1
|
Menezes AC, Brito ML, Almeida PP, Da Cruz BO, da Silva Costa N, D'Avila Pereira A, Castañon C, Nunes Degani VA, Medeiros de França Cardozo LF, Magliano DC, Stockler-Pinto MB. Brazil nuts potential: effects on lipid peroxidation and heart health in nephrectomized rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0123. [PMID: 39146527 DOI: 10.1515/jcim-2024-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES To investigate the effects of a Brazil nut-enriched diet on the wall thickness and the left ventricular chamber diameter of the heart, and lipid peroxidation in a CKD-induced model. METHODS Male Wistar rats at 12 weeks of age were divided into two groups (n=16/group): the Nx group, which underwent 5/6 nephrectomy, and the Sham group, as a control. After 5 weeks, the groups were subdivided according to diet (n=8/group): the Nx and Sham groups received a control diet; the Nx5% and Sham5% groups received a diet enriched with 5 % Brazil nuts for 8 weeks. The left ventricular thickening and chamber diameter were determined. Plasma biochemical parameters were evaluated. Analysis of thiobarbituric acid reactive substances (TBARS) and antioxidant enzyme activity was performed in the plasma and the left ventricle (LV). LV mRNA expression of nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) was evaluated by reverse transcription-polymerase chain reaction. RESULTS The Nx5% group showed a remodeled LV wall with decreased thickness compared to the Nx group (p=0.016). Furthermore, LV TBARS concentration was reduced in the Nx5% group (p=0.0064). In addition, the Nx5% group showed an increase in plasma GPx activity (p=0.0431). No significant results were found concerning the LV mRNA expression of NF-κB and Nrf2 genes. CONCLUSIONS A Brazil nut-enriched diet decreased LV thickness and LV TBARS concentration and increased GPx activity in a 5/6 nephrectomy experimental model, making it a promising adjuvant therapy to improve antioxidant status and cardiovascular outcomes in chronic kidney disease.
Collapse
Affiliation(s)
- Agatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecilia Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
2
|
Vijayan A, Chithra V, Sandhya C. Modifiable risk factors, oxidative stress markers, and SOD2 rs4880 SNP in coronary artery disease: an association study. Mol Biol Rep 2024; 51:805. [PMID: 39001948 DOI: 10.1007/s11033-024-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) has been linked to single nucleotide polymorphism (SNP) in superoxide dismutase 2 (SOD 2) gene. Additionally, several modifiable risk factors are also known to influence the CAD risk. AIM To investigate the association between selected modifiable risk factors and oxidative stress markers with the SOD2 rs4880 SNP in CAD patients. METHODS A cohort of 150 angiographically confirmed CAD patients, and 100 control subjects in the same geographic area were enrolled. SOD levels and lipid peroxidation were assessed in the blood samples using standard protocols. The genotyping of the SOD2 gene was conducted through the PCR-sequencing method. RESULTS This study indicated that CAD patients with the rs4880 SNP having heterozygous AG and mutated homozygous GG genotypes have increased oxidative stress, decreased SOD activity, and a positive association with CAD risk (OR 2.85) in comparison with control individuals. The investigation among CAD patients was then carried out based on modifiable risk factors. The risk factors selected were clinical characteristics, physical habits, nutritional status, and body mass index. In all the cases, MDA levels showed a positive association, and SOD activity showed a negative association with the selected polymorphism. CONCLUSIONS The study suggests that the selected modifiable risk factors have an important role in the higher oxidative stress found in patients, which may lead to SOD2 polymorphism. It also suggests that the SOD2 locus can be identified as a marker gene for CAD susceptibility.
Collapse
Affiliation(s)
- Anoop Vijayan
- Department of Biosciences, Mar Thoma College, Thiruvalla, Pathanamthitta, Kerala, 689103, India
| | - V Chithra
- Department of Biochemistry, N.S.S College, Pandalam, Pathanamthitta, Kerala, 689501, India
| | - C Sandhya
- Department of Biochemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India.
- Research Guide, Research Department of Microbiology, Sree Sankara College, Kalady, Ernakulum, Kerala, 683574, India.
| |
Collapse
|
3
|
Fakhri YA, Al-Ani AW. Superoxide Dismutase and Clopidogrel: A Potential Role in Peripheral Arterial Disease Treatment. DOKL BIOCHEM BIOPHYS 2024; 516:83-92. [PMID: 38700818 DOI: 10.1134/s1607672924600088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of peripheral artery disease (PAD). This study aimed to investigate the effect of clopidogrel on oxidative stress in PAD patients. Seventy subjects were divided into three groups: PAD patients before treatment (B-PAD), PAD patients after treatment with clopidogrel (A-PAD), and healthy controls. Serum levels of superoxide dismutase (SOD), copper (Cu), zinc (Zn), manganese (Mn), and oxidized protein were measured. SOD activities were also determined. The results showed that SOD activities, and SOD specific activities were significantly decreased in PAD patients compared to healthy individuals. After treatment with clopidogrel, SOD activities, and SOD specific activities were continuously decrease in PAD patients. The SOD and oxidized protein concentrations were significantly increased in PAD patients compared to healthy individuals. After treatment with clopidogrel, the oxidized protein concentration was significantly decreased, while SOD concentration was significantly increased in PAD patients. These findings suggest that the treatment by clopidogrel stimulated the production of the enzyme but the ratio of active enzyme remained low. The decrease in oxidized protein can be explained by the treatment having antioxidant efficacy that may have compensated for the deficiency in enzyme activity and led to a decrease in oxidized protein. Additionally, the results of this study provide promising evidence that oxidative stress biomarkers including SOD concentration, T-SOD activity, Mn-SOD activity, and oxidized protein levels have potential utility in the diagnosis and management of PAD.
Collapse
Affiliation(s)
- Yasameen Ali Fakhri
- Department of Chemistry, College of Science, University of Baghdad, 10071, Baghdad, Iraq.
| | - Ali W Al-Ani
- Department of Chemistry, College of Science, University of Baghdad, 10071, Baghdad, Iraq
| |
Collapse
|
4
|
Carrillo-López N, Panizo S, Martín-Carro B, Mayo Barrallo JC, Román-García P, García-Castro R, Fernández-Gómez JM, Hevia-Suárez MÁ, Martín-Vírgala J, Fernández-Villabrille S, Martínez-Arias L, Vázquez SB, Calleros Basilio L, Naves-Díaz M, Cannata-Andía JB, Quirós-González I, Alonso-Montes C, Fernández-Martín JL. Redox Metabolism and Vascular Calcification in Chronic Kidney Disease. Biomolecules 2023; 13:1419. [PMID: 37759819 PMCID: PMC10526886 DOI: 10.3390/biom13091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Vascular calcification (VC) is a common complication in patients with chronic kidney disease which increases their mortality. Although oxidative stress is involved in the onset and progression of this disorder, the specific role of some of the main redox regulators, such as catalase, the main scavenger of H2O2, remains unclear. In the present study, epigastric arteries of kidney transplant recipients, a rat model of VC, and an in vitro model of VC exhibiting catalase (Cts) overexpression were analysed. Pericalcified areas of human epigastric arteries had increased levels of catalase and cytoplasmic, rather than nuclear runt-related transcription factor 2 (RUNX2). In the rat model, advanced aortic VC concurred with lower levels of the H2O2-scavenger glutathione peroxidase 3 compared to controls. In an early model of calcification using vascular smooth muscle cells (VSMCs), Cts VSMCs showed the expected increase in total levels of RUNX2. However, Cts VMSCs also exhibited a lower percentage of the nucleus stained for RUNX2 in response to calcifying media. In this early model of VC, we did not observe a dysregulation of the mitochondrial redox state; instead, an increase in the general redox state was observed in the cytoplasm. These results highlight the complex role of antioxidant enzymes as catalase by regulation of RUNX2 subcellular location delaying the onset of VC.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Juan Carlos Mayo Barrallo
- Department of Cellular Morphology and Biology, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad Oviedo, 33006 Oviedo, Spain;
| | - Pablo Román-García
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
| | - Raúl García-Castro
- Department of Nephrology, Hospital Juaneda Miramar, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Jesús María Fernández-Gómez
- UGC of Urology, Hospital Universitario Central de Asturias, Universidad de Oviedo, 33011 Oviedo, Spain; (J.M.F.-G.); (M.Á.H.-S.)
- Department of Surgery and Medical Surgical Specialities, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Miguel Ángel Hevia-Suárez
- UGC of Urology, Hospital Universitario Central de Asturias, Universidad de Oviedo, 33011 Oviedo, Spain; (J.M.F.-G.); (M.Á.H.-S.)
