lanreotide and reduces the development of fibrosis. mTOR-inhibition should be further explored in PCLD patients especially those that need immunosuppression.
Collapse
|
20
|
Cadnapaphornchai MA. Clinical Trials in Pediatric Autosomal Dominant Polycystic Kidney Disease. Front Pediatr 2017; 5:53. [PMID: 28386535 PMCID: PMC5362630 DOI: 10.3389/fped.2017.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is associated with concerning long-term implications for kidney function and cardiovascular health. Early intervention is needed in order to mitigate these long-term complications. Herein, we review important findings from recent clinical trials in ADPKD and their relevance to affected children and young adults and consider future directions for intervention. Recent clinical trials support aggressive control of blood pressure with blockade of the renin-angiotensin-aldosterone system as well as potential benefit of pravastatin therapy in children and young adults with ADPKD. There are several other candidate therapies, some of which have shown benefit in adult ADPKD, which require further investigation in affected children.
Collapse
|
21
|
Cordido A, Besada-Cerecedo L, García-González MA. The Genetic and Cellular Basis of Autosomal Dominant Polycystic Kidney Disease-A Primer for Clinicians. Front Pediatr 2017; 5:279. [PMID: 29326913 PMCID: PMC5741702 DOI: 10.3389/fped.2017.00279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders worldwide. In recent decades, the field has undergone a revolution, starting with the identification of causal ADPKD genes, including PKD1, PKD2, and the recently identified GANAB. In addition, advances defining the genetic mechanisms, protein localization and function, and the identification of numerous pathways involved in the disease process, have contributed to a better understanding of this illness. Together, this has led to a better prognosis, diagnosis, and treatment in clinical practice. In this mini review, we summarize and discuss new insights about the molecular mechanisms underlying ADPKD, including its genetics, protein function, and cellular pathways.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Lara Besada-Cerecedo
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
22
|
Ta MHT, Schwensen KG, Foster S, Korgaonkar M, Ozimek-Kulik JE, Phillips JK, Peduto A, Rangan GK. Effects of TORC1 Inhibition during the Early and Established Phases of Polycystic Kidney Disease. PLoS One 2016; 11:e0164193. [PMID: 27723777 PMCID: PMC5056751 DOI: 10.1371/journal.pone.0164193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
The disease-modifying effects of target of rapamycin complex 1 (TORC1) inhibitors during different stages of polycystic kidney disease (PKD) are not well defined. In this study, male Lewis Polycystic Kidney Disease (LPK) rats (a genetic ortholog of human NPHP9, phenotypically characterised by diffuse distal nephron cystic growth) and Lewis controls received either vehicle (V) or sirolimus (S, 0.2 mg/kg by intraperitoneal injection 5 days per week) during the early (postnatal weeks 3 to 10) or late stages of disease (weeks 10 to 20). In early-stage disease, sirolimus reduced kidney enlargement (by 63%), slowed the rate of increase in total kidney volume (TKV) in serial MRI by 78.2% (LPK+V: 132.3±59.7 vs. LPK+S: 28.8±12.0% per week) but only partly reduced the percentage renal cyst area (by 19%) and did not affect the decline in endogenous creatinine clearance (CrCl) in LPK rats. In late-stage disease, sirolimus reduced kidney enlargement (by 22%) and the rate of increase in TKV by 71.8% (LPK+V: 13.1±6.6 vs. LPK+S: 3.7±3.7% per week) but the percentage renal cyst area was unaltered, and the CrCl only marginally better. Sirolimus reduced renal TORC1 activation but not TORC2, NF-κB DNA binding activity, CCL2 or TNFα expression, and abnormalities in cilia ultrastructure, hypertension and cardiac disease were also not improved. Thus, the relative treatment efficacy of TORC1 inhibition on kidney enlargement was consistent at all disease stages, but the absolute effect was determined by the timing of drug initiation. Furthermore, cystic microarchitecture, renal function and cardiac disease remain abnormal with TORC1 inhibition, indicating that additional approaches to normalise cellular dedifferentiation, inflammation and hypertension are required to completely arrest the progression of PKDs.
Collapse
Affiliation(s)
- Michelle H. T. Ta
- Michael Stern Translational Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Kristina G. Schwensen
- Michael Stern Translational Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sheryl Foster
- Department of Radiology, University of Sydney at Westmead Hospital, Sydney, Australia
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Justyna E. Ozimek-Kulik
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Jacqueline K. Phillips
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Anthony Peduto
- Department of Radiology, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Gopala K. Rangan
- Michael Stern Translational Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Heath District, Westmead, Sydney, Australia
- * E-mail:
| |
Collapse
|
23
|
Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016; 12:587-609. [PMID: 27477490 DOI: 10.1038/nrneph.2016.108] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.
Collapse
|
24
|
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common inherited disorders. It is the fourth leading cause of renal replacement and renal failure worldwide. Mutations in PKD1 or PKD2 cause ADPKD. Patients with ADPKD show progressive growth of renal cysts filled with cystic fluid, leading to end-stage renal disease (ESRD) and renal failure by their sixth decade of life. Currently, there are no curative treatments for ADPKD. Therefore, patients require dialysis or kidney transplantation. To date, researchers have elucidated many of the mechanisms that cause ADPKD and developed many methods to diagnose the disease. ADPKD is related to growth factors, signaling pathways, cell proliferation, apoptosis, inflammation, the immune system, structural abnormalities, epigenetic mechanisms, microRNAs, and so on. Various therapies have been reported to slow the progression of ADPKD and alleviate its symptoms.
