1
|
Yang H, He L, Gong H, Wan C, Ding J, Liao P, Wang X. Identification of novel pathogenic variants of CUBN in patients with isolated proteinuria. Mol Genet Genomic Med 2024; 12:e2353. [PMID: 38488435 PMCID: PMC10941600 DOI: 10.1002/mgg3.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Although proteinuria is long recognized as an independent risk factor for progressive chronic kidney diseases, not all forms of proteinuria are detrimental to kidney function, one of which is isolated proteinuria caused by cubilin (CUBN)-specific mutations. CUBN encodes an endocytic receptor, initially found to be responsible for the Imerslund-Gräsbeck syndrome (IGS; OMIM #261100) characterized by a combined phenotype of megaloblastic anemia and proteinuria. METHODS After analyzing their clinical and pathological characterizations, next-generation sequencing for renal disease genes or whole-exome sequencing (WES) was performed on four patients with non-progressive isolated proteinuria. CUBN biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing, immunohistochemistry, minigene assay, and multiple in silico prediction tools, including 3D protein modeling. RESULTS Here, we present four patients with isolated proteinuria caused by CUBN C-terminal biallelic pathogenic variants, all of which showed no typical IGS symptoms, such as anemia and vitamin B12 deficiency. Their urine protein levels fluctuated between +~++ and estimated glomerular filtration rate (eGFR) were normal or slightly higher. Mild mesangial hypercellularity was found in three children's renal biopsies. A homozygous splice-site variant of CUBN (c.6821+3 (IVS44) A>G) was proven to result in the exon 44 skipping and premature translation termination by cDNA sequencing and immunohistochemistry. Compound heterozygous mutations were identified among the other three children, including another novel splice-site variant (c.10764+1 (IVS66) G>A) causing the retention of first 4 nucleotides in intron 66 by minigene assay, two unreported missense mutations (c.4907G>A (p.R1636Q); c. 9095 A>G (p.Y3032C)), and two reported missense mutations in China (c.8938G>A (p.D2980N); c. 9287T>C (p.L3096P)), locating behind the vitamin B12-binding domain, affecting CUB11, CUB16, CUB22, CUB23, and CUB27 domains, respectively. CONCLUSION These results demonstrate that above CUBN mutations may cause non-progressive and isolated proteinuria, expanding the variant spectrum of CUBN and benefiting our understanding of proteinuria and renal function.
Collapse
Affiliation(s)
- Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Lanfen He
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Hongjian Gong
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Chunhui Wan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Juanjuan Ding
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Panli Liao
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
2
|
Eduin B, Roubille C, Badiou S, Cristol JP, Fesler P. Association between Elevated Plasma Vitamin B12 and Short-Term Mortality in Elderly Patients Hospitalized in an Internal Medicine Unit. Int J Clin Pract 2023; 2023:6652671. [PMID: 38146346 PMCID: PMC10749720 DOI: 10.1155/2023/6652671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 12/27/2023] Open
Abstract
Background The prognostic value of vitamin B12 blood levels remains controversial. An association between elevated vitamin B12 and mortality has been reported, particularly among elderly patients with cancers and liver or blood diseases. The present study explored the relationship between mortality and elevated vitamin B12 levels in a population of unscheduled inpatients in an internal medicine unit. Methods This retrospective observational analysis was conducted between August 2014 and December 2018. We compared 165 patients with elevated plasma vitamin B12 levels (>600 pmol/l) with a random sample of 165 patients with normal B12 levels who were hospitalized during the same period. Demographic, clinical, and biological characteristics were assessed during hospitalization. The primary endpoint was all-cause death at 1 year. Results Patients with elevated B12 were younger, with a lower body mass index and lower plasma albumin than those with normal B12 (75 ± 16 years vs 79 ± 13 years, p = 0.047; 23 ± 5 vs 26 ± 7 kg/m2, p < 0.001; and 33 ± 5 vs 35 ± 5 g/l, p < 0.001, respectively). The prevalence of auto-immune disease and referral from an intensive care unit was higher among patients with elevated B12 (11% vs 5%, p = 0.043 and 36% vs 10%, p < 0.001, respectively). After 1 year of follow-up, 64 (39%) patients with elevated B12 had died compared to 43 (26%) patients with normal B12 (p = 0.018). Multivariate analysis using the Cox proportional hazards regression model adjusted for age, gender, body mass index, intensive care unit hospitalization, albumin level, and the presence of solid cancer or autoimmune disease revealed elevated B12 to be associated with a significant risk of death in the first year of follow-up (hazard ratio: 1.71 [1.08-2.7], p = 0.022). Conclusion Elevated B12 is an early warning indicator of increased short-term mortality, such as independently of age, cancer, or comorbidities, in patients hospitalized in an internal medicine department.
Collapse
Affiliation(s)
- Benjamin Eduin
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
| | - Camille Roubille
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
| | - Stéphanie Badiou
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
- Department of Biochemistry and Hormonology, University Hospital of Montpellier, Montpellier, France
| | - Jean Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
- Department of Biochemistry and Hormonology, University Hospital of Montpellier, Montpellier, France
| | - Pierre Fesler
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
3
|
De Marco Verissimo C, Cwiklinski K, Nilsson J, Mirgorodskaya E, Jin C, Karlsson NG, Dalton JP. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol Cell Proteomics 2023; 22:100684. [PMID: 37993102 PMCID: PMC10755494 DOI: 10.1016/j.mcpro.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland.
| | - Krystyna Cwiklinski
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - John P Dalton
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
4
|
Ran J, Chen Q, Hu Y, Yang P, Yu G, Liao X, Lei J. Isolated Proteinuria Caused by CUBN Gene Mutations: A Case Report and Review of the Literature. Case Rep Nephrol Dial 2023; 13:27-35. [PMID: 37384121 PMCID: PMC10293958 DOI: 10.1159/000530466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/27/2023] [Indexed: 06/30/2023] Open
Abstract
Mutations in the cubilin (CUBN) gene commonly cause Imerslund-Gräsbeck syndrome, while isolated proteinuria as a result of CUBN variations is rarely reported. The clinical manifestation is mainly chronic isolated proteinuria in the non-nephrotic range. However, findings to date suggest that isolated proteinuria associated with abnormalities in the CUBN gene is benign and does not affect long-term prognosis of kidney function. We identified 2 patients with isolated proteinuria triggered by compound heterozygous CUBN mutations. Renal functions of both patients remained normal over a 10-year follow-up period, supporting the benign nature of proteinuria caused by CUBN gene variations. Two novel mutation sites were detected, expanding the genotypic spectrum of CUBN variations. In addition, etiology, pathogenesis, clinical manifestations, auxiliary examination, and treatment of the condition were reviewed, with the aim of providing further guidance for clinical management.