- Department of Surgery and Medical Surgical Specialities, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Barrio Vázquez
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
| | - Laura Calleros Basilio
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Jorge Benito Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Isabel Quirós-González
- Department of Cellular Morphology and Biology, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad Oviedo, 33006 Oviedo, Spain;
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| |
Collapse
|
5
|
The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231911196. [PMID: 36232497 PMCID: PMC9569590 DOI: 10.3390/ijms231911196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Early Chronic Kidney Disease (CKD) is a condition that tends to progress to End-Stage Kidney Disease (ESKD). Early diagnosis of kidney disease in the early stages can reduce complications. Alterations in renal function represent a complication of diabetes mellitus (DM). The mechanisms underlying the progression of CKD in diabetes could be associated with oxidative and inflammatory processes. This study aimed to evaluate the state of inflammation and oxidative stress (OS) on the progression of CKD in the early stages in patients with and without type 2 diabetes mellitus (T2DM). An analytical cross-sectional study was carried out in patients with CKD in early stages (1, 2, 3) with and without T2DM. The ELISA method determined the expression of pro-inflammatory cytokines IL-6 and TNF-α as well as lipoperoxides (LPO), nitric oxide (NO), and superoxide dismutase activity (SOD). Colorimetric methods determined glutathione peroxidase (GPx) and total antioxidant capacity (TAC). Patients with CKD and T2DM had significantly decreased antioxidant defenses for SOD (p < 0.01), GPx (p < 0.01), and TAC (p < 0.01) compared to patients without T2DM. Consequently, patients with T2DM had higher concentrations of oxidant markers, NO (p < 0.01), inflammation markers, IL-6 (p < 0.01), and TNF-α than patients without T2DM. CKD stages were not related to oxidative, antioxidant, and inflammatory marker outcomes in T2DM patients. Patients without T2DM presented an increase in SOD (p = 0.04) and a decrease in NO (p < 0.01) when the stage of CKD increased. In conclusion, patients with T2DM present higher levels of oxidative and inflammatory markers accompanied by a decrease in antioxidant defense. However, these oxidative status markers were associated with CKD stage progression in patients without T2DM. Thus, NO and SOD markers could help detect the early stages of CKD in patients who have not yet developed metabolic comorbidities such as T2DM.
Collapse
|
6
|
Niroomandi E, Maleki S, Abdollahpour G, Zakian A, Ahmadvand H. The effect of natural infection with different Leptospira interrogans serovars on oxidative stress biomarkers and acute-phase responses in horses and cattle. Vet Clin Pathol 2022; 51:84-92. [PMID: 35179227 DOI: 10.1111/vcp.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
Leptospirosis is one of the important zoonotic bacterial diseases with a worldwide distribution that is often subclinical. We aimed to investigate the oxidant/antioxidant balance and acute-phase response in naturally infected horses and cattle with Leptospira interrogans. A total of 600 serum samples from horses and cattle were examined for L. interrogans antibodies using the microscopic agglutination test to determine anti-Leptospira IgG antibodies against a panel of eight important Leptospira antigens in Iran. Then, serum total antioxidant capacity, catalase, glutathione peroxidase, and malondialdehyde activities, and nitric oxide, total protein, serum amyloid A, haptoglobin, and albumin concentrations were measured in seropositive and seronegative samples. Serum catalase activities and malondialdehyde, serum amyloid A, and haptoglobin concentrations in seropositive cattle and horses were significantly higher (P < .05) than in those that were seronegative. Antibody titers increased from 1:100 to ≥ 1:200 in cattle with L. interrogans infection, resulting in a decrease in the serum total antioxidant capacity (P < .05), an increase in serum glutathione peroxidase (P < .01) activity and nitric oxide (P < .05) , serum amyloid A (P < .01), and haptoglobin (P < .05) concentrations. Following the increase in the agglutinating antibody titers in horses infected with L. interrogans, the serum total antioxidant capacity (P < .01) decreased, and serum nitric oxide (P < .05), malondialdehyde (P < .05), and serum amyloid A (P < .01) concentrations were increased. In this study, horses and cattle had extensive changes in oxidant/antioxidant equilibrium and acute-phase protein concentrations when infected with L. interrogans. We also demonstrated a direct link between antibody titers and the type of leptospiral serovar using serum oxidative and inflammatory markers.
Collapse
Affiliation(s)
- Ehsan Niroomandi
- School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Shahram Maleki
- Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Gholamreza Abdollahpour
- Department of Internal Medicine, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Zakian
- Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hasan Ahmadvand
- Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Ściskalska M, Milnerowicz H. Association of genetic variants in the GPX1 and GPX4 genes with the activities of glutathione-dependent enzymes, their interaction with smoking and the risk of acute pancreatitis. Biomed Pharmacother 2022; 146:112591. [PMID: 35062064 DOI: 10.1016/j.biopha.2021.112591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Genetic factors and tobacco smoke exposure can be associated with an increased risk of acute pancreatitis (AP). The pathogenesis of AP is associated with intensive oxidative stress. Glutathione peroxidase (GPx) is one of many enzymes involved in the neutralization of free radicals. This study aimed to investigate the impact of SNP rs1050450 in the GPX1 gene and rs713041 in the GPX4 gene on the activity of total GPx in a group of AP patients and healthy subjects. It was found that AP can contribute to decreased GPx activity (in plasma and erythrocyte lysate) accompanied by an increased glutathione reductase (GR) activity and decreased glutathione (GSH) concentration in two groups, non-smokers and smokers. A decreased GPx activity in erythrocyte lysate of AP patients compared to healthy subjects was associated with the occurrence of the CC genotype for SNP rs1050450. It was noted an increased GPx activity and decreased GR activity in erythrocytes of non-smoking AP patients with the TT genotype compared to subjects with the CC and TC genotype for SNP rs713041. However, in the group of smoking AP patients with this genotype, GR activity was elevated compared to non-smokers, which was accompanied by increased GSH concentration. These results can indicate that smoking in the course of AP can change the involvement of antioxidants in dependence on the genotype for the examined SNPs. The CC genotype for SNP rs1050450 and the TT genotype for rs713041 increases the risk of AP recurrence, which may be associated with increased MDA concentration.
Collapse
Affiliation(s)
- Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., Wroclaw 50-556, Poland.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 St., Wrocław 50-556, Poland
| |
Collapse
|
8
|
Liu CC, Wu CF, Lee YC, Huang TY, Huang ST, Wang HS, Jhan JH, Huang SP, Li CC, Juan YS, Hsieh TJ, Tsai YC, Chen CC, Wu MT. Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients. Antioxidants (Basel) 2022; 11:antiox11010152. [PMID: 35052656 PMCID: PMC8773063 DOI: 10.3390/antiox11010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Environmental melamine exposure increases the risks of oxidative stress and early kidney injury. Manganese superoxide dismutase (MnSOD), glutathione peroxidase, and catalase can protect the kidneys against oxidative stress and maintain normal function. We evaluated whether their single-nucleotide polymorphisms (SNPs) could modify melamine’s effects. A total of 302 patients diagnosed with calcium urolithiasis were enrolled. All patients provided one-spot overnight urine samples to measure their melamine levels, urinary biomarkers of oxidative stress and renal tubular injury. Median values were used to dichotomize levels into high and low. Subjects carrying the T allele of rs4880 and high melamine levels had 3.60 times greater risk of high malondialdehyde levels than those carrying the C allele of rs4880 and low melamine levels after adjustment. Subjects carrying the G allele of rs5746136 and high melamine levels had 1.73 times greater risk of high N-Acetyl-β-d-glucosaminidase levels than those carrying the A allele of rs5746136 and low melamine levels. In conclusion, the SNPs of MnSOD, rs4880 and rs5746136, influence the risk of oxidative stress and renal tubular injury, respectively, in calcium urolithiasis patients. In the context of high urinary melamine levels, their effects on oxidative stress and renal tubular injury were further increased.