Collapse
|
25
|
Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase. J Transl Med 2015; 95:846-59. [PMID: 26192087 DOI: 10.1038/labinvest.2015.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis.
Collapse
|
26
|
LaRiviere WB, Irazabal MV, Torres VE. Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 2015; 165:488-98. [PMID: 25438190 PMCID: PMC4363282 DOI: 10.1016/j.trsl.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the progressive growth of renal cysts that, over time, destroy the architecture of the renal parenchyma and typically lead to kidney failure by the sixth decade of life. ADPKD is common and represents a leading cause of renal failure worldwide. Currently, there are no Food and Drug Administration-approved treatments for the disease, and the existing standard of care is primarily supportive in nature. However, significant advances in the understanding of the molecular biology of the disease have inspired investigation into potential new therapies. Several drugs designed to slow or arrest the progression of ADPKD have shown promise in preclinical models and clinical trials, including vasopressin receptor antagonists and somatostatin analogs. This article examines the literature underlying the rationale for molecular therapies for ADPKD and reviews the existing clinical evidence for their indication for human patients with the disease.
Collapse
Affiliation(s)
- Wells B LaRiviere
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
27
|
Feeding soy protein isolate and n-3 PUFA affects polycystic liver disease progression in a PCK rat model of autosomal polycystic kidney disease. J Pediatr Gastroenterol Nutr 2015; 60:467-73. [PMID: 25822773 DOI: 10.1097/mpg.0000000000000649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In polycystic liver disease (PCLD), multiple cysts cause liver enlargement, structural damage, and loss of function. Soy protein and dietary ω-3 polyunsaturated fatty acids (n-3 PUFAs) have been found to decrease cyst proliferation and inflammation in polycystic kidney disease. Therefore, the aim of the study was to investigate whether soy protein and n-3 PUFA supplementation attenuates PCLD. METHODS Young (age 28 days) female PCK rats were fed (n = 12 per group) either casein + corn oil (casein + CO), casein + soybean oil (casein + SO), soy protein isolate + soybean oil (SPI + SO), or SPI + 1:1 soybean/salmon oil blend (SPI + SB) diet for 12 weeks. Liver histology, gene expression by real-time quantitative polymerase chain reaction, and serum markers of liver injury were determined. RESULTS Diet had no effect on PCLD progression as indicated by no significant differences in liver weight and hepatic proliferation gene expression between diet groups. PCK rats fed SPI + SB diet, however, had the greatest (P < 0.05) histological evidence of hepatic cyst obstruction, portal inflammation, steatosis, and upregulation (P = 0.03) of fibrosis-related genes. Rats fed SPI + SB diet also had the lowest (P < 0.001) serum cholesterol and higher (P < 0.05) serum alkaline phosphatase and bilirubin concentrations. CONCLUSIONS Feeding young female PCK rats SPI and n-3 PUFA failed to attenuate PCLD progression. Furthermore, feeding SPI + SB diet resulted in complications of hepatic steatosis attributable to cysts obstruction of bile duct and hepatic vein. Based on the results, it was concluded that diet intervention alone was not effective at attenuating PCLD associated with autosomal recessive polycystic kidney disease.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting one in 500 individuals. The cardinal manifestation of ADPKD is progressive cystic dilatation of renal tubules with kidney enlargement and progression to end-stage renal disease in approximately half of cases by 60 years of age. Although previously considered a condition of adults, it is clear that children and young adults are subject to the complications of ADPKD. RECENT FINDINGS It has been increasingly recognized that interventions early in life are necessary in order to confer the best long-term outcome in this common condition. Therefore, it is imperative for pediatricians to recognize the manifestations and complications of this disease. Until recently ADPKD management focused on general principles of chronic kidney disease. However, several recent clinical trials in children and adults with ADPKD have focused on disease-specific therapies. SUMMARY This review will highlight the clinical manifestations, diagnosis, and appropriate management of ADPKD in childhood and will review recent relevant clinical trials in children and adults with this condition.