Collapse
Affiliation(s)
- Jingyang Ran
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Chen
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudong Hu
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pengfei Yang
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiquan Yu
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianrong Lei
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Uglebjerg N, Ahmadizar F, Aly DM, Cañadas-Garre M, Hill C, Naber A, Oddsson A, Singh SS, Smyth L, Trégouët DA, Chaker L, Ghanbari M, Steinthorsdottir V, Ahlqvist E, Hadjadj S, Van Hoek M, Kavousi M, McKnight AJ, Sijbrands EJ, Stefansson K, Simons M, Rossing P, Ahluwalia TS. Four missense genetic variants in CUBN are associated with higher levels of eGFR in non-diabetes but not in diabetes mellitus or its subtypes: A genetic association study in Europeans. Front Endocrinol (Lausanne) 2023; 14:1081741. [PMID: 36926036 PMCID: PMC10011651 DOI: 10.3389/fendo.2023.1081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
AIM Rare genetic variants in the CUBN gene encoding the main albumin-transporter in the proximal tubule of the kidneys have previously been associated with microalbuminuria and higher urine albumin levels, also in diabetes. Sequencing studies in isolated proteinuria suggest that these variants might not affect kidney function, despite proteinuria. However, the relation of these CUBN missense variants to the estimated glomerular filtration rate (eGFR) is largely unexplored. We hereby broadly examine the associations between four CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of these variants in a range of single- and aggregate- variant analyses of other kidney-related traits in individuals with and without diabetes mellitus. METHODS We carried out a genetic association-based linear regression analysis between four CUBN missense variants (rs141640975, rs144360241, rs45551835, rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from multiple European studies and in individuals without diabetes from UK Biobank (UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results of the diabetes-group were meta-analyzed using the fixed-effect inverse-variance method. RESULTS Albeit we did not observe associations between eGFRcreatinine and CUBN in the diabetes-group, we found significant positive associations between the minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2 × 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the eGFRcreatinine-association showed significant interaction with albuminuria levels (normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk score (GRS) was associated with higher urine albumin levels and eGFRcreatinine. The rs141640975 variant was also associated with higher levels of eGFRcreatinine-cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower circulating cystatin C levels. CONCLUSIONS The positive associations between the four CUBN missense variants and eGFR in a large population without diabetes suggests a pleiotropic role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-locus. Additional associations with diverse renal function measures (lower cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS further suggests an important role of CUBN in the future personalization of chronic kidney disease management in people without diabetes.
Collapse
Affiliation(s)
- Nicoline Uglebjerg
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dina M. Aly
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Marisa Cañadas-Garre
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
- GENYO Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Claire Hill
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Annemieke Naber
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Sunny S. Singh
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Smyth
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - David-Alexandre Trégouët
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, Bordeaux, France
| | - Layal Chaker
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Samy Hadjadj
- Nantes Université, Centre Hospitalier Universitaire Nantes, Centre National de la Recherche Scientifique, INSERM, l’institut du thorax, Nantes, France
| | - Mandy Van Hoek
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Eric J. Sijbrands
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kari Stefansson
- deCODE Genetics, Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Matias Simons
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S. Ahluwalia
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tarunveer S. Ahluwalia,
| |
Collapse
|
6
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
7
|
Yang J, Xu Y, Deng L, Zhou L, Qiu L, Zhang Y, Zhou J. CUBN gene mutations may cause focal segmental glomerulosclerosis (FSGS) in children. BMC Nephrol 2022; 23:15. [PMID: 34979989 PMCID: PMC8725476 DOI: 10.1186/s12882-021-02654-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imerslund-Gräsbeck Syndrome (IGS) is mainly caused by CUBN gene biallelic mutations. Proteinuria accompanies IGS specific symptoms in about half of the patients, isolated proteinuria is rarely reported. Here we present 3 patients with isolated proteinuria and focal segmental glomerulosclerosis (FSGS) caused by CUBN gene biallelic pathogenic variants. METHOD Whole exome sequencing was performed on three children with isolated proteinuria. CUBN gene biallelic pathogenic variants were found and then verified by sanger sequencing. Their clinical, pathological and molecular genetic characteristics were analyzed and correlated accordingly. RESULTS All three children presented with isolated proteinuria, no megaloblastic anemia. Their urine levels of β2 microglobulin were normal or slightly higher. Renal biopsies showed focal segmental glomerulosclerosis with mild glomerular mesangial hypercellularity, partial effacement of foot processes and podocyte microvillation. Two of them were found to carry compound heterozygous mutations and one homozygous mutation of CUBN gene. Totally four CUBN gene biallelic pathogenic variants were identified, including c.9287 T > C (p.L3096P), c.122 + 1G > A, c.7906C > T (p.R2636*), c.10233G > A (p.W3411*). Except for intron splice-site mutation, all other variants are located in highly conserved sites of CUB domain for binding to albumin. CONCLUSION The results demonstrate that CUBN gene mutations may cause isolated proteinuria pathologically presented as FSGS. Our cases extend the spectrum of renal manifestation and genotype of CUBN gene mutations.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Yongli Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Linxia Deng
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Luowen Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Liru Qiu
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China.
| |
Collapse
|
8
|
Long KR, Rbaibi Y, Bondi CD, Ford BR, Poholek AC, Boyd-Shiwarski CR, Tan RJ, Locker JD, Weisz OA. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells. Am J Physiol Renal Physiol 2022; 322:F14-F26. [PMID: 34747197 PMCID: PMC8698540 DOI: 10.1152/ajprenal.00259.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Agenesis of Corpus Callosum/genetics
- Agenesis of Corpus Callosum/metabolism
- Agenesis of Corpus Callosum/pathology
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- CRISPR-Associated Protein 9/genetics
- CRISPR-Cas Systems
- Cells, Cultured
- Databases, Genetic
- Gene Knockout Techniques
- Gene Regulatory Networks
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/pathology
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Male
- Mice, Knockout
- Monodelphis
- Myopia/genetics
- Myopia/metabolism
- Myopia/pathology
- Proteinuria/genetics
- Proteinuria/metabolism
- Proteinuria/pathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/metabolism
- Renal Tubular Transport, Inborn Errors/pathology
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Corry D Bondi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - B Rhodes Ford
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cary R Boyd-Shiwarski
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Domingo-Gallego A, Pybus M, Madariaga L, Piñero-Fernández JA, González-Pastor S, López-González M, Simarro-Rueda E, Quintanilla-Mata ML, Matoses-Ruipérez ML, Ejarque-Vila L, Gall ECL, Guirado L, Torra R, Ariceta G, Ars E. Clinical and genetic characterization of a cohort of proteinuric patients with biallelic CUBN variants. Nephrol Dial Transplant 2021; 37:1906-1915. [PMID: 34610128 DOI: 10.1093/ndt/gfab285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Proteinuria is a well-known risk factor for progressive kidney impairment. Recently, C-terminal cubilin (CUBN) variants have been associated with isolated proteinuria without progression of kidney disease. METHODS Genetic testing of 347 families with proteinuria of suspected monogenic cause was performed by next-generation sequencing of a custom-designed kidney disease gene panel. Families with CUBN biallelic proteinuria-causing variants were studied at the clinical, genetic, laboratory, and pathologic levels. RESULTS Twelve families (15 patients) bearing homozygous or compound heterozygous proteinuria-causing variants in the C-terminal CUBN gene were identified, representing 3.5% of the total cohort. We identified 14 different sequence variants, five of which were novel. The median age at diagnosis of proteinuria was 4 years (range 9 months to 44 years), and in most cases proteinuria was detected incidentally. Thirteen patients had moderate-severe proteinuria at diagnosis without nephrotic syndrome. These patients showed lack of response to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, normal kidney biopsy, and preservation of normal kidney function over time. The two remaining patients presented a more severe phenotype, likely caused by associated comorbidities. CONCLUSIONS Identification of C-terminal pathogenic CUBN variants is diagnostic of an entity characterized by glomerular proteinuria, normal kidney histology, and lack of response to ACEi/ARB treatment. This study adds evidence and increases awareness about albuminuria caused by C-terminal variants in the CUBN gene, which is a benign condition usually diagnosed in childhood with preserved renal function until adulthood.