Collapse
Affiliation(s)
- Chia-Chu Liu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City 900, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- International Master Program of Translational Medicine, National United University, Miaoli 360, Taiwan
| | - Yung-Chin Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Tsung-Yi Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
| | - Shih-Ting Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hsun-Shuan Wang
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Jhen-Hao Jhan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yi-Chun Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Department of Internal Medicine, Divisions of Nephrology and General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Environmental and Occupational Medicine and Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2315)
| |
Collapse
|
9
|
de Oliveira MAA, Mallmann NH, de Souza GKBB, de Jesus Bacha T, Lima ES, de Lima DSN, de Souza Passos LF, de Souza Gonçalves M, de Moura Neto JP. Glutathione S-transferase, catalase, and mitochondrial superoxide dismutase gene polymorphisms modulate redox potential in systemic lupus erythematosus patients from Manaus, Amazonas, Brazil. Clin Rheumatol 2021; 40:3639-3649. [PMID: 33745084 DOI: 10.1007/s10067-021-05680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the frequency of glutathione S-transferase (GST), catalase, and SOD2 genetic polymorphisms and their correlation with SLE. METHODS A total of 290 females (patients = 151; controls= 139) were recruited. Multiplex PCR was performed for genotyping GSTM1 and GSTT1 genes, whereas real-time qPCR was used for determination of SNPs: CAT C262T, SOD2 C47T, GSTP1 A313G and GSTP1 IVS6 -C16T. RESULTS Thiol levels are decreased in SLE patients (p<0.001), while MDA levels were significantly higher (p<0.001) and those carrying the polymorphisms had higher rates of oxidative stress. Patients with double null deletion GSTT1null/GSTM1null had a frequency almost five times higher than the controls (p<0.001, OR 4.81, CI 1.98-12.11). SLE patients had a lower wild-type frequency of SOD2CC allele compared to controls (12.4% vs 27.3%). Statistical significances were observed on the association between the GSTT1null and GSTM1null with SOD2mut (p<0.001, OR 0.15, CI 0.05-0.47), with GSTP1 A303G (p=0.012, OR 0.19, CI 0.05-0.69), and with GSTP1 IVS6 (p=0.008, OR 0.14, CI 0.03-0.63). The same was observed between SOD2 C47T with GSTP1 A303G (p=0.09, OR 0.27, CI 0.09-0.74) and GSTP1 IVS6 (p=0.036, OR 0.41, CI 0.18-0.92). CONCLUSIONS The deletion GSTT1null/GSTM1null may contribute to the increased of the oxidative stress in SLE patients. Isolated GSTP1 and CAT polymorphisms do not seem to influence the increased oxidative stress, neither SLE clinical manifestations. SOD2 47CT/TT allele may have greater oxidative stress due to structural change in the protein and decreased H2O2 production. The combination of polymorphic genes may be involved in the pathogenesis of the disease. Key points • Major question of our paper: Many studies have shown that the antioxidant status levels are decreased in patients with SLE, especially in severe stages of disease. We believe that this paper will be of interest to the readership of your journal had the involvement of polymorphisms and mutations in several genes that contribute to the genetic etiology of SLE, suggesting that these may influence the mechanisms of disease. • Our results. Thiol level was significantly (p<.001) lower and MDA level significantly increased (p<.001) among SLE patients. Those carrying the polymorphisms had higher rates of oxidative stress. SLE Patients had a frequency almost five times higher of double null deletion GSTT1null/GSTM1null than the controls. SLE Patients had a lower wild type frequency of SOD2CC allele compared to controls (12.4% vs 27.3%). We believed the deletion GSTT1null/GSTM1null may contribute to the increased of the oxidative stress in SLE patients while carriers of the mutant SOD2 47CT/TT allele may have greater oxidative stress due to structural change in the protein and decreased H2O2 production. The combination of polymorphic genes may be involved in the pathogenesis of the disease. • Implications of our results: Evidence for the involvement of genetic factors in severe clinical to lupus is compelling. This manuscript shows genetic insights in pathogenic pathways that may lead to severe clinical implications to LES. Therefore, it is necessary to understand their impact on overall disease pathogenesis and prognosis in these patients. We understand from general consensus about environmental factors can modify disease, however, maybe just in individuals who have a permissive genetic background. Even that no single gene predisposes some individuals to LES, we believe the genetic factors described in this manuscript are important elements in susceptibility to severe clinical to LES.
Collapse
Affiliation(s)
- Marco Aurélio Almeida de Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Neila Hiraishi Mallmann
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Giselle Katiane Bonfim Bacellar de Souza
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Thiago de Jesus Bacha
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Emerson Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | | | | | | | | |
Collapse
|
10
|
Jerotić Đ, Matić M, McClements L. The importance of polymorphisms of regulatory and catalytic antioxidant proteins in chronic kidney disease. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Both excessive production of reactive oxygen species (ROS) and impaired antioxidant function are found in patients with chronic kidney disease (CKD). Therefore, individual susceptibility towards CKD can be induced by functional variations of genes encoding antioxidant regulatory (nuclear factor erythroid 2 - related factor 2 (Nrf2)) and catalytic (superoxide dismutase (SOD2) and glutathione peroxidase (GPX1)) proteins. Several types of single nucleotide polymorphisms (SNPs) have been found within the genes encoding these proteins, with Nrf2 (-617C/A), SOD2 (Ala16Val) and GPX1 (Pro198Leu) conferring impaired catalytic activity. The most unexplored gene polymorphism in CKD susceptibility, progression and survival, with only two original studies published, is the Nrf2 (-617C/A) polymorphism. The results of these studies showed that there was no individual impact of this polymorphism on the susceptibility towards end stage renal disease (ESRD) development, oxidative phenotype and mortality. However, Nrf2 had a significant role in ESRD risk and survival, when combined with other antioxidant genes. The results regarding the impact of SOD2 (Ala16Val) and GPX1 (Pro198Leu) polymorphisms on either CKD or ESRD are still inconclusive. Namely, some studies showed that patients having variant SOD2 (Val) or GPX1 (Leu) allele were at increased risk of CKD development and progression, while other studies reported only weak or no association between these polymorphisms and CKD. Surprisingly, the only study that reported an association of GPX1 polymorphism with overall/cardiovascular survival in ESRD patients showed a significant impact of low activity GPX1 (Leu/Leu) genotype on better survival. In this review, we comprehensively and critically appraise the literature on these polymorphisms related to oxidative stress in CKD patients, in order to identify gaps and provide recommendations for further clinical research and translation. New developments in the field of antioxidant polymorphisms in CKD patients could lead to better stratification of CKD patients, based on a prognostic antioxidant gene panel, and provide a more personalised medicine approach for the need of antioxidant therapy in these patients.
Collapse
|
11
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
12
|
Guo Y, Hu M, Ma J, Chinnathambi A, Alharbi SA, Shair OHM, Ge P. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1-Nrf2/ARE pathway in rat kidney. J Biochem Mol Toxicol 2020; 35:e22619. [PMID: 32894623 DOI: 10.1002/jbt.22619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Panaxydol (PX), a polyacetylenic compound isolated from the roots of Panax notoginseng, is found to possess various biological functions. However, its protective effects against aristolochic acid (AA)-induced renal injury have not been elucidated yet. The present study was undertaken to elucidate the renoprotective effect of PX on Wistar male rats via activating Keap1-Nrf2/ARE pathway. Experimental animals were randomized into four groups, such as control group, I/R group, AA (5 mg/kg/d; ip for 10 days), and AA-induced rats treated with PX (10 and 20 mg/kg/d; po for 20 days). At the end of the experimental period, the rats were killed, and the biochemical parameters denoting renal functions were evaluated; histological analysis displaying the renal tissue architecture, real-time quantitative reverse-transcription polymerase chain reaction, and immunohistochemistry (IHC) analysis of Keap1-Nrf2/ARE genes were elucidated. The results demonstrated that the rats administered with AA displayed a significant increase in the blood urea nitrogen level with an increased urine creatinine and protein excretion. Also, the serum levels of urea, uric acid, and albumin levels were increased. Furthermore, the histological evaluation denoted the cellular degeneration with increased tissue lipid peroxidation levels. In contrast, rats administered with PX significantly prevented the tissue degeneration with improved antioxidant levels. Conversely, PX treatment increased the messenger RNA expression of Nrf2, NQO1, HO-1 with an attenuated expression of 4HNE and NOX-4 levels in IHC analysis. Thus, the results of the present study suggest that PX could suppress AA-induced renal failure by suppressing oxidative stress through the activation of Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yinxue Guo
- Nephrology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Maorong Hu
- Nephrology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Juan Ma
- Nephrology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pingyu Ge
- Urology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Loci associated with genomic damage levels in chronic kidney disease patients and controls. Mutat Res 2020; 852:503167. [PMID: 32265040 DOI: 10.1016/j.mrgentox.2020.503167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a multifactorial disorder with an important genetic component, and several studies have demonstrated potential associations with allelic variants. In addition, CKD patients are also characterized by high levels of genomic damage. Nevertheless, no studies have established relationships between DNA damage, or genomic instability present in CKD patients, and gene polymorphisms. To fill in this gap, the potential role of polymorphisms in genes involved in base excision repair (OGG1, rs1052133; MUTYH, rs3219489; XRCC1, rs25487), nucleotide excision repair (ERCC2/XPD, rs1799793, rs171140, rs13181; ERCC4, rs3136166); phase II metabolism (GSTP1, rs749174; GSTO1, rs2164624; GSTO2, rs156697), and antioxidant enzymes (SOD1, rs17880135, rs1041740, rs202446; SOD2, rs4880; CAT, rs1001179; GPX1, rs17080528; GPX3, rs870406: GPX4, rs713041) were inquired. In addition, some genes involved in CKD (AGT, rs5050; GLO1, rs386572987; SHROOM3, rs17319721) were also evaluated. The genomic damage, the genomic instability, and oxidative damage were evaluated by using the micronucleus and the comet assay in 589 donors (415 CKD patients and 174 controls). Our results showed significant associations between genomic damage and genes directly involved in DNA repair pathways (XRCC1, and ERCC2), and with genes encoding for antioxidant enzymes (SOD1 and GPX1). GSTO2, as a gene involved in phase II metabolism, and MUTYH showed also an association with genomic instability. Interestingly, the three genes associated with CKD (AGT, GLO1, and SHROOM3) showed associations with both the high levels of oxidatively damaged DNA and genomic instability. These results support our view that genomic instability can be considered a biomarker of the CKD status.
Collapse
|
14
|
Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population. Sci Rep 2020; 10:144. [PMID: 31924810 PMCID: PMC6954113 DOI: 10.1038/s41598-019-56695-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.
