1
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
2
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
3
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
4
|
Zhang J, Li X, Yu H, Larre I, Dube PR, Kennedy DJ, Tang WHW, Westfall K, Pierre SV, Xie Z, Chen Y. Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. Am J Physiol Cell Physiol 2020; 319:C1107-C1119. [PMID: 32997514 DOI: 10.1152/ajpcell.00083.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported that the reduction in plasma membrane cholesterol could decrease cellular Na/K-ATPase α1-expression through a Src-dependent pathway. However, it is unclear whether cholesterol could regulate other Na/K-ATPase α-isoforms and the molecular mechanisms of this regulation are not fully understood. Here we used cells expressing different Na/K-ATPase α isoforms and found that membrane cholesterol reduction by U18666A decreased expression of the α1-isoform but not the α2- or α3-isoform. Imaging analyses showed the cellular redistribution of α1 and α3 but not α2. Moreover, U18666A led to redistribution of α1 to late endosomes/lysosomes, while the proteasome inhibitor blocked α1-reduction by U18666A. These results suggest that the regulation of the Na/K-ATPase α-subunit by cholesterol is isoform specific and α1 is unique in this regulation through the endocytosis-proteasome pathway. Mechanistically, loss-of-Src binding mutation of A425P in α1 lost its capacity for regulation by cholesterol. Meanwhile, gain-of-Src binding mutations in α2 partially restored the regulation. Furthermore, through studies in caveolin-1 knockdown cells, as well as subcellular distribution studies in cell lines with different α-isoforms, we found that Na/K-ATPase, Src, and caveolin-1 worked together for the cholesterol regulation. Taken together, these new findings reveal that the putative Src-binding domain and the intact Na/K-ATPase/Src/caveolin-1 complex are indispensable for the isoform-specific regulation of Na/K-ATPase by cholesterol.
Collapse
Affiliation(s)
- Jue Zhang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia.,Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Prabhatchandra R Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David J Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Kristen Westfall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Yiliang Chen
- Blood Research Institute, Versiti, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. J Clin Med 2020; 9:jcm9113653. [PMID: 33202988 PMCID: PMC7697100 DOI: 10.3390/jcm9113653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.
Collapse
|
6
|
CD40 Receptor Knockout Protects against Microcystin-LR (MC-LR) Prolongation and Exacerbation of Dextran Sulfate Sodium (DSS)-Induced Colitis. Biomedicines 2020; 8:biomedicines8060149. [PMID: 32498446 PMCID: PMC7345682 DOI: 10.3390/biomedicines8060149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is one of the most common gastrointestinal (GI) disorders around the world, and includes diagnoses such as Crohn’s disease and ulcerative colitis. The etiology of IBD is influenced by genetic and environmental factors. One environmental perturbagen that is not well studied within the intestines is microcystin-leucine arginine (MC-LR), which is a toxin produced by cyanobacteria in freshwater environments around the world. We recently reported that MC-LR has limited effects within the intestines of healthy mice, yet interestingly has significant toxicity within the intestines of mice with pre-existing colitis induced by dextran sulfate sodium (DSS). MC-LR was found to prolong DSS-induced weight loss, prolong DSS-induced bloody stools, exacerbate DSS-induced colonic shortening, exacerbate DSS-induced colonic ulceration, and exacerbate DSS-induced inflammatory cytokine upregulation. In addition, we previously reported a significant increase in expression of the pro-inflammatory receptor CD40 in the colons of these mice, along with downstream products of CD40 activation, including plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1). In the current study, we demonstrate that knocking out CD40 attenuates the effects of MC-LR in mice with pre-existing colitis by decreasing the severity of weight loss, allowing a full recovery in bloody stools, preventing the exacerbation of colonic shortening, preventing the exacerbation of colonic ulceration, and preventing the upregulation of the pro-inflammatory and pro-fibrotic cytokines IL-1β, MCP-1, and PAI-1. We also demonstrate the promising efficacy of a CD40 receptor blocking peptide to ameliorate the effects of MC-LR exposure in a proof-of-concept study. Our findings suggest for the first time that MC-LR acts through a CD40-dependent mechanism to exacerbate colitis.