Collapse
Affiliation(s)
- Andrea Domingo-Gallego
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, Instituto de Investigación Sanitaria Biocruces-Bizkaia, CIBERER, CIBERDEM, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | | | - Sara González-Pastor
- Pediatric Nephrology Department, Hospital Universitario Germans Trias i Pujol, Barcelona, Catalonia, Spain
| | - Mercedes López-González
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Esther Simarro-Rueda
- Clinical Analysis Department, Hospital General Universitario de Albacete, Castilla-La Mancha, Spain
| | | | | | - Laia Ejarque-Vila
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain
| | - Emilie Cornec-Le Gall
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Universitaire, Brest, France; UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, INSERM, Université de Brest, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Lluís Guirado
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Weisz OA. Endocytic adaptation to functional demand by the kidney proximal tubule. J Physiol 2021; 599:3437-3446. [PMID: 34036593 DOI: 10.1113/jp281599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
The kidney proximal tubule (PT) efficiently recovers the low level of albumin and other proteins that normally escape the glomerular filtration barrier. Two large receptors, megalin and cubilin/amnionless (CUBAM), bind to and efficiently retrieve these predominantly low molecular-weight proteins via clathrin-mediated endocytosis. Studies in cell culture models suggest that PT cells may sense changes in shear stress to modulate recovery of filtered proteins in response to normal variations in filtration rate. Impairments in PT endocytic function lead to the excretion of filtered proteins into the urine (tubular proteinuria). Remarkably, when the glomerular filtration barrier is breached, the PT is able to recover excess albumin with a capacity that is orders of magnitude higher than normal. What mediates this excess capacity for albumin uptake under nephrotic conditions, and why doesn't it compensate to prevent tubular proteinuria? Here we propose an integrated new working model to describe the PT recovery of filtered proteins under normal and nephrotic states. We hypothesize that uptake via the fluid phase provides excess capacity to recover high concentrations of filtered proteins under nephrotic conditions. Further, concentration of tubular fluid along the tubule axis will enhance the efficiency of uptake in more distal regions of the PT. By contrast to cells where fluid phase and receptor-mediated uptake are independent pathways, expression of megalin is required to maintain apical endocytic pathway integrity and is essential for both uptake mechanisms. This model accounts for both the high-affinity and the high-capacity responses to filtration load in physiological and pathological states.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
11
|
Heidari SS, Nafar M, Kalantari S, Tavilani H, Karimi J, Foster L, Moon KM, Khodadadi I. Urinary epidermal growth factor is a novel biomarker for early diagnosis of antibody mediated kidney allograft rejection: A urinary proteomics analysis. J Proteomics 2021; 240:104208. [PMID: 33785428 DOI: 10.1016/j.jprot.2021.104208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/27/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Although antibody mediated rejection (AMR) accounts for 20-30% of all acute renal allograft rejections, introducing biomarkers for a timely detection of allograft rejection has been remained challenging. This study investigated novel diagnostic biomarkers of AMR by examining of urine proteome in renal transplant patients. Thirty-six patients with kidney transplantation including 22 AMR patients and 14 patients with stable renal function (control group) were enrolled in this study. Urinary samples were collected and Label free quantification (LFQ) proteomics technique was applied on urine samples and data was subjected to Random Forest (RF) algorithm to predict main candidate proteins contributing in AMR. Finally, applicability of candidate diagnostic biomarkers was evaluated in new sets of AMR subjects, stable patients and healthy volunteers. A total of 1020 proteins were detected in urine proteome. RF algorithm predicted 20 differentially expressed proteins with the highest sensitivity and specificity and combination of EGF, COL6A, and NID-1 was identified as possible panel for early diagnosis of AMR. Applicability of EGF as diagnostic biomarker was validated in urine samples of independent set of AMR subjects. This is the first urinary proteomics study in AMR patients demonstrating that urinary EGF might be used as early diagnostic biomarker for AMR. SIGNIFICANCE: Renal antibody mediated rejection (AMR) accounts for 20-30% of all acute rejections of allografted kidneys. Although several possible biomarkers have been proposed to predict AMR, ineffectiveness of current urinary biomarkers in early diagnosing of AMR patients and in distinguishing AMR subjects from patients with stable kidney function casts doubts on their applicability in clinic. Here for the first time and based on the analysis of urinary proteome we showed that uEGF and uEGF/Cr might be candidate biomarkers to predict AMR with high diagnostic power.
Collapse
Affiliation(s)
- Somaye-Sadat Heidari
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leonard Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Huang Y, Hui KM, Ren Q. Expression and functional characterization of the CUB domain-containing protein from the triangle sail mussel (Hyriopsis cumingii) in response to pathogenic infection. Comp Biochem Physiol B Biochem Mol Biol 2020; 251:110521. [PMID: 33059045 DOI: 10.1016/j.cbpb.2020.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
The complement C1r/C1s, Uegf, and Bmp1 (CUB) domains, which are most exclusively found in extracellular and plasma membrane-related proteins, are involved in various biological processes. In this study, a CUB domain-containing protein (designed as HcCDCP) was cloned and characterized from freshwater pearl mussel (Hyriopsis cumingii). The 2280 bp complete cDNA of the HcCDCP contained a 1002 bp open reading frame, which encoded a protein with 333 amino acids. The predicted HcCDCP protein contained a typical CUB domain and a transmembrane region. The tissue distribution analysis indicated that the HcCDCP was detected in all tissues, and the highest expression was found in hepatopancreas followed by gills. After infection with bacteria (i.e., Staphylococcus aureus and Vibrio parahaemolyticus), virus (white spot syndrome virus) and virus analogs (poly[I:C]), the mRNA level of the HcCDCP was significantly upregulated, suggesting that the HcCDCP might be involved in host immune defense response. The RNA interference revealed that the silencing of the HcCDCP could evidently inhibit the expression levels of lysozyme and tumor necrosis factor. Moreover, the recombinant protein of the CUB domain (rCUB) possessed binding capacity to eight different kinds of bacteria. The polysaccharide binding assay showed that the rCUB specifically bound to lipopolysaccharide, peptidoglycan, and D-mannose. This study provided valuable information for exploring the biological roles of CDCPs in the host defense system of mollusks.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Kai-Min Hui
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Urae S, Harita Y, Udagawa T, Ode KL, Nagahama M, Kajiho Y, Kanda S, Saito A, Ueda HR, Nangaku M, Oka A. A cellular model of albumin endocytosis uncovers a link between membrane and nuclear proteins. J Cell Sci 2020; 133:jcs242859. [PMID: 32482797 DOI: 10.1242/jcs.242859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.