Collapse
|
29
|
Ebner K, Feldkoetter M, Ariceta G, Bergmann C, Buettner R, Doyon A, Duzova A, Goebel H, Haffner D, Hero B, Hoppe B, Illig T, Jankauskiene A, Klopp N, König J, Litwin M, Mekahli D, Ranchin B, Sander A, Testa S, Weber LT, Wicher D, Yuzbasioglu A, Zerres K, Dötsch J, Schaefer F, Liebau MC. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol 2015; 16:22. [PMID: 25886171 PMCID: PMC4359504 DOI: 10.1186/s12882-015-0002-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is a rare but frequently severe disorder that is typically characterized by cystic kidneys and congenital hepatic fibrosis but displays pronounced phenotypic heterogeneity. ARPKD is among the most important causes for pediatric end stage renal disease and a leading reason for liver-, kidney- or combined liver kidney transplantation in childhood. The underlying pathophysiology, the mechanisms resulting in the observed clinical heterogeneity and the long-term clinical evolution of patients remain poorly understood. Current treatment approaches continue to be largely symptomatic and opinion-based even in most-advanced medical centers. While large clinical trials for the frequent and mostly adult onset autosomal dominant polycystic kidney diseases have recently been conducted, therapeutic initiatives for ARPKD are facing the challenge of small and clinically variable cohorts for which reliable end points are hard to establish. METHODS/DESIGN ARegPKD is an international, mostly European, observational study to deeply phenotype ARPKD patients in a pro- and retrospective fashion. This registry study is conducted with the support of the German Society for Pediatric Nephrology (GPN) and the European Study Consortium for Chronic Kidney Disorders Affecting Pediatric Patients (ESCAPE Network). ARegPKD clinically characterizes long-term ARPKD courses by a web-based approach that uses detailed basic data questionnaires in combination with yearly follow-up visits. Clinical data collection is accompanied by associated biobanking and reference histology, thus setting roots for future translational research. DISCUSSION The novel registry study ARegPKD aims to characterize miscellaneous subcohorts and to compare the applied treatment options in a large cohort of deeply characterized patients. ARegPKD will thus provide evidence base for clinical treatment decisions and contribute to the pathophysiological understanding of this severe inherited disorder.
Collapse
Affiliation(s)
- Kathrin Ebner
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Markus Feldkoetter
- Department of Pediatrics, University Hospital Bonn, Adenauerallee 119, 53113, Bonn, Germany.
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Pg/Vall d' Hebron 119-129, 08034, Barcelona, Spain.
| | - Carsten Bergmann
- Bioscientia Center for Human Genetics, Konrad-Adenauer-Straße 17, 55218, Ingelheim, Germany. .,Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Reinhard Buettner
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Anke Doyon
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Ali Duzova
- Department of Pediatrics, Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey.
| | - Heike Goebel
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Barbara Hero
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Bernd Hoppe
- Department of Pediatrics, University Hospital Bonn, Adenauerallee 119, 53113, Bonn, Germany.
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Institute for Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Augustina Jankauskiene
- Vilnius University Hospital, Center for Pediatrics, Santariskiu, 08406, Vilnius, Lithuania.
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Jens König
- Department of General Pediatrics, University Hospital Münster, Waldeyerstr. 22, 48149, Muenster, Germany.
| | - Mieczyslaw Litwin
- The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Herestrtaat 49, 3000, Leuven, Belgium.
| | - Bruno Ranchin
- Service de Néphrologie Pédiatrique, Hospices Civils de Lyon, Université de Lyon, Hôpital Femme Mère Enfant, 69677, Bron, France.
| | - Anja Sander
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | - Sara Testa
- Pediatric Nephrology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Polic, Via della Commenda 9, 20122, Milano, Italy.
| | - Lutz Thorsten Weber
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Dorota Wicher
- The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Ayse Yuzbasioglu
- Department of Medical Biology, Center for Biobanking and Genomics, Hacettepe University, Ankara, Turkey.
| | - Klaus Zerres
- Institute of Human Genetics, RWTH University Hospital Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Franz Schaefer
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany. .,Nephrology Research Laboratory, Department II of Internal Medicine, University Hospital of Cologne, CECAD Building, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| | | | | |
Collapse
|
30
|
Abstract
Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated.
Collapse
|
31
|
Büscher R, Büscher AK, Weber S, Mohr J, Hegen B, Vester U, Hoyer PF. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes. Pediatr Nephrol 2014; 29:1915-25. [PMID: 24114580 DOI: 10.1007/s00467-013-2634-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 02/23/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), although less frequent than the dominant form, is a common, inherited ciliopathy of childhood that is caused by mutations in the PKHD1-gene on chromosome 6. The characteristic dilatation of the renal collecting ducts starts in utero and can present at any stage from infancy to adulthood. Renal insufficiency may already begin in utero and may lead to early abortion or oligohydramnios and lung hypoplasia in the newborn. However, there are also affected children who have no evidence of renal dysfunction in utero and who are born with normal renal function. Up to 30 % of patients die in the perinatal period, and those surviving the neonatal period reach end stage renal disease (ESRD) in infancy, early childhood or adolescence. In contrast, some affected patients have been diagnosed as adults with renal function ranging from normal to moderate renal insufficiency to ESRD. The clinical spectrum of ARPKD is broader than previously recognized. While bilateral renal enlargement with microcystic dilatation is the predominant clinical feature, arterial hypertension, intrahepatic biliary dysgenesis remain important manifestations that affect approximately 45 % of infants. All patients with ARPKD develop clinical findings of congenital hepatic fibrosis (CHF); however, non-obstructive dilation of the intrahepatic bile ducts in the liver (Caroli's disease) is seen at the histological level in only a subset of patients. Cholangitis and variceal bleeding, sequelae of portal hypertension, are life-threatening complications that may occur more often in advanced cases of liver disease. In this review we focus on common and uncommon kidney-related and non-kidney-related phenotypes. Clinical management of ARPKD patients should include consideration of potential problems related to these manifestations.