Collapse
|
7
|
Wang X, Cai L, Xie JX, Cui X, Zhang J, Wang J, Chen Y, Larre I, Shapiro JI, Pierre SV, Wu D, Zhu GZ, Xie Z. A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans. SCIENCE ADVANCES 2020; 6:eaaw5851. [PMID: 32537485 PMCID: PMC7253156 DOI: 10.1126/sciadv.aaw5851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/02/2020] [Indexed: 05/15/2023]
Abstract
Several signaling events have been recognized as essential for regulating cell lineage specification and organogenesis in animals. We find that the gain of an amino-terminal caveolin binding motif (CBM) in the α subunit of the Na/K-adenosine triphosphatase (ATPase) (NKA) is required for the early stages of organogenesis in both mice and Caenorhabditis elegans. The evolutionary gain of the CBM occurred at the same time as the acquisition of the binding sites for Na+/K+. Loss of this CBM does not affect cell lineage specification or the initiation of organogenesis, but arrests further organ development. Mechanistically, this CBM is essential for the dynamic operation of Wnt and the timely up-regulation of transcriptional factors during organogenesis. These results indicate that the NKA was evolved as a dual functional protein that works in concert with Wnt as a hitherto unrecognized common mechanism to enable stem cell differentiation and organogenesis in multicellular organisms within the animal kingdom.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jeffrey X. Xie
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jue Zhang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Yiliang Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Dianqing Wu
- Department of Pharmacology and Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, CT, USA
| | - Guo-Zhang Zhu
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| |
Collapse
|
8
|
Zhang S, Breidenbach JD, Khalaf FK, Dube PR, Mohammed CJ, Lad A, Stepkowski S, Hinds TD, Kumarasamy S, Kleinhenz A, Tian J, Malhotra D, Kennedy DJ, Cooper CJ, Haller ST. Renal Fibrosis Is Significantly Attenuated Following Targeted Disruption of Cd40 in Experimental Renal Ischemia. J Am Heart Assoc 2020; 9:e014072. [PMID: 32200719 PMCID: PMC7428653 DOI: 10.1161/jaha.119.014072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Renal artery stenosis is a common cause of renal ischemia, contributing to the development of chronic kidney disease. To investigate the role of local CD40 expression in renal artery stenosis, Goldblatt 2‐kidney 1‐clip surgery was performed on hypertensive Dahl salt‐sensitive rats (S rats) and genetically modified S rats in which CD40 function is abolished (Cd40mutant). Methods and Results Four weeks following the 2‐kidney 1‐clip procedure, Cd40mutant rats demonstrated significantly reduced blood pressure and renal fibrosis in the ischemic kidneys compared with S rat controls. Similarly, disruption of Cd40 resulted in reduced 24‐hour urinary protein excretion in Cd40mutant rats versus S rat controls (46.2±1.9 versus 118.4±5.3 mg/24 h; P<0.01), as well as protection from oxidative stress, as indicated by increased paraoxonase activity in Cd40mutant rats versus S rat controls (P<0.01). Ischemic kidneys from Cd40mutant rats demonstrated a significant decrease in gene expression of the profibrotic mediator, plasminogen activator inhibitor‐1 (P<0.05), and the proinflammatory mediators, C‐C motif chemokine ligand 19 (P<0.01), C‐X‐C Motif Chemokine Ligand 9 (P<0.01), and interleukin‐6 receptor (P<0.001), compared with S rat ischemic kidneys, as assessed by quantitative PCR assay. Reciprocal renal transplantation documented that CD40 exclusively expressed in the kidney contributes to ischemia‐induced renal fibrosis. Furthermore, human CD40‐knockout proximal tubule epithelial cells suggested that suppression of CD40 signaling significantly inhibited expression of proinflammatory and ‐fibrotic genes. Conclusions Taken together, our data suggest that activation of CD40 induces a significant proinflammatory and ‐fibrotic response and represents an attractive therapeutic target for treatment of ischemic renal disease.