Collapse
Affiliation(s)
- Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata-shi, Niigata 951-8510, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Wako-shi, Saitama 351-0198, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
14
|
Hope S, Naerland T, Høiland AL, Torske T, Malt E, Abrahamsen T, Nerhus M, Wedervang-Resell K, Lonning V, Johannessen J, Steen NE, Agartz I, Stenberg N, Hundhausen T, Mørkrid L, Andreassen OA. Higher vitamin B12 levels in neurodevelopmental disorders than in healthy controls and schizophrenia: A comparison among participants between 2 and 53 years. FASEB J 2020; 34:8114-8124. [PMID: 32323402 DOI: 10.1096/fj.201900855rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Recent studies suggest that both high and low levels of vitamin B12 (vitB12) may have negative health impacts. We measured VitB12 in patients with the Neurodevelopmental disorders (ND) (n = 222), comprised of Autism Spectrum Disorders, specific Developmental disorders, and Intellectual Disability (aged 2-53 years), schizophrenia (n = 401), and healthy controls (HC) (n = 483). Age-and gender-adjusted vitB12 z-scores were calculated by comparisons with a reference population (n = 76 148). We found higher vitB12 in ND (median 420 pmol/L, mean z-score: 0.30) than in HC (316 pmol/L, z-score: 0.06, P < .01) and schizophrenia (306 pmol/L, z-score: -0.02, P < .001), which was significant after adjusting for age, gender, vitB12 supplement, folate, hemoglobin, leukocytes, liver, and kidney function (P < .02). In ND, 20% (n = 44) had vitB12 above 650 pmol/L, and 1% (n = 3) had below 150 pmol/L (common reference limits). In 6.3% (n = 14) of ND, vitB12 was above 2SD of mean in the age-and gender-adjusted reference population, which was more frequent than in HC (n = 8, 1.6%), OR: 4.0, P = .001. Low vitB12 was equally frequent as in HC, and vitB12 z-scores were equal across the age groups. To conclude, vitB12 was higher in ND than in HC and schizophrenia, suggesting a specific feature of ND, which warrants further studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,NORMENT, Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terje Naerland
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,National Competence Center for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Anne Lise Høiland
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Sciences, Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Torske
- Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Eva Malt
- Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tore Abrahamsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Mari Nerhus
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway
| | - Kirsten Wedervang-Resell
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Vera Lonning
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway
| | | | - Nils Eiel Steen
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingrid Agartz
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nina Stenberg
- Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Thomas Hundhausen
- Department of Natural Sciences, University of Agder, Kristiansand, Norway.,Department of Laboratory Medicine, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
15
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
16
|
Tsekmekidou X, Tsetsos F, Koufakis T, Karras SN, Georgitsi M, Papanas N, Papazoglou D, Roumeliotis A, Panagoutsos S, Thodis E, Theodoridis M, Pasadakis P, Maltezos E, Paschou P, Kotsa K. Association between CUBN gene variants, type 2 diabetes and vitamin D concentrations in an elderly Greek population. J Steroid Biochem Mol Biol 2020; 198:105549. [PMID: 31770575 DOI: 10.1016/j.jsbmb.2019.105549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests a potential implication of vitamin D biological network in the pathogenesis of diabetes mellitus. The megalin-cubilin endocytotic system constitutes a key transport structure, with a modulating role in vitamin D metabolism. We aimed to assess the contribution of variants in the CUBN gene to the genetic risk of Type 2 Diabetes Mellitus (T2DM). 95 polymorphisms within CUBN were genotyped in 716 patients with T2DM and 542 controls of Greek origin. Samples were analyzed on Illumina Human PsychArray. Permutation test analysis was implemented to determine statistical significance. Twenty-five-hydroxy-vitamin-D [25(OH)D)] levels were measured in a sub-group of participants (n = 276). Permutation analysis associated rs11254375_G/T (pemp = 0.00049, OR = 1.482), rs6602175_G/T (pemp = 0.016, OR = 0.822), rs1801224_G/T (pemp = 0.025, OR = 0.830), rs4366393_A/G (pemp = 0.028, OR = 0.829) and rs7071576_A/G (pemp = 0.04, OR = 1.219) with T2DM. Mean 25(OH)D concentrations were significantly lower in patients with T2DM compared to controls (16.70 ± 6.69 ng/ml vs 18.51 ± 6.71 ng/ml, p < 0.001), although both groups were vitamin D deficient. In a further quantitative analysis, rs41301097 was strongly associated with higher 25(OH)D concentrations (p = 5.233e-6, beta = 15.95). Our results indicate a potential role of CUBN gene in T2DM genetic susceptibility in the Greek population. These findings may also denote an indirect effect of vitamin D metabolism dysregulation on the pathogenesis of T2DM. Further studies are required to replicate our findings and clarify the complex underlying mechanisms.
Collapse
Affiliation(s)
- Xanthippi Tsekmekidou
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Spyridon N Karras
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Marianthi Georgitsi
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece; Laboratory of General Biology-Genetics, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Elias Thodis
- Department of Nephrology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marios Theodoridis
- Department of Nephrology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ploumis Pasadakis
- Department of Nephrology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eustratios Maltezos
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|
17
|
Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, Christensen EI, Baty CJ, Kashlan OB, Weisz OA. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Renal Physiol 2020; 318:F1284-F1294. [PMID: 32200668 DOI: 10.1152/ajprenal.00030.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proximal tubule (PT) cells express a single saturable albumin-binding site whose affinity matches the estimated tubular concentration of albumin; however, albumin uptake capacity is greatly increased under nephrotic conditions. Deciphering the individual contributions of megalin and cubilin to the uptake of normal and nephrotic levels of albumin is impossible in vivo, as knockout of megalin in mice globally disrupts PT endocytic uptake. We quantified concentration-dependent albumin uptake in an optimized opossum kidney cell culture model and fit the kinetic profiles to identify albumin-binding affinities and uptake capacities. Mathematical deconvolution fit best to a three-component model that included saturable high- and low-affinity uptake sites for albumin and underlying nonsaturable uptake consistent with passive uptake of albumin in the fluid phase. Knockdown of cubilin or its chaperone amnionless selectively reduced the binding capacity of the high-affinity site, whereas knockdown of megalin impacted the low-affinity site. Knockdown of disabled-2 decreased the capacities of both binding sites. Additionally, knockdown of megalin or disabled-2 profoundly inhibited the uptake of a fluid phase marker, with cubilin knockdown having a more modest effect. We propose a novel model for albumin retrieval along the PT in which cubilin and megalin receptors have different functions in recovering filtered albumin in proximal tubule cells. Cubilin binding to albumin is tuned to capture normally filtered levels of the protein. In contrast, megalin binding to albumin is of lower affinity, and its expression is also essential for enabling the recovery of high concentrations of albumin in the fluid phase.
Collapse
Affiliation(s)
- Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Protective Role of Vitamin D in Renal Tubulopathies. Metabolites 2020; 10:metabo10030115. [PMID: 32204545 PMCID: PMC7142711 DOI: 10.3390/metabo10030115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is tightly linked with renal tubular homeostasis: the mitochondria of proximal convoluted tubule cells are the production site of 1α,25-dihydroxyvitamin D3. Patients with renal impairment or tubular injury often suffer from chronic inflammation. This alteration comes from oxidative stress, acidosis, decreased clearance of inflammatory cytokines and stimulation of inflammatory factors. The challenge is to find the right formula for each patient to correctly modulate the landscape of treatment and preserve the essential functions of the organism without perturbating its homeostasis. The complexity of the counter-regulation mechanisms and the different axis involved in the Vitamin D equilibrium pose a major issue on Vitamin D as a potential effective anti-inflammatory drug. The therapeutic use of this compound should be able to inhibit the development of inflammation without interfering with normal homeostasis. Megalin-Cubilin-Amnionless and the FGF23-Klotho axis represent two Vitamin D-linked mechanisms that could modulate and ameliorate the damage response at the renal tubular level, balancing Vitamin D therapy with an effect potent enough to contrast the inflammatory cascades, but which avoids potential severe side effects.