Collapse
Affiliation(s)
- Rainer Büscher
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany,
| | | | | | | | | | | | | |
Collapse
|
32
|
Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 2014; 134:e833-45. [PMID: 25113295 PMCID: PMC4143997 DOI: 10.1542/peds.2013-3646] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies.
Collapse
Affiliation(s)
- Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
33
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
34
|
Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 2014; 124:2315-24. [PMID: 24892705 DOI: 10.1172/jci72272] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in defining the genetic mechanisms of disease causation and modification in autosomal dominant polycystic kidney disease (ADPKD) have helped to explain some extreme disease manifestations and other phenotypic variability. Studies of the ADPKD proteins, polycystin-1 and -2, and the development and characterization of animal models that better mimic the human disease, have also helped us to understand pathogenesis and facilitated treatment evaluation. In addition, an improved understanding of aberrant downstream pathways in ADPKD, such as proliferation/secretion-related signaling, energy metabolism, and activated macrophages, in which cAMP and calcium changes may play a role, is leading to the identification of therapeutic targets. Finally, results from recent and ongoing preclinical and clinical trials are greatly improving the prospects for available, effective ADPKD treatments.
Collapse
|
35
|
Ramírez de la Piscina P, Duca I, Estrada S, Calderón R, Ganchegui I, Campos A, Spicakova K, Urtasun L, Salvador M, Delgado E, Bengoa R, García-Campos F. Combined liver and kidney transplant in a patient with budd-Chiari syndrome secondary to autosomal dominant polycystic kidney disease associated with polycystic liver disease: report of a case with a 9-year follow-up. Case Rep Gastrointest Med 2014; 2014:585291. [PMID: 24987537 PMCID: PMC4058590 DOI: 10.1155/2014/585291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/03/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022] Open
Abstract
Polycystic liver disease (PLD) is a hereditary disease inherited by autosomal dominant trait that occurs as a frequent extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). We report a case of a 59-year-old woman diagnosed with ADPKD associated with PLD. End-stage chronic renal failure with a secondary Budd-Chiari syndrome developed during the patient's clinical course. She underwent combined liver and kidney transplantation, with a successful response over a 9-year follow-up period.
Collapse
Affiliation(s)
- Patricia Ramírez de la Piscina
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Ileana Duca
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Silvia Estrada
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Rosario Calderón
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Idoia Ganchegui
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Amaia Campos
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Katerina Spicakova
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Leire Urtasun
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Marta Salvador
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Elvira Delgado
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Raquel Bengoa
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| | - Francisco García-Campos
- Department of Gastroenterology, Hospital Txagorritxu, Universidad del País Vasco, C/ José Achotegui s/n, Vitoria-Gasteiz, 01009 Álava, Spain
| |
Collapse
|
36
|
Ravichandran K, Zafar I, He Z, Doctor RB, Moldovan R, Mullick AE, Edelstein CL. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Hum Mol Genet 2014; 23:4919-31. [PMID: 24847003 DOI: 10.1093/hmg/ddu208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA. In human ADPKD studies, sirolimus, a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, had little therapeutic effect. While sirolimus robustly inhibits mTORC1, it has a minimal effect on mTOR complex 2 (mTORC2). Polycystic kidneys of Pkd2WS25/- mice, an orthologous model of human ADPKD caused by a mutation in the Pkd2 gene, had an early increase in pS6 (marker of mTORC1) and pAktSer(473) (marker of mTORC2). To investigate the effect of combined mTORC1 and 2 inhibition, Pkd2WS25/- mice were treated with an mTOR anti-sense oligonucleotide (ASO) that blocks mTOR expression thus inhibiting both mTORC1 and 2. The mTOR ASO resulted in a significant decrease in mTOR protein, pS6 and pAktSer(473). Pkd2WS25/- mice treated with the ASO had a normalization of kidney weights and kidney function and a marked decrease in cyst volume. The mTOR ASO resulted in a significant decrease in proliferation and apoptosis of tubular epithelial cells. To demonstrate the role of mTORC2 on cyst growth, Rictor, the functional component of mTORC2, was silenced in Madin-Darby canine kidney cell cysts grown in 3D cultures. Silencing Rictor significantly decreased cyst volume and expression of pAktSer(473). The decreased cyst size in the Rictor silenced cells was reversed by introduction of a constitutively active Akt1. In vitro, combined mTORC1 and 2 inhibition reduced cyst growth more than inhibition of mTORC1 or 2 alone. In conclusion, combined mTORC1 and 2 inhibition has therapeutic potential in ADPKD.