Collapse
Affiliation(s)
- Shungang Zhang
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Joshua D. Breidenbach
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Fatimah K. Khalaf
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Prabhatchandra R. Dube
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Chrysan J. Mohammed
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Apurva Lad
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Terry D. Hinds
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Sivarajan Kumarasamy
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Andrew Kleinhenz
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Jiang Tian
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Deepak Malhotra
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - David J. Kennedy
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Christopher J. Cooper
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Steven T. Haller
- Department of MedicineUniversity of Toledo College of Medicine and Life SciencesToledoOH
| |
Collapse
|
9
|
Khalaf FK, Tassavvor I, Mohamed A, Chen Y, Malhotra D, Xie Z, Tian J, Haller ST, Westfall K, Tang WHW, Kennedy DJ. Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na +/K +-ATPase-α-1. J Am Heart Assoc 2020; 9:e013933. [PMID: 32013704 PMCID: PMC7033897 DOI: 10.1161/jaha.119.013933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Recent studies have highlighted a critical role for a group of natriuretic hormones, cardiotonic steroid (CTS), in mediating renal inflammation and fibrosis associated with volume expanded settings, such as chronic kidney disease. Immune cell adhesion is a critical step in the inflammatory response; however, little is currently understood about the potential regulatory role of CTS signaling in this setting. Herein, we tested the hypothesis that CTS signaling through Na+/K+‐ATPase α‐1 (NKA α‐1) enhances immune cell recruitment and adhesion to renal epithelium that ultimately advance renal inflammation. Methods and Results We demonstrate that knockdown of the α‐1 isoform of Na/K‐ATPase causes a reduction in CTS‐induced macrophage infiltration in renal tissue as well reduces the accumulation of immune cells in the peritoneal cavity in vivo. Next, using functional adhesion assay, we demonstrate that CTS‐induced increases in the adhesion of macrophages to renal epithelial cells were significantly diminished after reduction of NKA α‐1 in either macrophages or renal epithelial cells as well after inhibition of NKA α‐1‐Src signaling cascade with a specific peptide inhibitor, pNaKtide in vitro. Finally, CTS‐induced expression of adhesion markers in both endothelial and immune cells was significantly inhibited in an NKA α‐1‐Src signaling dependent manner in vitro. Conclusions These findings suggest that CTS potentiates immune cell migration and adhesion to renal epithelium through an NKA α‐1–dependent mechanism; our new findings suggest that pharmacological inhibition of this feed‐forward loop may be useful in the treatment of renal inflammation associated with renal disease.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Iman Tassavvor
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Amal Mohamed
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Yiliang Chen
- Blood Research Institute Blood Center of Wisconsin Milwaukee WI
| | - Deepak Malhotra
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research Marshall University Huntington WV
| | - Jiang Tian
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Steven T Haller
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Kristen Westfall
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Center for Cardiovascular Diagnostics and Prevention Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute Cleveland Clinic Cleveland OH
| | - David J Kennedy
- University of Toledo College of Medicine and Life Sciences Toledo OH
| |
Collapse
|
10
|
Penniyaynen VA, Plakhova VB, Rogachevskii IV, Terekhin SG, Podzorova SA, Krylov BV. Molecular mechanisms and signaling by comenic acid in nociceptive neurons influence the pathophysiology of neuropathic pain. ACTA ACUST UNITED AC 2019; 26:245-252. [PMID: 31257013 DOI: 10.1016/j.pathophys.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Comenic acid (CA), a specific agonist of opioid-like receptors, effectively and safely relieves neuropathic pain by decreasing the NaV1.8 channel voltage sensitivity in the primary sensory neuron membrane. CA triggers downstream signaling cascades, in which the Na,K-ATPase/Src complex plays a key role. After leaving the complex, the signal diverges 'tangentially' and 'radially'. It is directed 'tangentially' along the neuron membrane to NaV1.8 channels, decreasing the effective charge of their activation gating system. In the radial direction moving towards the cell genome, the signal activates the downstream signaling pathway involving PKC and ERK1/2. A remarkable feature of CA is its ability to modulate NaV1.8 channels, which relieves neuropathic pain while simultaneously stimulating neurite growth via the receptor-coupled activation of the ERK1/2-dependent signaling pathway.