Collapse
|
19
|
Honarpisheh P, Reynolds CR, Blasco Conesa MP, Moruno Manchon JF, Putluri N, Bhattacharjee MB, Urayama A, McCullough LD, Ganesh BP. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci 2020; 21:E1711. [PMID: 32138161 PMCID: PMC7084806 DOI: 10.3390/ijms21051711] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aβ) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aβ burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders. We used pre-symptomatic (6-months) and symptomatic (15-months) Tg2576 mouse model of AD compared to their age-matched littermate WT control. We identified that dysfunction of intestinal epithelial barrier (IEB), dysregulation of absorption, and vascular Aβ deposition in the IEB occur before cerebral Aβ aggregation is detectible. These changes in the GBA were associated with elevated inflammatory plasma cytokines including IL-9, VEGF and IP-10. In association with reduced cerebral myelin tight junction proteins, we identified reduced levels of systemic vitamin B12 and decrease cubilin, an intestinal B12 transporter, after the development of cerebral Aβ pathology. Lastly, we report Aβ deposition in the intestinal autopsy from AD patients with confirmed cerebral Aβ pathology that is not present in intestine from non-AD controls. Our data provide evidence that gut dysfunction occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve the early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Caroline R. Reynolds
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Maria P. Blasco Conesa
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Jose F. Moruno Manchon
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Akihiko Urayama
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Bhanu P. Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| |
Collapse
|
20
|
Long KR, Rbaibi Y, Gliozzi ML, Ren Q, Weisz OA. Differential kidney proximal tubule cell responses to protein overload by albumin and its ligands. Am J Physiol Renal Physiol 2020; 318:F851-F859. [PMID: 32068462 DOI: 10.1152/ajprenal.00490.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Albuminuria is frequently associated with proximal tubule (PT) cytotoxicity that can feed back to cause glomerular damage and exacerbate kidney disease. PT cells express megalin and cubilin receptors that bind to and internalize albumin over a broad concentration range. How the exposure to high concentrations of albumin leads to PT cytotoxicity remains unclear. Fatty acids and other ligands bound to albumin are known to trigger production of reactive oxygen species (ROS) that impair PT function. Alternatively or in addition, uptake of high concentrations of albumin may overload the endocytic pathway and elicit downstream responses. Here, we used a well-differentiated PT cell culture model with high endocytic capacity to dissect the effects of albumin versus its ligands on endocytic uptake and degradation of albumin, production of ROS, and cell viability. Cellular responses differed dramatically, depending on the preparation of albumin tested. Knockdown of megalin or cubilin failed to prevent ROS production mediated by albumin ligands, suggesting that receptor-mediated internalization of albumin was not necessary to trigger cellular responses to albumin ligands. Moreover, albumin induced cytotoxic responses when added to the basolateral surface of PT cells. Whereas overnight incubation with high concentrations of fatty acid-free albumin had no overt effects on cell function or viability, lysosomal degradation kinetics were slowed upon longer exposure, consistent with overload of the PT endocytic/degradative pathway. Together, the results of our study demonstrate that the PT responds independently to albumin and to its ligands and suggest that the consequences of albumin overload in vivo may be dependent on metabolic state.
Collapse
Affiliation(s)
- Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Megan L Gliozzi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020; 130:335-344. [PMID: 31613795 PMCID: PMC6934218 DOI: 10.1172/jci129937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
22
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020. [PMID: 31613795 DOI: 10.1172/jci12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
23
|
Jorde R, Wilsgaard T, Grimnes G. Polymorphisms in the vitamin D system and mortality - The Tromsø study. J Steroid Biochem Mol Biol 2019; 195:105481. [PMID: 31541730 DOI: 10.1016/j.jsbmb.2019.105481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
Vitamin D deficiency is associated with diabetes, cancer, immunological and cardiovascular diseases as well as increased mortality. It has, however, been difficult to show a causal relation in randomized, controlled trials. Mendelian randomization studies provide another option for testing causality, and results indicate relations between the serum 25-hydroxyvitamin D (25(OH)D) level and some diseases, including mortality. We have from the Tromsø Study in 2012 published non-significant relations been vitamin D related single nucleotide polymorphisms (SNPs) and mortality, but have since then genotyped additional subjects, the observation time is longer and new SNPs have been included. For the present study genotyping was performed for SNPs in the NADSYN1, CYP2R1, GC and CYP24A1, VDR, CUBILIN and MEGALIN genes in 11 897 subjects who participated in the fourth survey of the Tromsø Study in 1994-1995. Serum 25(OH)D levels were measured in 6733 of these subjects. Genetic scores based on SNPs related to the serum 25(OH)D level (NADSYN1 and CYP2R1 SNPs (synthesis score) and GC and CYP24A1 SNPs (metabolism score)) and serum 25(OH)D percentile groups were created. Mortality data was updated till end of March 2017 and survival analysed with Cox regression adjusted for sex and age. During the observation period 5491 subjects died. The 25(OH)D synthesis (but not the metabolism) genetic score and the serum 25(OH)D percentile groups were (without Bonferroni correction) significantly related to mortality in favour of high serum 25(OH)D. None of the SNPs in the VDR or MEGALIN genes were related to mortality. However, for the rs12766939 in the CUBILIN gene with the major homozygote as reference, the hazard ratio for mortality for the minor homozygote genotype was 1.17 (1.06-1.29), P < 0.002. This should be viewed with caution, as rs12766939 was not in Hardy-Weinberg equilibrium. In conclusion, our study confirms a probable causal but weak relation between serum 25(OH)D level and mortality. The relation between rs12766939 and mortality needs confirmation in more homogenous cohorts.
Collapse
Affiliation(s)
- Rolf Jorde
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Tom Wilsgaard
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guri Grimnes
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
24
|
Elsabbagh RA, Abdel Rahman MF, Hassanein SI, Hanafi RS, Assal RA, Shaban GM, Gad MZ. The association of megalin and cubilin genetic variants with serum levels of 25-hydroxvitamin D and the incidence of acute coronary syndrome in Egyptians: A case control study. J Adv Res 2019; 21:49-56. [PMID: 31641537 PMCID: PMC6796724 DOI: 10.1016/j.jare.2019.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Megalin and cubilin are two receptors that mediate endocytosis of 25-hydroxyvitamin D (25(OH)D) for its final activation by hydroxylation. The aim of the present study was to evaluate the association of polymorphisms in megalin (rs2075252 and rs4668123) and cubilin (rs1801222 and rs12766939) with the circulating serum levels of 25(OH)D and with the early incidence of acute coronary syndrome (ACS) in Egyptians. The study included 328 subjects; 185 ACS patients aged between 27 and 60 years, and 143 healthy age-matched controls. Genotyping of cubilin rs12766939 Single Nucleotide Polymorphism (SNP) was performed using Real-Time Polymerase Chain Reaction (qPCR) and for megalin rs4668123 and rs2075252 and cubilin rs1801222 by Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP). 25(OH)D levels were measured by Ultra Performance Liquid Chromatography- Tandem Mass Spectroscopy (UPLC-MS/MS). Results showed that vitamin D deficiency was highly linked to ACS incidence (P < 0.0001). The megalin rs4668123 CC, cubilin rs1801222 GG and cubilin rs12766939 GG + GA genotypes are associated with a higher ACS incidence and can be considered risk factors, according to Chi-squared test (P = 0.0003, 0.0442, 0.013 respectively). Conversely, the megalin rs2075252 SNP was not associated with increased ACS incidence. However, after performing multiple logistic regression analysis, only the megalin rs4668123 SNP was considered an independent ACS risk factor. Furthermore, the megalin rs4668123 CC genotype was associated with lower 25(OH)D levels (P = 0.0018). In conclusion, megalin rs4668123 (CC) was linked to lower 25(OH)D levels and can be considered an independent risk factor for incidence of ACS.