Collapse
|
15
|
Correa S, Pena-Esparragoza JK, Scovner KM, Waikar SS, Mc Causland FR. Myeloperoxidase and the Risk of CKD Progression, Cardiovascular Disease, and Death in the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2019; 76:32-41. [PMID: 31864821 DOI: 10.1053/j.ajkd.2019.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Myeloperoxidase (MPO) catalyzes the formation of reactive nitrogen species and levels are elevated in patients with chronic kidney disease (CKD). Although increased oxidative stress and inflammation are associated with progression of CKD and cardiovascular disease (CVD), relationships between MPO concentration, CKD progression, CVD, and death remain unclear. STUDY DESIGN Prospective cohort. SETTING & PARTICIPANTS 3,872 participants from the Chronic Renal Insufficiency Cohort (CRIC) who had MPO measured at baseline. EXPOSURE Baseline MPO concentration. OUTCOMES CKD progression (kidney transplantation, dialysis initiation, or 50% decline in baseline estimated glomerular filtration rate [eGFR] and eGFR≤15mL/min/1.73m2), CVD (heart failure, myocardial infarction, or stroke), and death. ANALYTICAL APPROACH Cox proportional hazards models. RESULTS In adjusted analyses, higher MPO level (per 1-SD increase in log-transformed MPO) was associated with 10% higher risk for CKD progression (adjusted HR, 1.10; 95% CI, 1.01-1.19; P=0.03), 12% higher risk for CVD (adjusted HR, 1.12; 95% CI, 1.03-1.22; P<0.01), and 13% increased risk for death (adjusted HR, 1.13; 95% CI, 1.04-1.22; P<0.01). There was evidence for effect modification of the association of MPO level with CKD progression by baseline eGFR (P interaction=0.02), but not for CVD (P interaction=0.2) or death (P interaction=0.1). In stratified analyses, MPO level (per 1-SD increase in log-transformed MPO) was associated with greater risk for CKD progression among participants with eGFR>45mL/min/1.73m2 (adjusted HR, 1.23; 95% CI, 1.03-1.46; P=0.02) compared with those with eGFR≤45mL/min/1.73m2 (adjusted HR, 1.10; 95% CI, 1.02-1.20; P=0.02). The association of MPO level with CVD and death was no longer significant after adjustment for cardiac biomarkers. LIMITATIONS Potential residual confounding, lack of repeated measurements of MPO. CONCLUSIONS Higher MPO level was associated with increased risk for CKD progression, but not with CVD and death in patients with CKD from CRIC. Whether therapies aimed at reducing MPO activity can result in improved clinical outcomes is yet to be determined.
Collapse
Affiliation(s)
- Simon Correa
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | | | - Katherine M Scovner
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA
| | - Finnian R Mc Causland
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Sex Differences in Glutathione Peroxidase Activity and Central Obesity in Patients with Type 2 Diabetes at High Risk of Cardio-Renal Disease. Antioxidants (Basel) 2019; 8:antiox8120629. [PMID: 31817851 PMCID: PMC6943424 DOI: 10.3390/antiox8120629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Women with type 2 diabetes (T2DM) have an increased susceptibility of developing cardio-renal disease compared to men, the reasons and the mechanisms of this vulnerability are unclear. Since oxidative stress plays a key role in the development of cardio-renal disease, we investigated the relationship between sex, plasma antioxidants status (glutathione peroxidase (GPx-3 activity), vitamin E and selenium), and adiposity in patients with T2DM at high risk of cardio-renal disease. Women compared to men had higher GPx-3 activity (p = 0.02), bio-impedance (p ≤ 0.0001), and an increase in waist circumference in relation to recommended cut off-points (p = 0.0001). Waist circumference and BMI were negatively correlated with GPx-3 activity (p ≤ 0.05 and p ≤ 0.01, respectively) and selenium concentration (p ≤ 0.01 and p ≤ 0.02, respectively). In multiple regression analysis, waist circumference and sex were independent predictors of GPx-3 activity (p ≤ 0.05 and p ≤ 0.05, respectively). The data suggest that increased central fat deposits are associated with reduced plasma antioxidants which could contribute to the future risk of cardio-renal disease. The increased GPx-3 activity in women could represent a preserved response to the disproportionate increase in visceral fat. Future studies should be aimed at evaluating if the modulation of GPx-3 activity reduces cardio-renal risk in men and women with T2DM.
Collapse
|
17
|
Pang P, Abbott M, Abdi M, Fucci QA, Chauhan N, Mistri M, Proctor B, Chin M, Wang B, Yin W, Lu TS, Halim A, Lim K, Handy DE, Loscalzo J, Siedlecki AM. Pre-clinical model of severe glutathione peroxidase-3 deficiency and chronic kidney disease results in coronary artery thrombosis and depressed left ventricular function. Nephrol Dial Transplant 2019; 33:923-934. [PMID: 29244159 DOI: 10.1093/ndt/gfx304] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
Background Chronic kidney disease (CKD) patients have deficient levels of glutathione peroxidase-3 (GPx3). We hypothesized that GPx3 deficiency may lead to cardiovascular disease in the presence of chronic kidney disease due to an accumulation of reactive oxygen species and decreased microvascular perfusion of the myocardium. Methods. To isolate the exclusive effect of GPx3 deficiency in kidney disease-induced cardiac disease, we studied the GPx3 knockout mouse strain (GPx3-/-) in the setting of surgery-induced CKD. Results. Ribonucleic acid (RNA) microarray screening of non-stimulated GPx3-/- heart tissue show increased expression of genes associated with cardiomyopathy including myh7, plac9, serpine1 and cd74 compared with wild-type (WT) controls. GPx3-/- mice underwent surgically induced renal mass reduction to generate a model of CKD. GPx3-/- + CKD mice underwent echocardiography 4 weeks after injury. Fractional shortening (FS) was decreased to 32.9 ± 5.8% in GPx3-/- + CKD compared to 62.0% ± 10.3 in WT + CKD (P < 0.001). Platelet aggregates were increased in the myocardium of GPx3-/- + CKD. Asymmetric dimethylarginine (ADMA) levels were increased in both GPx3-/- + CKD and WT+ CKD. ADMA stimulated spontaneous platelet aggregation more quickly in washed platelets from GPx3-/-. In vitro platelet aggregation was enhanced in samples from GPx3-/- + CKD. Platelet aggregation in GPx3-/- + CKD samples was mitigated after in vivo administration of ebselen, a glutathione peroxidase mimetic. FS improved in GPx3-/- + CKD mice after ebselen treatment. Conclusion These results suggest GPx3 deficiency is a substantive contributing factor to the development of kidney disease-induced cardiac disease.
Collapse
Affiliation(s)
- Paul Pang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Malyun Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikita Chauhan
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Murti Mistri
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brandon Proctor
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Chin
- Department of Radiology, Geisinger Health System, Danville, PA, USA
| | - Bin Wang
- Department of Surgery, 5th Hospital of Wuhan, Wuhan University, Wuhan, Hubei, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Arvin Halim
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenneth Lim
- Massachusetts General Hospital, Boston, MA, USA
| | - Diane E Handy
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Dragicevic B, Suvakov S, Jerotic D, Reljic Z, Djukanovic L, Zelen I, Pljesa-Ercegovac M, Savic-Radojevic A, Simic T, Dragicevic D, Matic M. Association of SOD2 (rs4880) and GPX1 (rs1050450) Gene Polymorphisms with Risk of Balkan Endemic Nephropathy and its Related Tumors. ACTA ACUST UNITED AC 2019; 55:medicina55080435. [PMID: 31382611 PMCID: PMC6723896 DOI: 10.3390/medicina55080435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Background: Experimental data show that superoxide dismutase 2 (SOD2) is involved in ochratoxin (OTA)-induced nephrotoxicity, whereas clinical data indicate the role of SOD2 rs4880 or glutathione peroxidase 1 (GPX1) rs1050450 polymorphisms in end-stage renal disease and urothelial carcinoma risk, known to be the major complications of Balkan endemic nephropathy (BEN). Therefore, we hypothesized that SOD2 and GPX1 gene polymorphisms would influence the risk of BEN and its associated tumors. Materials and Methods: The study was conducted in 207 BEN patients and 86 controls from endemic areas. Results: Individuals with both copies of variant SOD2 allele, known for lower mitochondrial antioxidant protection, are at a significantly higher BEN risk (OR = 2.6, p = 0.021). No association was observed between GPX1 gene polymorphism and BEN risk. Combining SOD2 and GPX1 genotypes did not alter the risk of BEN development. Regarding the risk of urothelial tumors in BEN patients, none of the polymorphisms studied was significantly associated with the risk of these tumors. Conclusions: Polymorphism in SOD2 rs4880 gene affects the risk of BEN development. Hence, SOD2 genotyping could, together with a panel of other enzymes, be used as a biomarker of susceptibility in BEN areas.