Collapse
Affiliation(s)
| | - Iram Zafar
- Division of Renal Diseases and Hypertension
| | - Zhibin He
- Division of Renal Diseases and Hypertension
| | | | - Radu Moldovan
- Advanced Light Microscopy Core Facility, University of Colorado at Denver, Aurora, CO, USA
| | | | | |
Collapse
|
37
|
Sabbatini M, Russo L, Cappellaio F, Troncone G, Bellevicine C, De Falco V, Buonocore P, Riccio E, Bisesti V, Federico S, Pisani A. Effects of combined administration of rapamycin, tolvaptan, and AEZ-131 on the progression of polycystic disease in PCK rats. Am J Physiol Renal Physiol 2014; 306:F1243-50. [PMID: 24647711 DOI: 10.1152/ajprenal.00694.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Both experimental and clinical studies have suggested that any potential treatment of polycystic kidney disease (PKD) should start early and last for a long time to be effective, with unavoidable side reactions and considerable costs. The aim of the present study was to test how low doses of rapamycin (RAPA; 0.15 mg/kg ip for 4 days/wk), tolvaptan (TOLV; 0.005% in diet), or AEZ-131 (AEZ; a novel ERK inhibitor, 30 mg/kg for 3 days/wk by gavage), alone and in association, affect the progression of polycystic renal disease in PCK rats. Rats were treated for 8 wk starting at 4-6 wk of age. The efficacy of low doses of such drugs in inhibiting their respective targets was confirmed by immunoblot experiments. Compared with rats in the control (CON) group, RAPA treatment caused a significant reduction in cyst volume density (CVD; -19% vs. the CON group) and was numerically similar to that in TOLV-treated rats (-18%, not significiant), whereas AEZ treatment was not effective. RAPA + TOLV treatment resulted in a significantly lower CVD (-49% vs. the CON group) and was associated with a striking decrease in cAMP response element-binding protein phosphorylation, and similar data were detected in RAPA + AEZ-treated rats (-42%), whereas TOLV + AEZ treatment had virtually no effect. RAPA administration significantly lessened body weight gain, whereas TOLV administration resulted a mild increase in diuresis and a significant increase in cAMP urinary excretion. Histological data of tubular proliferation were in full agreement with CVD data. In conclusion, this study demonstrates that the association of low doses of RAPA, TOLV, and AEZ slows the progression of PKD with limited side effects, suggesting the use of combined therapies also in clinical trials.
Collapse
Affiliation(s)
| | - Luigi Russo
- Department of Public Health, University Federico II, Naples, Italy
| | | | | | | | - Valentina De Falco
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Preziosa Buonocore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, University Federico II, Naples, Italy
| | - Vincenzo Bisesti
- Department of Public Health, University Federico II, Naples, Italy
| | - Stefano Federico
- Department of Public Health, University Federico II, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, University Federico II, Naples, Italy
| |
Collapse
|
38
|
Ren XS, Sato Y, Harada K, Sasaki M, Furubo S, Song JY, Nakanuma Y. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLoS One 2014; 9:e87660. [PMID: 24498161 PMCID: PMC3907540 DOI: 10.1371/journal.pone.0087660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/28/2013] [Indexed: 12/13/2022] Open
Abstract
The polycystic kidney (PCK) rat is an animal model of Caroli’s disease as well as autosomal recessive polycystic kidney disease (ARPKD). The signaling pathways involving the mammalian target of rapamycin (mTOR) are aberrantly activated in ARPKD. This study investigated the effects of inhibitors for the cell signaling pathways including mTOR on cholangiocyte proliferation of the PCK rat. Cultured PCK cholangiocytes were treated with rapamycin and everolimus [inhibitors of mTOR complex 1 (mTOC1)], LY294002 [an inhibitor of phosphatidylinositol 3-kinase (PI3K)] and NVP-BEZ235 (an inhibitor of PI3K and mTORC1/2), and the cell proliferative activity was determined in relation to autophagy and apoptosis. The expression of phosphorylated (p)-mTOR, p-Akt, and PI3K was increased in PCK cholangiocytes compared to normal cholangiocytes. All inhibitors significantly inhibited the cell proliferative activity of PCK cholangiocytes, where NVP-BEZ235 had the most prominent effect. NVP-BEZ235, but not rapamycin and everolimus, further inhibited biliary cyst formation in the three-dimensional cell culture system. Rapamycin and everolimus induced apoptosis in PCK cholangiocytes, whereas NVP-BEZ235 inhibited cholangiocyte apoptosis. Notably, the autophagic response was significantly induced following the treatment with NVP-BEZ235, but not rapamycin and everolimus. Inhibition of autophagy using siRNA against protein-light chain3 and 3-methyladenine significantly increased the cell proliferative activity of PCK cholangiocytes treated with NVP-BEZ235. In vivo, treatment of the PCK rat with NVP-BEZ235 attenuated cystic dilatation of the intrahepatic bile ducts, whereas renal cyst development was unaffected. These results suggest that the aberrant activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat, and inhibition of the pathway can reduce cholangiocyte proliferation via the mechanism involving apoptosis and/or autophagy.