Collapse
Affiliation(s)
- Raghda A. Elsabbagh
- Clinical Biochemistry Unit, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Egypt
| | - Mohamed F. Abdel Rahman
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Science and Arts, 6th of October City, Egypt
| | - Sally I. Hassanein
- Clinical Biochemistry Unit, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Egypt
| | - Rasha S. Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Egypt
| | - Reem A. Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Egypt
| | | | - Mohamed Z. Gad
- Clinical Biochemistry Unit, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Egypt
- Corresponding author.
| |
Collapse
|
25
|
Systemically Administered Plant Recombinant Holo-Intrinsic Factor Targets the Liver and is not Affected by Endogenous B12 levels. Sci Rep 2019; 9:12269. [PMID: 31439908 PMCID: PMC6706418 DOI: 10.1038/s41598-019-48555-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Precision targeting imaging agents and/or treatment agents to select cells or organs in the body remains a significant need and is an area of intense research. It has been hypothesized that the vitamin B12 (B12) dietary pathway, or components thereof, may be exploitable in this area. The question of whether gastric Intrinsic factor (IF), critical for B12 absorption in the GI tract via the cubilin receptor, could be used as a targeting moiety for the cubilin receptor systemically, has not been investigated. Cubilin is the only known receptor for holo-IF and is found primarily in the kidney and ear (outside of the ileum of the GI) offering significant scope for specific targeting. We utilized plant derived human gastric IF in fluorescent cell and PET based in vivo imaging and biodistribution studies and demonstrated that plant derived IF primarily targets the liver, likely a consequence of the unique glycosylation profile of the IF, and is not affected by endogenous B12 levels.
Collapse
|
26
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|
27
|
Orton DJ, Doucette AA, Huang WY, MacLellan DL. Exosomal proteomic analysis reveals changes in the urinary proteome of rats with unilateral ureteral obstruction. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congenital urinary tract obstruction (UTO) is a commonly noted disorder with the potential to cause permanent loss of renal function. Due to the possibility of spontaneous resolution, postnatal management strategies require lengthy and invasive surveillance methods to monitor the status of renal function and severity of obstruction. Here, a quantitative proteome analysis of urinary exosomes from weanling rats with surgically introduced UTO identifies a number of candidate biomarkers with the potential to improve diagnostic and prognostic methods for this disease. Using gel-assisted digestion coupled to liquid chromatography/tandem mass spectrometry (LC–MS/MS), 318 proteins were identified. Relative protein quantitation by spectral counting showed 190 proteins with significant changes in abundance due to either partial or complete obstruction. Numerous proteins identified here have been shown to be similarly altered in abundance in other renal diseases that cause tubule apoptosis and interstitial fibrosis. Extrapolating the role of the proteins showing quantifiable changes in abundance here from other forms of renal disease suggests they have potential for clinical applicability as biomarkers of congenital UTO. Included in the list of identified proteins are markers of apoptosis, oxidative stress, fibrosis, inflammation, and tubular cell damage, which are commonly associated with UTO. This study therefore provides a number of candidate biomarkers that, following validation in children experiencing UTO, have the potential to improve postnatal management of this disease.
Collapse
Affiliation(s)
- Dennis J. Orton
- Department of Pathology, Dalhousie University, 11th Floor Tupper Medical Building, Room 11B, Halifax, NS B3H 4R2, Canada
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, Room 212, Chemistry Building, Halifax, NS B3H 4R2, Canada
| | - Weei-Yuarn Huang
- Department of Pathology, 5788 University Avenue, MacKenzie Building Room 717, Halifax, NS B3H 1V8, Canada
| | - Dawn L. MacLellan
- Department of Urology, 1st Floor IWK Health Centre, 5850 University Avenue, Halifax, NS B3J 3G9, Canada
| |
Collapse
|
28
|
Sabatino JA, Stokes BA, Zohn IE. Prevention of neural tube defects in Lrp2 mutant mouse embryos by folic acid supplementation. Birth Defects Res 2018; 109:16-26. [PMID: 27883261 DOI: 10.1002/bdra.23589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/18/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) are among the most common structural birth defects in humans and are caused by the complex interaction of genetic and environmental factors. Periconceptional supplementation with folic acid can prevent NTDs in both mouse models and human populations. A better understanding of how genes and environmental factors interact is critical toward development of rational strategies to prevent NTDs. Low density lipoprotein-related protein 2 (Lrp2) is involved in endocytosis of the folic acid receptor among numerous other nutrients and ligands. METHODS We determined the effect of iron and/or folic acid supplementation on the penetrance of NTDs in the Lrp2null mouse model. The effects of supplementation on folate and iron status were measured in embryos and dams. RESULTS Periconceptional dietary supplementation with folic acid did not prevent NTDs in Lrp2 mutant embryos, whereas high levels of folic acid supplementation by intraperitoneal injection reduced incidence of NTDs. Importantly, Lrp2null/+ dams had reduced blood folate levels that improved with daily intraperitoneal injections of folate but not dietary supplementation. On the contrary, iron supplementation had no effect on the penetrance of NTDs in Lrp2 mutant embryos and negated the preventative effect of folic acid supplementation in Lrp2null/null mutants. CONCLUSION Lrp2 is required for folate homeostasis in heterozygous dams and high levels of supplementation prevents NTDs. Furthermore, high levels of dietary iron supplementation interfered with folic acid supplementation negating the positive effects of supplementation in this model. Birth Defects Research 109:16-26, 2017. © 2016 The Authors Birth Defects Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia A Sabatino
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| | - Bethany A Stokes
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC.,Department of Biology, The George Washington University, Washington, DC
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| |
Collapse
|
29
|
Vohwinkel CU, Buchäckert Y, Al-Tamari HM, Mazzocchi LC, Eltzschig HK, Mayer K, Morty RE, Herold S, Seeger W, Pullamsetti SS, Vadász I. Restoration of Megalin-Mediated Clearance of Alveolar Protein as a Novel Therapeutic Approach for Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:589-602. [PMID: 28678521 DOI: 10.1165/rcmb.2016-0358oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome constitutes a significant disease burden with regard to both morbidity and mortality. Current therapies are mostly supportive and do not address the underlying pathophysiologic mechanisms. Removal of protein-rich alveolar edema-a clinical hallmark of acute respiratory distress syndrome-is critical for survival. Here, we describe a transforming growth factor (TGF)-β-triggered mechanism, in which megalin, the primary mediator of alveolar protein transport, is negatively regulated by glycogen synthase kinase (GSK) 3β, with protein phosphatase 1 and nuclear inhibitor of protein phosphatase 1 being involved in the signaling cascade. Inhibition of GSK3β rescued transepithelial protein clearance in primary alveolar epithelial cells after TGF-β treatment. Moreover, in a bleomycin-based model of acute lung injury, megalin+/- animals (the megalin-/- variant is lethal due to postnatal respiratory failure) showed a marked increase in intra-alveolar protein and more severe lung injury compared with wild-type littermates. In contrast, wild-type mice treated with the clinically relevant GSK3β inhibitors, tideglusib and valproate, exhibited significantly decreased alveolar protein concentrations, which was associated with improved lung function and histopathology. Together, we discovered that the TGF-β-GSK3β-megalin axis is centrally involved in disturbances of alveolar protein clearance in acute lung injury and provide preclinical evidence for therapeutic efficacy of GSK3β inhibition.