Collapse
Affiliation(s)
- Biljana Dragicevic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorica Reljic
- Medical laboratory "PAN LAB", 36000 Kraljevo, Serbia
| | | | - Ivanka Zelen
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Dejan Dragicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic of Urology, Clinical Centre of Serbia, Resavska 51, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
19
|
Jerotic D, Matic M, Suvakov S, Vucicevic K, Damjanovic T, Savic-Radojevic A, Pljesa-Ercegovac M, Coric V, Stefanovic A, Ivanisevic J, Jelic-Ivanovic Z, McClements L, Dimkovic N, Simic T. Association of Nrf2, SOD2 and GPX1 Polymorphisms with Biomarkers of Oxidative Distress and Survival in End-Stage Renal Disease Patients. Toxins (Basel) 2019; 11:toxins11070431. [PMID: 31340563 PMCID: PMC6669734 DOI: 10.3390/toxins11070431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The oxidative stress response via Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) interlinks inflammation- and metabolism-related pathways in chronic kidney disease. We assessed the association between polymorphisms in Nrf2, superoxide dismutase (SOD2), glutathione peroxidase (GPX1), and the risk of end-stage renal disease (ESRD). The modifying effect of these polymorphisms on both oxidative phenotype and ESRD prognosis, both independently and/or in combination with the glutathione S-transferase M1 (GSTM1) deletion polymorphism, was further analyzed. Polymorphisms in Nrf2 (rs6721961), SOD2 (rs4880), GPX1 (rs1050450), and GSTM1 were determined by PCR in 256 ESRD patients undergoing hemodialysis and 374 controls. Byproducts of oxidative stress were analyzed spectrophotometically or by ELISA. Time-to-event modeling was performed to evaluate overall survival and cardiovascular survival. The SOD2 Val/Val genotype increased ESRD risk (OR = 2.01, p = 0.002), which was even higher in combination with the GPX1 Leu/Leu genotype (OR = 3.27, p = 0.019). Polymorphism in SOD2 also showed an effect on oxidative phenotypes. Overall survival in ESRD patients was dependent on a combination of the Nrf2 (C/C) and GPX1 (Leu/Leu) genotypes in addition to a patients’ age and GSTM1 polymorphism. Similarly, the GPX1 (Leu/Leu) genotype contributed to longer cardiovascular survival. Conclusions: Our results show that SOD2, GPX1, and Nrf2 polymorphisms are associated with ESRD development and can predict survival.
Collapse
Affiliation(s)
- Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Vucicevic
- Department of Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Damjanovic
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jasmina Ivanisevic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007 Sidney, Australia
| | - Nada Dimkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8219283. [PMID: 31089418 PMCID: PMC6476063 DOI: 10.1155/2019/8219283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of CKD. Moreover, the available redox literature has not yet provided clear associations between circulating and tissue-specific (muscle) oxidative stress levels. The aim of the study was to evaluate commonly used redox status indices in the blood and in two different types of skeletal muscle (psoas, soleus) in the predialysis stages of CKD, using an animal model of renal insufficiency, and to investigate whether blood redox status indices could be reflecting the skeletal muscle redox status. Indices evaluated included reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PC), and thiobarbituric acid reactive substances (TBARS). Results showed that blood GSH was higher in the uremic group compared to the control (17.50 ± 1.73 vs. 12.43 ± 1.01, p = 0.033). In both muscle types, PC levels were higher in the uremic group compared to the control (psoas: 1.086 ± 0.294 vs. 0.596 ± 0.372, soleus: 2.52 ± 0.29 vs. 0.929 ± 0.41, p < 0.05). The soleus had higher levels of TBARS, PC, GSH, CAT, and GR and lower TAC compared to the psoas in both groups. No significant correlations in redox status indices between the blood and skeletal muscles were found. However, in the uremic group, significant correlations between the psoas and soleus muscles in PC, GSSG, and CAT levels emerged, not present in the control. Even in the early stages of CKD, a disturbance in redox homeostasis was observed, which seemed to be muscle type-specific, while blood levels of redox indices did not seem to reflect the intramuscular condition. The above results highlight the need for further research in order to identify the key mechanisms driving the onset and progression of oxidative stress and its detrimental effects on CKD patients.
Collapse
|
21
|
Swart R, Schutte AE, van Rooyen JM, Smith W, Mels CMC. The Association of Measures of the Micro- and Macro-Vasculature with Selenium and GPx Activity in a Young Bi-Ethnic Population: The African-PREDICT Study. J Am Coll Nutr 2019; 38:614-622. [PMID: 30822227 DOI: 10.1080/07315724.2019.1570479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rijané Swart
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Aletta E. Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Johannes M. van Rooyen
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Catharina M. C. Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
22
|
Sun HN, Feng L, Wang AG, Wang JY, Liu L, Jin MH, Shen GN, Jin CH, Lee DS, Kwon TH, Cui YD, Yu DY, Han YH. Peroxiredoxin I deficiency increases LPS‑induced lethal shock in mice. Mol Med Rep 2018; 18:2427-2432. [PMID: 29901182 DOI: 10.3892/mmr.2018.9170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/22/2018] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxin I (Prx I) plays a role in regulating macrophage proinflammatory cytokine production and gene expression and participates in immune regulation. However, the possible protective role of Prx I in endotoxin‑induced lethal shock is poorly understood. In the present study, western blot analysis, ELISA and haematoxylin and eosin staining were performed to examine the protein expression of cytoines and analyses the levels of cytokines in the serum and tissue to evaluate the tissue damage. The present study revealed that lipopolysaccharide (LPS)‑induced lethality in Prx I‑/‑ mice was is accelerated via the observed decreased serum IL‑10 levels. Results also demonstrated rapid immune cell infiltration and oxidative stress in the Prx I‑/‑mice liver after LPS injections. These phenomena increased liver apoptosis through increasing cleaved caspase‑3 protein expression in Prx I‑/‑ mice after LPS injections, resulting in high lethality after LPS challenges. These findings provide a new insight for understanding the function of Prx I against endotoxin‑induced injury.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jing-Yu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Liu
- Phamaron Beijing Co., Ltd., Beijing 100176, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Soek Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu 702‑701, Republic of Korea
| | - Tae-Ho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dae-Yeul Yu
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Chungcheongnam 34141, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
23
|
Abbasi M, Daneshpour MS, Hedayati M, Mottaghi A, Pourvali K, Azizi F. The relationship between MnSOD Val16Ala gene polymorphism and the level of serum total antioxidant capacity with the risk of chronic kidney disease in type 2 diabetic patients: a nested case-control study in the Tehran lipid glucose study. Nutr Metab (Lond) 2018; 15:25. [PMID: 29681991 PMCID: PMC5896129 DOI: 10.1186/s12986-018-0264-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background Several studies have shown significant associations between manganese superoxide dismutase (MnSOD) Val16Ala polymorphism and diabetic complications, but this association has not been explored in relation with chronic kidney disease (CKD) in Type 2 diabetes mellitus (T2DM) patients. Total antioxidant capacity (TAC) level changes in diabetic condition and may play important role in onset or progression of the disease and its complications. The present study investigated the association of MnSOD Val16Ala polymorphism and serum TAC with the risk of CKD in T2DM patients. Methods This nested case-control study included 280 type 2 diabetic patients with CKD and 280 age, sex and diabetes duration-matched control subjects selected from the participants of the Tehran Lipid and Glucose Study. MnSOD val16Ala (rs4880) SNP was genotyped by the Tetra-Primer ARMS-polymerase chain reaction analysis. Serum TAC was measured using ferric-reducing antioxidant power assay. Statistical analysis was performed using STATA statistical package v.12.0 or SPSS (Version 22.0). Results The Ala allele of the MnSOD Val16Ala polymorphism was associated with a lower risk of CKD (odds ratio (OR), 0.55; 95% confidence interval (CI), 0.36–0.84; P = 0.006). Median serum TAC in CKD group was 920 μmol/L and was significantly lower (p < 0.001) compared to the control group (1045 μmol/L). Using an adjusted conditional logistic regression, we didn’t observe any significant interaction between MnSOD Val16Ala SNP with quartiles of serum TAC in relation to CKD. Conclusion A significant association was found between the MnSOD Val16Ala polymorphism and CKD, but this association is not affected by serum TAC level in T2DM patients.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- 1Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,2Department of Nutritional Sciences, Texas Tech University, Lubbock, TX USA
| | - Maryam S Daneshpour
- 3Cellular Molecular and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- 3Cellular Molecular and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Mottaghi
- 4Research Center for Prevention of Cardiovascular diseases, Institute of endocrinology & metabolism, Iran University of Medical Sciences, Tehran, Iran.,5Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Pourvali
- 1Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- 6Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Giam B, Kuruppu S, Chu PY, Smith AI, Marques FZ, Fiedler A, Horlock D, Kiriazis H, Du XJ, Kaye DM, Rajapakse NW. N-Acetylcysteine Attenuates the Development of Renal Fibrosis in Transgenic Mice with Dilated Cardiomyopathy. Sci Rep 2017; 7:17718. [PMID: 29255249 PMCID: PMC5735149 DOI: 10.1038/s41598-017-17927-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/01/2017] [Indexed: 02/02/2023] Open
Abstract
Mechanisms underlying the renal pathology in cardiorenal syndrome (CRS) type 2 remain elusive. We hypothesised that renal glutathione deficiency is central to the development of CRS type 2. Glutathione precursor, N-acetylcysteine (NAC;40 mg/kg/day; 8 weeks) or saline were administered to transgenic mice with dilated cardiomyopathy (DCM) and wild-type (WT) controls. Cardiac structure, function and glutathione levels were assessed at the end of this protocol. Renal fibrosis, glutathione content, expression of inflammatory and fibrotic markers, and function were also evaluated. In both genotypes, NAC had minimal effect on cardiac glutathione, structure and function (P ≥ 0.20). In NAC treated DCM mice, loss of glomerular filtration rate (GFR), tubulointerstitial and glomerular fibrosis and renal oxidised glutathione levels were attenuated by 38%, 99%, 70% and 52% respectively, compared to saline treated DCM mice (P ≤ 0.01). Renal expression of PAI-1 was greater in saline treated DCM mice than in WT mice (P < 0.05). Renal PAI-1 expression was less in NAC treated DCM mice than in vehicle treated DCM mice (P = 0.03). Renal IL-10 expression was greater in the former cohort compared to the latter (P < 0.01). These data indicate that normalisation of renal oxidized glutathione levels attenuates PAI-1 expression and renal inflammation preventing loss of GFR in experimental DCM.