Collapse
Affiliation(s)
- Valentina A Penniyaynen
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Vera B Plakhova
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Ilya V Rogachevskii
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Stanislav G Terekhin
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Svetlana A Podzorova
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Boris V Krylov
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| |
Collapse
|
11
|
Khalaf FK, Dube P, Kleinhenz AL, Malhotra D, Gohara A, Drummond CA, Tian J, Haller ST, Xie Z, Kennedy DJ. Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension 2019; 74:73-82. [PMID: 31132948 DOI: 10.1161/hypertensionaha.118.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotonic steroids (CTSs) are NKA α-1 (Na+/K+-ATPase α-1) ligands that are increased in volume expanded states and associated with cardiac and renal diseases. Although initiation and resolution of inflammation is an important component of cellular injury and repair in renal disease, it is unknown whether CTS activation of NKA α-1 signaling in this setting regulates this inflammatory response. On this background, we hypothesized that CTS signaling through the NKA α-1-Src kinase complex promotes a proinflammatory response in renal epithelial and immune cells. First, we observed that the CTS telocinobufagin activated multiple proinflammatory cytokines/chemokines in renal epithelial cells, and these effects were attenuated after either NKA α-1 knockdown or with a specific inhibitor of the NKA α-1-Src kinase complex (pNaKtide). Similar findings were observed in immune cells, where we demonstrated that while telocinobufagin induced both oxidative burst and enhanced Nuclear factor kappa-light-chain-enhancer of activated B cells activation in macrophages ( P<0.05), the effects were abolished in NKA α-1+/- macrophages or by pretreatment with pNaKtide or the Src inhibitor PP2 ( P<0.01). In a series of in vivo studies, we found that 5/6th partial nephrectomy induced significantly less oxidative stress in the remnant kidney of NKA α-1+/- versus wild-type mice. Similarly, 5/6th partial nephrectomy yielded decreased levels of the urinary oxidative stress marker 8-Oxo-2'-deoxyguanosine in NKA α-1+/- versus wild-type mice. Finally, we found that in vivo inhibition of the NKA α-1-Src kinase complex with pNaKtide significantly inhibited renal proinflammatory gene expression after 5/6th partial nephrectomy. These findings suggest that the NKA α-1-Src kinase complex plays a central role in regulating the renal inflammatory response induced by elevated CTS both in vitro and in vivo.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Prabhatchandra Dube
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Andrew L Kleinhenz
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Deepak Malhotra
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Amira Gohara
- Department of Pathology (A.G.) University of Toledo College of Medicine and Life Sciences, OH
| | - Christopher A Drummond
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Jiang Tian
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Steven T Haller
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV (Z.X.)
| | - David J Kennedy
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| |
Collapse
|
12
|
Wang J, Ullah SH, Li M, Zhang M, Zhang F, Zheng J, Yan X. DR region specific antibody ameliorated but ouabain worsened renal injury in nephrectomized rats through regulating Na,K-ATPase mediated signaling pathways. Aging (Albany NY) 2019; 11:1151-1162. [PMID: 30807290 PMCID: PMC6402514 DOI: 10.18632/aging.101815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 04/11/2023]
Abstract
Reduced Na+-K+-ATPase function is reported in various renal diseases. This implies that increase of Na+-K+-ATPase function may be a new target in treatment of renal injury. We previously reported that Na+-K+-ATPase was stabilized by DRm217, a specific antibody against DR region of Na+-K+-ATPase. In this study, we compared the protective effect of DRm217 and ouabain on kidney in a chronic kidney disease rat model and investigated the mechanism under it. We found that DRm217 improved renal function, alleviated glomerulus atrophy, inhibited renal tubular cells apoptosis, tubulointerstitial injury and renal fibrosis in 5/6 nephrectomized rats. Contrary to DRm217, ouabain worsened renal damage. Activated Na+-K+-ATPase /Src signaling pathway, increased oxidant stress and activated inflammasome were responsible for nephrectomized or ouabain-induced renal injury. DRm217 inhibited Na+-K+-ATPase /Src signaling pathway, retarded oxidant stress, suppressed inflammasome activation, and improved renal function, suggesting a novel approach to prevent renal damage.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Pathology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Pathology, Ankang Central Hostipal, An’kang 725000, China
| | - Sayyed Hanif Ullah