Collapse
Affiliation(s)
- Christine U Vohwinkel
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,2 Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado
| | - Yasmin Buchäckert
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Hamza M Al-Tamari
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Luciana C Mazzocchi
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Holger K Eltzschig
- 4 Organ Protection Program, Department of Anesthesiology, University of Colorado at Denver, Aurora, Colorado
| | - Konstantin Mayer
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Susanne Herold
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Soni S Pullamsetti
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - István Vadász
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
30
|
Nedumaran B, Rudra P, Gaydos J, Kumar S, Meacham RB, Burnham EL, Malykhina AP. Impact of Regular Cannabis Use on Biomarkers of Lower Urinary Tract Function. Urology 2017; 109:223.e9-223.e16. [PMID: 28827195 DOI: 10.1016/j.urology.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the differences in the composition and quantities of urine peptides in regular cannabis users and nonusers by liquid chromatography tandem mass spectrometry analysis. MATERIALS AND METHODS Urine specimens from healthy control subjects and cannabis users were utilized to identify the differences in the number and quantity of urine proteins by liquid chromatography tandem mass spectrometry analysis. Significantly altered proteins were determined by a permutation testing statistical method. Heat map, dendrogram, pathway, and network analyses were performed to assess the degree of expression and the potential relationships between proteins in both groups. RESULTS A total of 1337 proteins were detected in both groups with 19 proteins being significantly altered in cannabis users. Innate immunity and carbohydrate metabolic pathways were highly linked with upregulated proteins in the cannabis group. Additionally, 91 proteins were present and 46 proteins were absent only in cannabis users in comparison with the control cohort. Our results suggest that regular use of cannabis is associated with significant alterations in a number of urinary peptides, with a large number of proteins present or absent only in cannabis users. Pathway analyses demonstrated an increased immune response in cannabis users compared with controls. CONCLUSION Our observations potentially indicate activation (or inhibition) of specific signaling pathways in the lower urinary tract during chronic exposure to exogenous cannabinoids. Our study provides initial proteomic knowledge for future investigations on the potential role of exocannabinoids in the development of intravesical therapies to treat lower urinary tract disorders.
Collapse
Affiliation(s)
- Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, CO
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | - Jeanette Gaydos
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, CO
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, CO.
| |
Collapse
|
31
|
Benson KA, Chand S, Maxwell AP, Smyth LJ, Kilner J, Borrows R, McKnight AJ. Design and implementation of a custom next generation sequencing panel for selected vitamin D associated genes. BMC Res Notes 2017; 10:348. [PMID: 28754147 PMCID: PMC5534126 DOI: 10.1186/s13104-017-2664-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background Biologically active vitamin D has an important regulatory role within the genome. It binds the vitamin D receptor (VDR) in order to control the expression of a wide range of genes as well as interacting with the epigenome to modify chromatin and methylation status. Vitamin D deficiency is associated with several human diseases including end-stage renal disease. Methods This article describes the design and testing of a custom, targeted next generation sequencing (NGS) panel for selected vitamin D associated genes. Sequencing runs were used to determine the effectiveness of the panel for variant calling, to compare efficiency and data across different sequencers, and to perform representative, proof of principle association analyses. These analyses were underpowered for significance testing. Amplicons were designed in two pools (163 and 166 fragments respectively) and used to sequence two cohorts of renal transplant recipients on the Ion Personal Genome Machine (PGM)™ and Ion S5™ XL desktop sequencers. Results Coverage was provided for 43.8 kilobases across seven vitamin D associated genes (CYP24A1, CUBN, VDR, GC, NADSYN1, CYP27B1, CYP2R1) as well as 38 prioritised SNPs. Sequencing runs provided sufficient sequencing quality, data output and validated the effective library preparation and panel design. Conclusions This novel, custom-designed, validated panel provides a fast, cost effective, and specific approach for the analysis of vitamin D associated genes in a wide range of patient cohorts. This article does not report results from a controlled health-care intervention. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2664-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine Angela Benson
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, BT9 7AB, UK.
| | - Sourabh Chand
- Department of Renal Medicine, Royal Shrewsbury Hospital, Shropshire, UK
| | - Alexander Peter Maxwell
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, BT9 7AB, UK
| | - Laura Jane Smyth
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, BT9 7AB, UK
| | - Jill Kilner
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, BT9 7AB, UK
| | - Richard Borrows
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, BT9 7AB, UK
| |
Collapse
|
32
|
Tumoral cubilin is a predictive marker for treatment of renal cancer patients with sunitinib and sorafenib. J Cancer Res Clin Oncol 2017; 143:961-970. [PMID: 28260162 PMCID: PMC5427164 DOI: 10.1007/s00432-017-2365-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/04/2017] [Indexed: 11/12/2022]
Abstract
Purpose Tyrosine kinase inhibitors like sunitinib and sorafenib are commonly used to treat metastatic renal cell cancer patients. Cubilin is a membrane protein expressed in the proximal renal tubule. Cubilin and megalin function together as endocytic receptors mediating uptake of many proteins. There is no established predictive marker for metastatic renal cell cancer patients and the purpose of the present study was to assess if cubilin can predict response to treatment with tyrosine kinase inhibitors. Methods Cubilin protein expression was analyzsed in tumor tissue from a cohort of patients with metastatic renal cell cancer (n = 139) using immunohistochemistry. One hundred and thirty six of the patients were treated with sunitinib or sorafenib in the first- or second-line setting. Thirty of these were censored because of toxicity leading to the termination of treatment and the remaining (n = 106) were selected for the current study. Results Fifty-three (50%) of the tumors expressed cubilin in the membrane. The median progression-free survival was 8 months in patients with cubilin expressing tumors and 4 months in the cubilin negative group. In addition, the overall survival was better for patients with cubilin positive tumors. We also found that the fraction of cubilin negative patients was significantly higher in the non-responding group (PFS ≤3 months) compared to responding patients (PFS >3 months). Conclusions We show for the first time that tumoral expression of cubilin is a positive predictive marker for treatment of metastatic renal cell cancer patients with sunitinib and sorafenib.