Collapse
Affiliation(s)
- Beverly Giam
- Baker Heart and Diabetes Institute, Melbourne, Australia. .,Central Clinical School, Monash University, Melbourne, Australia.
| | - Sanjaya Kuruppu
- Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Po-Yin Chu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - A Ian Smith
- Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - April Fiedler
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Duncan Horlock
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| | - Niwanthi W Rajapakse
- Baker Heart and Diabetes Institute, Melbourne, Australia.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Mrowicka M, Mrowicki J, Mik M, Wojtczak R, Dziki L, Dziki A, Majsterek I. Association between SOD1, CAT, GSHPX1 polymorphisms and the risk of inflammatory bowel disease in the Polish population. Oncotarget 2017; 8:109332-109339. [PMID: 29312611 PMCID: PMC5752524 DOI: 10.18632/oncotarget.22675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The main aim of this study was investigate the association between the genetic polymorphism of antioxidant enzyme genes: SOD1, CAT and GSHPX1 and the risk of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis in the Polish population. METHODS A total of 445 subjects including 200 patients with IBD and 245 controls were allowed in this study. We determined activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx1) and examination their association with the SNPs of respective genes (SOD1 +35A/C, CAT C-262T and GSHPX1 Pro197Leu). RFLP technique was used to determine the selected genes polymorphisms. Antioxidant enzymes activity were evaluated in erythrocyte hemolysate of 23 patients with non-active IBD and 30 healthy participants. RESULTS The A/C genotype and the C allele frequencies of A/C polymorphism of SOD1 gene were significantly associated with the reduced risk of IBD (OR=0.43; 95% CI 0.23; 0.83). Alike, C/T (OR=0.45; 95% CI= 0.29; 0.70) and T/T genotype (OR=0.43; 95% CI= 0.21; 0.87) of GSHPX1 gene polymorphism diminished the susceptibility to IBD. A significant decrease of CAT (P=0.028) and increase of GPx1 (P=0.025) enzyme activities were seen in IBD patients compared to control. CONCLUSIONS Our data confirm dysregulated antioxidant capacity in patients suffering from IBD. Both, the SOD1 A/C genotype as well as GSHPX1 C/T and T/T genotypes may be associated with a reduction risk of IBD in the Polish population.
Collapse
Affiliation(s)
- Malgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Jerzy Mrowicki
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Michal Mik
- Chair of Surgery, Department of General and Colorectal Surgery, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Radoslaw Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Lukasz Dziki
- Chair of Surgery, Department of General and Colorectal Surgery, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Adam Dziki
- Chair of Surgery, Department of General and Colorectal Surgery, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1 Square, Lodz 90-647, Poland
| |
Collapse
|
26
|
Mafra D, Borges NA, Cardozo LFMDF, Anjos JS, Black AP, Moraes C, Bergman P, Lindholm B, Stenvinkel P. Red meat intake in chronic kidney disease patients: Two sides of the coin. Nutrition 2017; 46:26-32. [PMID: 29290351 DOI: 10.1016/j.nut.2017.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
Abstract
Red meat is an important dietary source of high biological value protein and micronutrients such as vitamins, iron, and zinc that exert many beneficial functions. However, high consumption of animal protein sources, especially red meat, results in an increased intake of saturated fat, cholesterol, iron, and salt, as well as an excessive acid load. Red meat intake may lead to an elevated production of uremic toxins by the gut microbiota, such as trimethylamine n-oxide (TMAO), indoxyl sulfate, and p-cresyl sulfate. These uremic toxins are associated with increased risk for cardiovascular (CV) mortality. Limiting the intake of red meat in patients with chronic kidney disease (CKD) thus may be a good strategy to reduce CV risk, and may slow the progression of kidney disease. In the present review, we discuss the role of red meat in the diet of patients with CKD. Additionally, we report on a pilot study that focused on the effect of a low-protein diet on TMAO plasma levels in nondialysis CKD patients.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Natalia A Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | - Juliana S Anjos
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Ana Paula Black
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Cristiane Moraes
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Tabatabaei-Malazy O, Khodaeian M, Bitarafan F, Larijani B, M Amoli M. Polymorphisms of Antioxidant Genes as a Target for Diabetes Management. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:135-147. [PMID: 29682485 PMCID: PMC5898637 DOI: 10.22088/acadpub.bums.6.3.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the most important health problems with increasing prevalence worldwide. Oxidative stress, a result of imbalance between reactive oxygen species (ROS) generation and antioxidant defense mechanisms has been demonstrated as the main pathology in DM. Hyperglycemia-induced ROS productions can induce oxidative stress through four major molecular mechanisms including the polyol pathway, advanced glycation end- products formation, activation of protein kinase C isoforms, and the hexosamine pathways. In the development of type 2 DM (T2DM) and its complications, genetic and environmental factors play important roles. Therefore, the aim of this review was to focus on the assessment of single-nucleotide polymorphisms within antioxidant enzymes including superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, nitric oxide synthase, and NAD(P)H oxidase and their association with T2DM. The results would be helpful in understanding the mechanisms involved in pathogenesis of disease besides discovering new treatment approaches in management of DM.
Collapse
Affiliation(s)
- Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Khodaeian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bitarafan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Stefanović N, Cvetković T, Jevtović-Stoimenov T, Veličković-Radovanović R, Zvezdanović-Čelebić L. GLUTATHIONE PEROXIDASE PRO200LEU GENE POLYMORPHISM AS A POTENTIAL PREDICTOR OF RENAL FUNCTION DECLINE IN RENAL TRANSPLANT RECIPIENTS. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Small DM, Beetham KS, Howden EJ, Briskey DR, Johnson DW, Isbel NM, Gobe GC, Coombes JS. Effects of exercise and lifestyle intervention on oxidative stress in chronic kidney disease. Redox Rep 2017; 22:127-136. [PMID: 28075321 DOI: 10.1080/13510002.2016.1276314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Determine the effects of a 12-month exercise and lifestyle intervention program on changes in plasma biomarkers of oxidative stress in pre-dialysis chronic kidney disease (CKD) patients. METHODS A total of 136 stage 3-4 CKD patients were randomized to receive standard nephrological care with (N = 72) or without (N = 64) a lifestyle and exercise intervention for 12 months. Plasma total F2-isoprostanes (IsoP), glutathione peroxidase (GPX) activity, total antioxidant capacity (TAC), anthropometric and biochemical data were collected at baseline and at 12 months. RESULTS There were no significant differences between groups at baseline. There were no significant differences in changes for standard care and lifestyle intervention, respectively, in IsoP (p = 0.88), GPX (p = 0.87), or TAC (p = 0.56). Patients identified as having high IsoP at baseline (>250 pg/mL) had a greater decrease in IsoP with lifestyle intervention compared to standard care; however, the difference was not statistically significant (p = 0.06). There was no difference in the change in kidney function (eGFR) between standard care and lifestyle intervention (p = 0.33). DISCUSSION Exercise and lifestyle modification in stage 3-4 CKD did not produce changes in systemic biomarkers of oxidative stress over a 12-month period, but patients with high IsoP may benefit most from the addition of intervention to standard care.