Collapse
Affiliation(s)
- Xiang Shan Ren
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
- Department of Pathology, Yanbian University College of Medicine, Yanji-city, China
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shinichi Furubo
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Jing Yu Song
- Department of Pathology, Yanbian University College of Medicine, Yanji-city, China
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
- Department of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
39
|
Roix J, Saha S. TNF-α blockade is ineffective in animal models of established polycystic kidney disease. BMC Nephrol 2013; 14:233. [PMID: 24160989 PMCID: PMC4231369 DOI: 10.1186/1471-2369-14-233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background Given the large medical burden of polycystic kidney disease (PKD) and recent clinical trial failures, there is a need for novel, safe and effective treatments for the disorder. Methods In PCK rat and PKD2(ws25/w183) mouse models, entanercept was administered once every three days at 5 or 10 mg/kg, once daily. Mozavaptan was administered as a pilot control, provided continuously via milled chow at 0.1%. Animals were assessed for measures of pharmacodynamic response, and improvements in measures of polycystic kidney disease. Results Entanercept treatment modulated inflammatory markers, but provided limited therapeutic benefit in multiple animal models of established polycystic kidney disease. Kidney weight, cyst burden and renal function markers remained unchanged following administration of etanercept at various dose levels and multiple treatment durations. Conclusions While it remains possible that TNF-α inhibition may be effective in truly preventative settings, our observations suggest this pathway is less likely to exhibit therapeutic or disease-modifying efficacy following the standard clinical diagnosis of disease.
Collapse
Affiliation(s)
| | - Saurabh Saha
- Biomed Valley Discoveries Inc, 4520 Main Street, Suite 1650, MO 64111, Kansas City, USA.
| |
Collapse
|
40
|
Abu-Wasel B, Walsh C, Keough V, Molinari M. Pathophysiology, epidemiology, classification and treatment options for polycystic liver diseases. World J Gastroenterol 2013; 19:5775-5786. [PMID: 24124322 PMCID: PMC3793132 DOI: 10.3748/wjg.v19.i35.5775] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023] Open
Abstract
Polycystic liver diseases (PLD) represent a group of genetic disorders in which cysts occur in the liver (autosomal dominant polycystic liver disease) or in combination with cysts in the kidneys (autosomal dominant polycystic kidney disease). Regardless of the genetic mutations, the natural history of these disorders is alike. The natural history of PLD is characterized by a continuous increase in the volume and the number of cysts. Both genders are affected; however, women have a higher prevalence. Most patients with PLD are asymptomatic and can be managed conservatively. Severe symptoms can affect 20% of patients who develop massive hepatomegaly with compression of the surrounding organs. Rrarely, patients with PLD suffer from acute complications caused by the torsion of hepatic cysts, intraluminal cystic hemorrhage and infections. The most common methods for the diagnosis of PLD are cross sectional imaging studies. Abdominal ultrasound and computerized tomography are the two most frequently used investigations. Magnetic resonance imaging is more sensitive and specific, and it is a valuable test for patients with intravenous contrast allergies or renal dysfunction. Different treatment modalities are available to physicians caring for these patients. Medical treatment has been ineffective. Percutaneous sclerotherapy, trans-arterial embolization, cyst fenestration, hepatic resection and liver transplantation are indicated to specific groups of patients and have to be tailored according to the extent of disease. This review outlines the current knowledge of the pathophysiology, clinical course, diagnosis and treatment strategies of PLD.
Collapse
|
41
|
Ruh H, Salonikios T, Fuchser J, Schwartz M, Sticht C, Hochheim C, Wirnitzer B, Gretz N, Hopf C. MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res 2013; 54:2785-94. [PMID: 23852700 DOI: 10.1194/jlr.m040014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe, monogenetically inherited kidney and liver disease. PCK rats carrying the orthologous mutant gene serve as a model of human disease, and alterations in lipid profiles in PCK rats suggest that defined subsets of lipids may be useful as molecular disease markers. Whereas MALDI protein imaging mass spectrometry (IMS) has become a promising tool for disease classification, widely applicable workflows that link MALDI lipid imaging and identification as well as structural characterization of candidate disease-classifying marker lipids are lacking. Here, we combine selective MALDI imaging of sulfated kidney lipids and Fisher discriminant analysis (FDA) of imaging data sets for identification of candidate markers of progressive disease in PCK rats. Our study highlights strong increases in lower mass lipids as main classifiers of cystic disease. Structure determination by high-resolution mass spectrometry identifies these altered lipids as taurine-conjugated bile acids. These sulfated lipids are selectively elevated in the PCK rat model but not in models of related hepatorenal fibrocystic diseases, suggesting that they be molecular markers of the disease and that a combination of MALDI imaging with high-resolution MS methods and Fisher discriminant data analysis may be applicable for lipid marker discovery.
Collapse
Affiliation(s)
- Hermelindis Ruh
- Institute of Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Onori P, Mancinelli R, Franchitto A, Carpino G, Renzi A, Brozzetti S, Venter J, Francis H, Glaser S, Jefferson DM, Alpini G, Gaudio E. Role of follicle-stimulating hormone on biliary cyst growth in autosomal dominant polycystic kidney disease. Liver Int 2013; 33:914-25. [PMID: 23617956 PMCID: PMC4064944 DOI: 10.1111/liv.12177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the progressive development of renal and hepatic cysts. Follicle-stimulating hormone (FSH) has been demonstrated to be a trophic factor for biliary cells in normal rats and experimental cholestasis induced by bile duct ligation (BDL). AIMS To assess the effect of FSH on cholangiocyte proliferation during ADPKD using both in vivo and in vitro models. METHODS Evaluation of FSH receptor (FSHR), FSH, phospho-extracellular-regulated kinase (pERK) and c-myc expression in liver fragments from normal patients and patients with ADPKD. In vitro, we studied proliferating cell nuclear antigen (PCNA) and cAMP levels in a human immortalized, non-malignant cholangiocyte cell line (H69) and in an immortalized cell line obtained from the epithelium lining the hepatic cysts from the patients with ADPKD (LCDE) with or without transient silencing of the FSH gene. RESULTS Follicle-stimulating hormone is linked to the active proliferation of the cystic wall and to the localization of p-ERK and c-myc. This hormone sustains the biliary growth by activation of the cAMP/ERK signalling pathway. CONCLUSION These results showed that FSH has an important function in cystic growth acting on the cAMP pathway, demonstrating that it provides a target for medical therapy of hepatic cysts during ADPKD.