Collapse
|
33
|
Ma J, Guan M, Bowden DW, Ng MC, Hicks PJ, Lea JP, Ma L, Gao C, Palmer ND, Freedman BI. Association Analysis of the Cubilin (CUBN) and Megalin (LRP2) Genes with ESRD in African Americans. Clin J Am Soc Nephrol 2016; 11:1034-1043. [PMID: 27197912 PMCID: PMC4891762 DOI: 10.2215/cjn.12971215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Genetic variation in the cubilin (CUBN) gene is associated with albuminuria and CKD. Common and rare coding variants in CUBN and the gene encoding its transport partner megalin (LRP2) were assessed for association with ESRD in blacks. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Sixty-six CUBN and LRP2 single-nucleotide polymorphisms (SNPs) were selected and analyzed in this multistage study. Exome sequencing data from 529 blacks with type 2 diabetes (T2D) -associated ESRD and 535 controls lacking T2D or nephropathy (the Type 2 Diabetes Genes [T2D-GENES] Consortium) were first evaluated, focusing on coding variants in CUBN and LRP2; 15 potentially associated SNPs identified from the T2D-GENES Consortium as well as 51 other selected SNPs were then assessed in an independent T2D-ESRD sample set of blacks (the Affymetrix Axiom Biobank Genotyping Array [AXIOM]; 2041 patients with T2D-ESRD, 627 patients with T2D without nephropathy, and 1140 nondiabetic, non-nephropathy controls). A meta-analysis combining the T2D-GENES Consortium and the AXIOM data was performed for 18 overlapping SNPs. Additionally, all 66 SNPs were genotyped in the Wake Forest School of Medicine samples of blacks with nondiabetic ESRD (885 patients with nondiabetic ESRD and 721 controls). Association testing with ESRD was performed in models including age, sex, African ancestry proportion, and apolipoprotein L1 gene renal-risk variants. RESULTS CUBN SNP rs1801239 (I2984V), previously associated with albuminuria, was significantly associated with T2D-ESRD in blacks (the T2D-GENES Consortium and the AXIOM meta-analysis, P=0.03; odds ratio, 1.31; 95% confidence interval, 1.03 to 1.67; minor allele frequency =0.028). A novel LRP2 missense variant, rs17848169 (N2632D), was also significantly protective from T2D-ESRD (the T2D-GENES Consortium and the AXIOM, P<0.002; odds ratio, 0.47; 95% confidence interval, 0.29 to 0.75; meta-analysis minor allele frequency =0.007). Neither SNP was associated with T2D when contrasting patients with T2D with controls lacking diabetes. CUBN and LRP2 SNPs were not associated with nondiabetic etiologies of ESRD. CONCLUSIONS Evidence for genetic association exists between a cubilin and a rare megalin variant with diabetes-associated ESRD in populations with recent African ancestry.
Collapse
Affiliation(s)
- Jun Ma
- Department of Internal Medicine, Section on Nephrology and
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Meijian Guan
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald W. Bowden
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maggie C.Y. Ng
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Pamela J. Hicks
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Janice P. Lea
- Division of Renal Medicine, Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology and
| | - Chuan Gao
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D. Palmer
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
34
|
Seliverstova EV, Prutskova NP. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur J Histochem 2015; 59:2482. [PMID: 26150156 PMCID: PMC4503969 DOI: 10.4081/ejh.2015.2482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022] Open
Abstract
The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.
Collapse
Affiliation(s)
- E V Seliverstova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences.
| | | |
Collapse
|
35
|
Vázquez-Carretero MD, Palomo M, García-Miranda P, Sánchez-Aguayo I, Peral MJ, Calonge ML, Ilundain AA. Dab2, megalin, cubilin and amnionless receptor complex might mediate intestinal endocytosis in the suckling rat. J Cell Biochem 2014; 115:510-22. [PMID: 24122887 DOI: 10.1002/jcb.24685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2013] [Indexed: 01/12/2023]
Abstract
We previously proposed that Dab2 participates in the endocytosis of milk macromolecules in rat small intestine. Here we investigate the receptors that may mediate this endocytosis by studying the effects of age and diet on megalin, VLDLR, and ApoER2 expression, and that of age on the expression of cubilin and amnionless. Of megalin, VLDLR and ApoER2, only the megalin expression pattern resembles that of Dab2 previously reported. Thus the mRNA and protein levels of megalin and Dab2 are high in the intestine of the suckling rat, down-regulated by age and up-regulated by milk diet, mainly in the ileum. Neither age nor diet affect ApoER2 mRNA levels. The effect of age on VLDLR mRNA levels depends on the epithelial cell tested but they are down-regulated by milk diet. In the suckling rat, the intestinal expressions of both cubilin and amnionless are similar to that of megalin and megalin, cubilin, amnionless and Dab2 co-localize at the microvilli and in the apical endocytic apparatus. Co-localization of Dab2 with ApoER2 and VLDLR at the microvilli and in the apical endocytic apparatus is also observed. This is the first report showing intestinal co-localization of: megalin/cubilin/amnionless/Dab2, VLDLR/Dab2 and ApoER2/Dab2. We conclude that the megalin/cubilin/amnionless/Dab2 complex/es participate in intestinal processes, mainly during the lactation period and that Dab2 may act as an adaptor in intestinal processes mediated by ApoER2 and VLDLR.
Collapse
|
36
|
Jensen LL, Andersen RK, Hager H, Madsen M. Lack of megalin expression in adult human terminal ileum suggests megalin-independent cubilin/amnionless activity during vitamin B12 absorption. Physiol Rep 2014; 2:2/7/e12086. [PMID: 25052491 PMCID: PMC4187553 DOI: 10.14814/phy2.12086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cubilin plays an essential role in terminal ileum and renal proximal tubules during absorption of vitamin B12 and ligands from the glomerular ultrafiltrate. Cubilin is coexpressed with amnionless, and cubilin and amnionless are mutually dependent on each other for correct processing to the plasma membrane upon synthesis. Patients with defects in either protein suffer from vitamin B12‐malabsorption and in some cases proteinuria. Cubilin lacks a transmembrane region and signals for endocytosis and is dependent on a transmembrane coreceptor during internalization. Amnionless has been shown to be able to mediate internalization of cubilin in a cell‐based model system. Cubilin has additionally been suggested to function together with megalin, and a recent study of megalin‐deficient patients indicates that uptake of cubilin ligands in the kidney is critically dependent on megalin. To further investigate the potential role of amnionless and megalin in relation to cubilin function in terminal ileum and vitamin B12 uptake, we initiated a study of CUBN/cubilin, AMN/amnionless, and LRP2/megalin expression in adult human terminal ileum. Our study is the first to reveal the expression pattern of cubilin, amnionless, and megalin in adult human terminal ileum, where cubilin and amnionless localize to the epithelial cells. Surprisingly, we did not detect any megalin protein in adult terminal ileum and consistently, only extremely low amounts of LRP2 mRNA. Our data therefore advocate that cubilin and amnionless act independently of megalin in adult terminal ileum and that the cubilin‐megalin interdependency accordingly should be considered as tissue and ligand specific. e12086 Studies of human terminal ileum samples demonstrate lack of LRP2/megalin expression in adult terminal ileum and point to a megalin‐independent cubilin‐amnionless‐driven uptake mechanism for vitamin B12.
Collapse
Affiliation(s)
- Louise L Jensen
- Department of Biomedicine, University of Aarhus, 8000 Aarhus C., Denmark
| | - Rikke K Andersen
- Department of Biomedicine, University of Aarhus, 8000 Aarhus C., Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus C., Denmark
| | - Mette Madsen
- Department of Biomedicine, University of Aarhus, 8000 Aarhus C., Denmark
| |
Collapse
|
37
|
Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: Implications for in vivo cadmium toxicity. Toxicol Lett 2014; 226:228-35. [DOI: 10.1016/j.toxlet.2014.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
|