Collapse
Affiliation(s)
- David M Small
- a Centre for Kidney Disease Research, School of Medicine , The University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Kassia S Beetham
- b School of Human Movement and Nutrition Sciences , The University of Queensland , Brisbane , Australia
| | - Erin J Howden
- b School of Human Movement and Nutrition Sciences , The University of Queensland , Brisbane , Australia
| | - David R Briskey
- b School of Human Movement and Nutrition Sciences , The University of Queensland , Brisbane , Australia
| | - David W Johnson
- a Centre for Kidney Disease Research, School of Medicine , The University of Queensland, Translational Research Institute , Brisbane , Australia.,c Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
| | - Nicole M Isbel
- a Centre for Kidney Disease Research, School of Medicine , The University of Queensland, Translational Research Institute , Brisbane , Australia.,c Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
| | - Glenda C Gobe
- a Centre for Kidney Disease Research, School of Medicine , The University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Jeff S Coombes
- b School of Human Movement and Nutrition Sciences , The University of Queensland , Brisbane , Australia
| |
Collapse
|
30
|
Zou J, Qi F, Ye L, Yao S. Protective Role of Grape Seed Proanthocyanidins Against Ccl4 Induced Acute Liver Injury in Mice. Med Sci Monit 2016; 22:880-9. [PMID: 26986029 PMCID: PMC4801141 DOI: 10.12659/msm.895552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background We investigated the effect of grape seed proanthocyanidins (GSPs) on carbon tetrachloride (CCl4)-induced acute liver injury. Material/Methods Sixty SPF KM mice were randomly divided into 6 groups: the control group, CCl4-model group, bifendate group (DDB group), and low-, moderate-, and high-dose GSP groups. The following parameters were measured: serum levels of alanine aminotransferase (ALT); aspartate aminotransferase (AST); tumor necrosis factor (TNF)-α; interleukin-6 (IL-6); high-mobility group box (HMGB)-1; body weight; liver, spleen, and thymus indexes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity; HMGB1 mRNA; malondialdehyde (MDA) content; hepatocyte proliferation; and changes in liver histology. Results Compared to the CCl4-model group, decreases in liver index and increases in thymus index significantly increased SOD and GSH-Px activities and reduced MDA content, and higher hepatocyte proliferative activity was found in all GSP dose groups and the DDB group (all P<0.001). Compared with the CCl4-model group, serum TNF-α and IL-6 levels and HMGB 1 mRNA and protein expressions decreased significantly in the high GSP dose group (all P<0.05). Conclusions Our results provide strong evidence that administration of GSPs might confer significant protection against CCl4-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Jinfa Zou
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Fengjie Qi
- Department of Pathology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Liping Ye
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Suyan Yao
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| |
Collapse
|
31
|
Kidir V, Uz E, Yigit A, Altuntas A, Yigit B, Inal S, Uz E, Sezer MT, Yilmaz HR. Manganese superoxide dismutase, glutathione peroxidase and catalase gene polymorphisms and clinical outcomes in acute kidney injury. Ren Fail 2016; 38:372-7. [PMID: 26787049 DOI: 10.3109/0886022x.2015.1135468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the potential association of single gene polymorphisms of manganese superoxide dismutase (MnSOD), glutathione peroxidase 1 (GPX1) and catalase (CAT) with clinical outcomes of acute kidney injury (AKI). MATERIALS AND METHODS Ninety AKI patients and 101 healthy volunteers were included in the study. Determination of MnSOD rs4880, GPX1 rs1050450 and CAT rs769217 polymorphisms was performed using real-time polymerase chain reaction amplification. The duration of hospitalization of AKI patients, dialysis and intensive care requirements, sepsis, oliguria and in-hospital mortality rates were assessed. RESULTS The MnSOD, GPX1 and CAT genotypes and allele frequencies of AKI patients did not differ significantly from those of healthy controls. In patients with a T allele in the ninth exon of the CAT gene, intensive care requirements were greater than those of patients with the CC genotype (p = 0.04). In addition, sepsis and in-hospital mortality were observed significantly more frequently in patients with a T allele in the ninth exon of the CAT gene (p = 0.03). Logistic regression analysis determined that bearing a T allele was the primary determinant of intensive care requirements and in-hospital mortality, independent of patient age, gender, presence of diabetes and dialysis requirements (OR 6.10, 95% CI 1.34-27.81, p = 0.02 and OR 10.25, 95% CI 1.13-92.80, p = 0.04, respectively). CONCLUSION Among AKI patients in the Turkish population, hospital morbidity and mortality were found to be more frequent in patients bearing a T allele of the rs769217 polymorphism of the CAT gene.
Collapse
Affiliation(s)
- Veysel Kidir
- a Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Efkan Uz
- b Department of Medical Biochemistry, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Ayse Yigit
- c Department of Medical Biology, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Atila Altuntas
- a Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Barbaros Yigit
- c Department of Medical Biology, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Salih Inal
- a Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - Ebru Uz
- d Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Atatürk Education and Research Hospital, Yildirim Beyazit University , Ankara , Turkey
| | - Mehmet Tugrul Sezer
- a Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Suleyman Demirel University , Isparta , Turkey
| | - H Ramazan Yilmaz
- e Department of Medical Biology, Faculty of Medicine , Mevlana University , Konya , Turkey
| |
Collapse
|
32
|
Interplay between Superoxide Dismutase, Glutathione Peroxidase, and Peroxisome Proliferator Activated Receptor Gamma Polymorphisms on the Risk of End-Stage Renal Disease among Han Chinese Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8516748. [PMID: 26881045 PMCID: PMC4736813 DOI: 10.1155/2016/8516748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
Abstract
Background. Single nucleotide polymorphisms (SNPs) of antioxidants, including superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), play an important role in the risk for cancer and metabolic disorders. However, little is known regarding the effect of antioxidant SNPs on renal events. Methods. We prospectively enrolled multicenter patients with end-stage renal disease (ESRD) and those without chronic kidney disease (CKD) of Han Chinese origin, with SOD2 (Val16Ala), GPX1 (Pro197Leu), and PPAR-γ (Pro12Ala, C161T) genotyped. Multiple regression analyses were conducted to evaluate the significant risk determinants for ESRD. Results. Compared to ESRD patients, non-CKD subjects were more likely to have T allele at SOD2 Val16Ala (p = 0.036) and CC genotype at PPAR-γ Pro12Ala (p = 0.028). Regression analysis showed that TT genotype of SOD2 Val16Ala conferred significantly lower ESRD risk among patients without diabetes (odds ratio 0.699; p = 0.018). GPX1 SNP alone did not alter the risk. We detected significant interactions between SNPs including PPAR-γ Pro12Ala, C161T, and GPX1 regarding the risk of ESRD. Conclusion. This is the first and largest study on the association between adverse renal outcomes and antioxidant SNPs among Han Chinese population. Determination of SOD2 and PPAR-γ SNPs status might assist in ESRD risk estimation.
Collapse
|
33
|
Association between plasma soluble RAGE and renal function is unaffected by medication usage and enzymatic antioxidants in chronic kidney disease with type 2 diabetes. Clin Chim Acta 2016; 453:56-61. [DOI: 10.1016/j.cca.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/23/2022]
|
34
|
Renal functional and structural integrity in infants with iron deficiency anemia: relation to oxidative stress and response to iron therapy. Pediatr Nephrol 2015; 30:1835-42. [PMID: 25980471 DOI: 10.1007/s00467-015-3122-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iron deficiency anemia (IDA) is the most common nutritional deficiency in the world. The aim of our study was to evaluate and compare renal functional and structural integrity in 50 infants with IDA and 50 healthy controls and to assess the relation between IDA and oxidative stress and response to iron therapy. METHODS This was a prospective study in which peripheral blood samples were collected from all study subjects and the following laboratory investigations performed: serum iron profile, urinary microalbumin, urinary leucine aminopeptidase (LAP), fractional excretion of sodium (FeNa), serum total antioxidant capacity (TAC), serum malondialdehyde (MDA), serum and urinary trace elements (iron, copper, zinc, calcium and magnesium). All patients received oral iron therapy and were followed-up for 3 months. RESULTS The levels of baseline urinary markers were higher among the patients with IDA than among the controls (p < 0.05). Patients had a lower pre-therapy TAC and lower serum zinc and magnesium levels than controls as well as higher MDA and serum copper levels (p < 0.05). MDA level was positively correlated to microalbumin and LAP level (p < 0.05). Urinary LAP concentration was positively correlated to urinary trace element concentrations (p < 0.05). A significant decrease in microalbumin, LAP, FeNa, and urinary trace elements was observed post-iron therapy while hemoglobin and ferritin levels were increased (p < 0.05). CONCLUSION Among the study subjects, IDA had an adverse influence on renal functional and structural integrity which could be reversed with iron therapy. Oxidative stress played an important role in the pathogenesis of renal injury in IDA.
Collapse
|
35
|
Abstract
Oxidative stress plays a key role in numerous disease processes including chronic kidney disease (CKD). In general, oxygen metabolism leads to the formation of reactive oxygen species (ROS) dangerous to cells. Although enzymes and low-molecular-weight antioxidants protect against ROS, chronic imbalances of formation and elimination can eventually overwhelm endogenous defenses leading to deleterious consequences. In CKD, glutathione peroxidases (GSH-Px) play an important role in ROS metabolism. Plasma GSH-Px is synthesized in the kidney and requires selenium (Se) as a cofactor. Interestingly, Se and plasma GSH-Px are both significantly reduced in CKD, especially for those patients on hemodialysis. Supplementation of Se in these patients results in modest increases of GSH-Px, presumably from residual renal tissue. Kidney transplantation rapidly restores plasma GSH-Px. In this chapter, the relevance of these findings to CKD is explored with emphasis on renal disease processes and impact on attendant disorders including cancer and cardiovascular disease.
Collapse
|
36
|
Beneficial effects of houttuynin on ventricular remodeling induced by coronary artery ligation in rats. Eur J Pharmacol 2014; 740:200-8. [DOI: 10.1016/j.ejphar.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022]
|
37
|
Mohammedi K, Patente TA, Bellili-Muñoz N, Driss F, Monteiro MB, Roussel R, Pavin EJ, Seta N, Fumeron F, Azevedo MJ, Canani LH, Hadjadj S, Marre M, Corrêa-Giannella ML, Velho G. Catalase activity, allelic variations in the catalase gene and risk of kidney complications in patients with type 1 diabetes. Diabetologia 2013; 56:2733-42. [PMID: 24057136 DOI: 10.1007/s00125-013-3057-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Oxidative stress is involved in the pathogenesis of diabetic nephropathy. The antioxidant enzyme catalase plays a key role in redox regulation in the kidney. We investigated associations of catalase gene (CAT) polymorphisms and plasma catalase activity with diabetic nephropathy in type 1 diabetic patients. METHODS We genotyped nine single nucleotide polymorphisms (SNPs) in the CAT region in participants from the Survival Genetic Nephropathy (SURGENE) (340 French participants, 10 year follow-up) and the Génétique de la Néphropathie Diabétique (GENEDIAB) (444 Belgian and French participants, 8 year follow-up) study cohorts. Replication was performed in a Brazilian cross-sectional cohort (n = 451). Baseline plasma catalase activity was measured in SURGENE (n = 120) and GENEDIAB (n = 391) participants. RESULTS The A allele of rs7947841 was associated with the prevalence of incipient (OR 2.79, 95% CI 1.21, 6.24, p = 0.01) and established or advanced nephropathy (OR 5.72, 95% CI 1.62, 22.03, p = 0.007), and with the incidence of renal events, which were defined as new cases of microalbuminuria or progression to a more severe stage of nephropathy during follow-up (HR 1.82, 95% CI 1.13, 2.81, p = 0.01) in SURGENE participants. The same risk allele was associated with incipient nephropathy (OR 3.13, 95% CI 1.42, 7.24, p = 0.004) and with the incidence of end-stage renal disease (ESRD) (HR 2.11, 95% CI 1.23, 3.60, p = 0.008) in GENEDIAB participants. In both cohorts, the risk allele was associated with lower catalase activity. Associations with incipient and established or advanced nephropathy were confirmed in the replication cohort. CONCLUSIONS/INTERPRETATION CAT variants were associated with the prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. Our results confirm the protective role of catalase against oxidative stress in the kidney.