Collapse
Affiliation(s)
- Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy,Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome ‘Foro Italico’, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Stefania Brozzetti
- Department of Surgical Sciences, University of Rome ‘Sapienza’, Rome, Italy
| | - Julie Venter
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Heather Francis
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Shannon Glaser
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | | | - Gianfranco Alpini
- Scott & White Digestive Disease Research Center, Central Texas Veterans Health Care System and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome ‘Sapienza’, Rome, Italy
| |
Collapse
|
43
|
Irazabal MV, Torres VE. Experimental therapies and ongoing clinical trials to slow down progression of ADPKD. Curr Hypertens Rev 2013; 9:44-59. [PMID: 23971644 PMCID: PMC4067974 DOI: 10.2174/1573402111309010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022]
Abstract
The improvement of imaging techniques over the years has contributed to the understanding of the natural history of autosomal dominant polycystic kidney disease, and facilitated the observation of its structural progression. Advances in molecular biology and genetics have made possible a greater understanding of the genetics, molecular, and cellular pathophysiologic mechanisms responsible for its development and have laid the foundation for the development of potential new therapies. Therapies targeting genetic mechanisms in ADPKD have inherent limitations. As a result, most experimental therapies at the present time are aimed at delaying the growth of the cysts and associated interstitial inflammation and fibrosis by targeting tubular epithelial cell proliferation and fluid secretion by the cystic epithelium. Several interventions affecting many of the signaling pathways disrupted in ADPKD have been effective in animal models and some are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Maria V. Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
44
|
Kim HJ, Edelstein CL. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside. Kidney Res Clin Pract 2012; 31:132-8. [PMID: 26894018 PMCID: PMC4716095 DOI: 10.1016/j.krcp.2012.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA resulting in chronic kidney disease and the need for dialysis and transplantation. Approximately 85% of cases of ADPKD are caused by a mutation in the Pkd1 gene that encodes polycystin-1, a large membrane receptor. The Pkd1 gene mutation results in abnormal proliferation in tubular epithelial cells, which plays a crucial role in cyst development and/or growth in PKD. Activation of the proliferative mammalian target of rapamycin (mTOR) signaling pathway has been demonstrated in polycystic kidneys from rodents and humans. mTOR inhibition with sirolimus or everolimus decreases cysts in most animal models of PKD including Pkd1 and Pkd2 gene deficient orthologous models of human disease. On the basis of animal studies, human studies were undertaken. Two large randomized clinical trials published in the New England Journal of Medicine of everolimus or sirolimus in ADPKD patients were very unimpressive and associated with a high side-effect profile. Possible reasons for the unimpressive nature of the human studies include their short duration, the high drop-out rate, suboptimal dosing, lack of randomization of "fast" and "slow progressors" and the lack of correlation between kidney size and kidney function in ADPKD. The future of mTOR inhibition in ADPKD is discussed.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, Colorado, USA
- Department of Internal Medicine, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Charles L. Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado at Denver, Aurora, Colorado, USA
- Corresponding author. University of Colorado at Denver and the Health Sciences Center, Box C281, 12700 East, 19th Ave, Aurora, CO 80262, USA.
| |
Collapse
|
45
|
WITHDRAWN: Mammalian target of rapamycin (mTOR) inhibition in polycystic kidney disease (PKD): From bench to bedside. Kidney Res Clin Pract 2012. [DOI: 10.1016/j.krcp.2012.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Lieberthal W, Levine JS. Mammalian target of rapamycin and the kidney. II. Pathophysiology and therapeutic implications. Am J Physiol Renal Physiol 2012; 303:F180-91. [PMID: 22496407 DOI: 10.1152/ajprenal.00015.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mTOR pathway plays an important role in a number of common renal diseases, including acute kidney injury (AKI), diabetic nephropathy (DN), and polycystic kidney diseases (PKD). The activity of mTOR complex 1 (mTORC1) is necessary for renal regeneration and repair after AKI, and inhibition of mTORC1 by rapamycin has been shown to delay recovery from ischemic AKI in animal studies, and to prolong delayed graft function in humans who have received a kidney transplant. For this reason, administration of rapamycin should be delayed or discontinued in patients with AKI until full recovery of renal function has occurred. On the other hand, inappropriately high mTORC1 activity contributes to the progression of the metabolic syndrome, the development of type 2 diabetes, and the pathogenesis of DN. In addition, chronic hyperactivity of mTORC1, and possibly also mTORC2, contributes to cyst formation and enlargement in a number of forms of PKD. Inhibition of mTOR, using either rapamycin (which inhibits predominantly mTORC1) or "catalytic" inhibitors (which effectively inhibit both mTORC1 and mTORC2), provide exciting possibilities for novel forms of treatment of DN and PKD. In this second part of the review, we will examine the role of mTOR in the pathophysiology of DN and PKD, as well as the potential utility of currently available and newly developed inhibitors of mTOR to slow the progression of DN and/or PKD.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Stony Brook Univ. Medical Center, Health Sciences Center, Stony Brook, NY 11794-8166, USA.