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meihe Li
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Miao Zhang
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na⁺/K⁺-ATPase. Int J Mol Sci 2018; 19:E2576. [PMID: 30200235 PMCID: PMC6165267 DOI: 10.3390/ijms19092576] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
In 1972 Neal Bricker presented the "trade-off" hypothesis in which he detailed the role of physiological adaptation processes in mediating some of the pathophysiology associated with declines in renal function. In the late 1990's Xie and Askari published seminal studies indicating that the Na⁺/K⁺-ATPase (NKA) was not only an ion pump, but also a signal transducer that interacts with several signaling partners. Since this discovery, numerous studies from multiple laboratories have shown that the NKA is a central player in mediating some of these long-term "trade-offs" of the physiological adaptation processes which Bricker originally proposed in the 1970's. In fact, NKA ligands such as cardiotonic steroids (CTS), have been shown to signal through NKA, and consequently been implicated in mediating both adaptive and maladaptive responses to volume overload such as fibrosis and oxidative stress. In this review we will emphasize the role the NKA plays in this "trade-off" with respect to CTS signaling and its implication in inflammation and fibrosis in target organs including the heart, kidney, and vasculature. As inflammation and fibrosis exhibit key roles in the pathogenesis of a number of clinical disorders such as chronic kidney disease, heart failure, atherosclerosis, obesity, preeclampsia, and aging, this review will also highlight the role of newly discovered NKA signaling partners in mediating some of these conditions.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Amal Mohamed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| |
Collapse
|
14
|
Kennedy DJ, Khalaf FK, Sheehy B, Weber ME, Agatisa-Boyle B, Conic J, Hauser K, Medert CM, Westfall K, Bucur P, Fedorova OV, Bagrov AY, Tang WHW. Telocinobufagin, a Novel Cardiotonic Steroid, Promotes Renal Fibrosis via Na⁺/K⁺-ATPase Profibrotic Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092566. [PMID: 30158457 PMCID: PMC6164831 DOI: 10.3390/ijms19092566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Cardiotonic steroids (CTS) are Na+/K+-ATPase (NKA) ligands that are elevated in volume-expanded states and associated with cardiac and renal dysfunction in both clinical and experimental settings. We test the hypothesis that the CTS telocinobufagin (TCB) promotes renal dysfunction in a process involving signaling through the NKA α-1 in the following studies. First, we infuse TCB (4 weeks at 0.1 µg/g/day) or a vehicle into mice expressing wild-type (WT) NKA α-1, as well as mice with a genetic reduction (~40%) of NKA α-1 (NKA α-1+/−). Continuous TCB infusion results in increased proteinuria and cystatin C in WT mice which are significantly attenuated in NKA α-1+/− mice (all p < 0.05), despite similar increases in blood pressure. In a series of in vitro experiments, 24-h treatment of HK2 renal proximal tubular cells with TCB results in significant dose-dependent increases in both Collagens 1 and 3 mRNA (2-fold increases at 10 nM, 5-fold increases at 100 nM, p < 0.05). Similar effects are seen in primary human renal mesangial cells. TCB treatment (100 nM) of SYF fibroblasts reconstituted with cSrc results in a 1.5-fold increase in Collagens 1 and 3 mRNA (p < 0.05), as well as increases in both Transforming Growth factor beta (TGFb, 1.5 fold, p < 0.05) and Connective Tissue Growth Factor (CTGF, 2 fold, p < 0.05), while these effects are absent in SYF cells without Src kinase. In a patient study of subjects with chronic kidney disease, TCB is elevated compared to healthy volunteers. These studies suggest that the pro-fibrotic effects of TCB in the kidney are mediated though the NKA-Src kinase signaling pathway and may have relevance to volume-overloaded conditions, such as chronic kidney disease where TCB is elevated.
Collapse
Affiliation(s)
- David J Kennedy
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Brendan Sheehy
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Malory E Weber
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Brendan Agatisa-Boyle
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Julijana Conic
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Kayla Hauser
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Charles M Medert
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Kristen Westfall
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Philip Bucur
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexei Y Bagrov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg 194223, Russia.
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
- Center for Cardiovascular Diagnostics and Prevention, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
15
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|