Collapse
Affiliation(s)
- Kamel Mohammedi
- Inserm Research Unit 695, 16 rue Henri Huchard, 75018, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bartnicki P, Fijałkowski P, Majczyk M, Błaszczyk J, Banach M, Rysz J. Effect of methoxy polyethylene glycol-epoetin beta on oxidative stress in predialysis patients with chronic kidney disease. Med Sci Monit 2013; 19:954-9. [PMID: 24201565 PMCID: PMC3829740 DOI: 10.12659/msm.884024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background There is data in the literature indicating increased oxidative stress in chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs), which are commonly used to treat anemia in patients with CKD, seem to have an antioxidant action, which could be a part of nephroprotection. The aim of the current study was to investigate the effect of a long half-life ESA, methoxy polyethylene glycol-epoetin beta (Mircera), on some markers of oxidative stress in predialysis patients with CKD. Material/Methods Peripheral blood was collected from 28 predialysis CKD patients 2 times, before Mircera treatment and after achieving target hemoglobin (Hb), and 15 healthy subjects (control group). Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity in erythrocytes were measured according to commonly used methods as a function of the antioxidant defense system. To assess reactive oxygen species (ROS) production, malondialdehyde (MDA) concentration in erythrocytes and in plasma was measured according to a commonly used method. Results SOD, GSH-Px, and CAT activity were similar, but plasma and erythrocyte MDA concentrations were significantly higher in CKD patients before ESA treatment in comparison to the control group. SOD, GSH-Px, and CAT activity was significantly higher, but plasma and erythrocyte MDA concentrations were significantly lower, in CKD patients after ESA treatment in comparison to these patients before treatment. We did not find a significant correlation between Hb concentration and SOD, GSH-Px, and CAT activity and plasma, as well as erythrocyte MDA concentrations. Analysis of all investigated groups showed a significant negative correlation between Hb concentration and plasma MDA concentration. Conclusions Our results suggest that treatment of anemia with methoxy polyethylene glycol-epoetin beta may inhibit oxidative stress in predialysis patients with CKD by enhancing the antioxidant defense system and reducing ROS production.
Collapse
Affiliation(s)
- Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University, Łódź, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:301982. [PMID: 24058721 PMCID: PMC3766569 DOI: 10.1155/2013/301982] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chuan Hsu
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Chun-Chi Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medical, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
40
|
Hishida A, Okada R, Naito M, Morita E, Wakai K, Hamajima N, Hosono S, Nanri H, Turin TC, Suzuki S, Kuwabara K, Mikami H, Budhathoki S, Watanabe I, Arisawa K, Kubo M, Tanaka H. Polymorphisms in genes encoding antioxidant enzymes (SOD2, CAT, GPx, TXNRD, SEPP1, SEP15 and SELS) and risk of chronic kidney disease in Japanese - cross-sectional data from the J-MICC study. J Clin Biochem Nutr 2013; 53:15-20. [PMID: 23874065 PMCID: PMC3705159 DOI: 10.3164/jcbn.13-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/16/2013] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is well known as a strong risk factor for both of end-stage renal disease and cardiovascular disease. To clarify the association of polymorphisms in the genes encoding antioxidant enzymes (SOD2, CAT, GPx, TXNRD, SEPP1, SEP15 and SELS) with the risk of CKD in Japanese, we examined this association using the cross-sectional data of Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. The subjects were 3,285 men and women, aged 35-69 years, selected from J-MICC Study participants for whom genotyping were conducted by multiplex polymerase chain reaction-based Invader assay. The prevalence of CKD was determined for CKD stages 3-5 (eGFR <60 ml/min/1.73 m(2)). When those with CAT C-262T C/C were defined as reference, those with CAT C-262T C/T demonstrated the OR for CKD of 0.67 (95% CI 0.43-1.06) with the marginally significant trend for decreased odds ratio with increasing numbers of T allele (p = 0.070). There were no significant associations between the other polymorphisms with CKD risk. The present study found a marginally significant trend of the decreased risk of CKD with increasing numbers of T allele of CAT, which may suggest the possibility of personalized risk estimation of this life-limiting disease in the near future.
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Isgor BS, Isgor YG, Ozalp-Yaman S. The role of metal coordination complexes in cytosolic cellular defense. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-06-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The metal coordination complexes are known to induce cytotoxic effects on various cell lines and shown to have great potential for therapeutic interventions. Their main mechanism of action is through the mediation of enzyme activities in signaling pathways essential for cellular functioning. The overall cellular responses are dose-dependent and require high exposure levels and duration to overcome cellular defense against external toxicants. However, their effect through signal transduction components is limited due to the conferred drug resistance associated with glutathione transferase (GST)-mediated mechanisms. The GST family of enzymes is not only related to anticancer drug resistance, but also associated with cancer development where they may also contribute kinase signaling events including non-receptor protein tyrosine kinase (PTK)-related pathways. In the current study, we evaluated the effect of symmetrical and mononuclear complexes of Pd(II), Pt(II), and Ni(II) with organic ligands on cytosolic targets involved in glutathione utilization, antioxidant defense, and kinase signaling by virtue of acellular in vitro analyses.
Collapse
Affiliation(s)
- Belgin S. Isgor
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| | - Yasemin G. Isgor
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| | - Seniz Ozalp-Yaman
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| |
Collapse
|
42
|
KOMINA AV, KOROSTILEVA KA, GYRYLOVA SN, BELONOGOV RN, RUKSHA TG. Interaction Between Single Nucleotide Polymorphism in Catalase Gene and Catalase Activity Under the Conditions of Oxidative Stress. Physiol Res 2012; 61:655-8. [DOI: 10.33549/physiolres.932333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Catalase is an antioxidant enzyme the activity of which is crucial for the protection against damage caused by reactive oxygen species. The –262C>T polymorphism in the promoter region of catalase gene was found to be associated with altered catalase levels. In this study, peripheral blood mononuclear cells catalase activity was measured after H2O2-induced oxidative stress. C/T and T/T genotypes were associated with the decrease of catalase levels in contrast to C/C donors who had elevated catalase activity in the presence of 0.4 and 0.7 mM H2O2. Genotype-dependent response of catalase activity to oxidative stress might be related to the predisposition of catalase mutant allele carriers to disorders mediated by oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - T. G. RUKSHA
- Department of Pathophysiology, Krasnoyarsk State Medical University Named After V. F. Voino-Yasenetsky, Russian Federation Ministry for Health and Social Development, Krasnoyarsk, Russia
| |
Collapse
|
43
|
Rodriguez KA, Wywial E, Perez VI, Lambert AJ, Edrey YH, Lewis KN, Grimes K, Lindsey ML, Brand MD, Buffenstein R. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 2012; 17:2290-307. [PMID: 21736541 DOI: 10.2174/138161211797052457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/07/2011] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr. San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012; 501:89-103. [PMID: 22525041 DOI: 10.1016/j.gene.2012.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/21/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
The presence and progression of numerous diseases have been linked to deficiencies in antioxidant systems. The relationships between single nucleotide polymorphisms (SNPs) arising from specific antioxidant enzymes and diseases associated with elevated oxidative stress have been studied with the rationale that they may be useful in screening for diseases. The purpose of this narrative review is to analyse evidence from these studies. The antioxidant enzyme SNPs selected for analysis are based on those most frequently investigated in relation to diseases in humans: superoxide dismutase (SOD2) Ala16Val (80 studies), glutathione peroxidise (GPx1) Pro197Leu (24 studies) and catalase C-262T (22 studies). Although the majority of evidence supports associations between the SOD2 Ala16Val SNP and diseases such as breast, prostate and lung cancers, diabetes and cardiovascular disease, the presence of the SOD2 Ala16Val SNP confers only a small, clinically insignificant reduction (if any) in the risk of these diseases. Other diseases such as bladder cancer, liver disease, nervous system pathologies and asthma have not been consistently related to this SOD SNP genotype. The GPx1 Pro197Leu and catalase C-262T SNP genotypes have been associated with breast cancer, but only in a small number of studies. Thus, currently available evidence suggests antioxidant enzyme SNP genotypes are not useful for screening for diseases in humans.
Collapse
Affiliation(s)
- Amanda Crawford
- School of Human Life Sciences, University of Tasmania, Newnham, Launceston, Tasmania 7248, Australia
| | | | | | | | | | | | | |
Collapse
|