| | | |
Collapse
|
47
|
Caroli's Disease: Current Knowledge of Its Biliary Pathogenesis Obtained from an Orthologous Rat Model. Int J Hepatol 2012; 2012:107945. [PMID: 22007315 PMCID: PMC3168917 DOI: 10.1155/2012/107945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/07/2011] [Indexed: 12/14/2022] Open
Abstract
Caroli's disease belongs to a group of hepatic fibropolycystic diseases and is a hepatic manifestation of autosomal recessive polycystic kidney disease (ARPKD). It is a congenital disorder characterized by segmental saccular dilatations of the large intrahepatic bile duct and is frequently associated with congenital hepatic fibrosis (CHF). The most viable theory explaining its pathogenesis suggests that it is related to ductal plate malformation. The development of the polycystic kidney (PCK) rat, an orthologous rodent model of Caroli's disease with CHF as well as ARPKD, has allowed the molecular pathogenesis of the disease and the therapeutic options for its treatment to be examined. The relevance of the findings of studies using PCK rats and/or the cholangiocyte cell line derived from them to the pathogenesis of human Caroli's disease is currently being analyzed. Fibrocystin/polyductin, the gene product responsible for ARPKD, is normally localized to primary cilia, and defects in the fibrocystin from primary cilia are observed in PCK cholangiocytes. Ciliopathies involving PCK cholangiocytes (cholangiociliopathies) appear to be associated with decreased intracellular calcium levels and increased cAMP concentrations, causing cholangiocyte hyperproliferation, abnormal cell matrix interactions, and altered fluid secretion, which ultimately result in bile duct dilatation. This article reviews the current knowledge about the pathogenesis of Caroli's disease with CHF, particularly focusing on studies of the mechanism responsible for the biliary dysgenesis observed in PCK rats.
Collapse
|
48
|
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a developmental disorder that mainly affects the kidneys and the biliary tract. Affected patients often have massively enlarged cystic kidneys as well as congenital hepatic fibrosis (CHF) characterized by dilated bile ducts and associated peribiliary fibrosis. This review will examine what is known about ARPKD-associated liver disease and will highlight areas of ongoing research into its pathogenesis and potential treatment.
Collapse
Affiliation(s)
- Jessica Wen
- Division of Gastroenterology, Hepatology & Nutrition, The Children's Hospital of Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Temmerman F, Missiaen L, Bammens B, Laleman W, Cassiman D, Verslype C, van Pelt J, Nevens F. Systematic review: the pathophysiology and management of polycystic liver disease. Aliment Pharmacol Ther 2011; 34:702-13. [PMID: 21790682 DOI: 10.1111/j.1365-2036.2011.04783.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Polycystic liver diseases (PCLD) represent a group of genetic disorders in which cysts occur solely in the liver, or together with renal cysts. Most of the patients with PCLD are asymptomatic, however, in some patients, expansion of liver cysts causes invalidating abdominal symptoms. AIM To provide a systemic review on the pathophysiology and management of PCLD. METHODS A PubMed search was undertaken to identify relevant literature using search terms including polycystic liver disease, pathophysiology, surgical and medical management. RESULTS The most common complication in patients with PCLD is extensive hepatomegaly, which may lead to malnutrition and can be lethal. Conservative surgical approaches are only partially effective and do not change the natural course of the disease. Liver transplantation has been successfully performed in PCLD, however, in an era of organ shortage, medical management needs to be evaluated. A better understanding of the pathophysiology and the availability of animal models have already identified promising drugs. Abnormalities in cholangiocyte proliferation/apoptosis and enhanced fluid secretion are key factors in the pathophysiology. It has been demonstrated in rodents and in humans that somatostatin analogues diminish liver volume. The role of the inhibitors of the mammalian target of rapamycin (mTOR) in the management of PCLD is still under investigation. CONCLUSIONS The exact pathophysiology of polycystic liver disease still remains unclear. In symptomatic patients, none of the currently available surgical options except liver transplantation have been shown to change the natural course of the disease. The use of somatostatin analogues has been shown to diminish liver volume.
Collapse
Affiliation(s)
- F Temmerman
- Department of Hepatology, UZ Gasthuisberg, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ibraghimov-Beskrovnaya O, Natoli TA. mTOR signaling in polycystic kidney disease. Trends Mol Med 2011; 17:625-33. [PMID: 21775207 DOI: 10.1016/j.molmed.2011.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/16/2011] [Accepted: 06/07/2011] [Indexed: 12/15/2022]
Abstract
Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.
Collapse
|