1
|
Walbert T, Avila EK, Boele FW, Hertler C, Lu-Emerson C, van der Meer PB, Peters KB, Rooney AG, Templer JW, Koekkoek JAF. Symptom management in isocitrate dehydrogenase mutant glioma. Neurooncol Pract 2025; 12:i38-i48. [PMID: 39776527 PMCID: PMC11703367 DOI: 10.1093/nop/npae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
According to the 2021 World Health Organization classification of CNS tumors, gliomas harboring a mutation in isocitrate dehydrogenase (mIDH) are considered a distinct disease entity, typically presenting in adult patients before the age of 50 years. Given their multiyear survival, patients with mIDH glioma are affected by tumor and treatment-related symptoms that can have a large impact on the daily life of both patients and their caregivers for an extended period of time. Selective oral inhibitors of mIDH enzymes have recently joined existing anticancer treatments, including resection, radiotherapy, and chemotherapy, as an additional targeted treatment modality. With new treatments that improve progression-free and possibly overall survival, preventing and addressing daily symptoms becomes even more clinically relevant. In this review we discuss the management of the most prevalent symptoms, including tumor-related epilepsy, cognitive dysfunction, mood disorders, and fatigue, in patients with mIDH glioma, and issues regarding patient's health-related quality of life and caregiver needs in the era of mIDH inhibitors. We provide recommendations for practicing healthcare professionals caring for patients who are eligible for treatment with mIDH inhibitors.
Collapse
Affiliation(s)
- Tobias Walbert
- Department of Neurology and Neurosurgery, Henry Ford Health, Wayne State and Michigan State University, Detroit, Michigan, USA
| | - Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Florien W Boele
- Academic Unit of Health Economics, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Patient Centred Outcomes Research, Leeds Institute of Medical Research at St. James’s, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Caroline Hertler
- Competence Center for Palliative Care, Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christine Lu-Emerson
- Department of Neurology, Maine Health/Maine Medical Center, Scarborough, Maine, USA
| | - Pim B van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Alasdair G Rooney
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Maschio M, Perversi F, Maialetti A. Brain tumor-related epilepsy: an overview on neuropsychological, behavioral, and quality of life issues and assessment methodology. Front Neurol 2024; 15:1480900. [PMID: 39722690 PMCID: PMC11668670 DOI: 10.3389/fneur.2024.1480900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a rare disease in which brain tumor (BT) and epilepsy overlap simultaneously and can have a negative impact on a patient's neuropsychological, behavioral, and quality of life (QoL) spheres. In this review we (a) addressed the main neuropsychological, behavioral, and QoL issues that may occur in BTRE patients, (b) described how BT, BTRE, and their respective treatments can impact these domains, and (c) identified tools and standardized evaluation methodologies specific for BTRE patients. Neuropsychological disorders and behavioral issues can be direct consequences of BTRE and all related treatments, such as surgery, anti-cancer and anti-seizure medication, corticosteroids, etc., which can alter the structure of specific brain areas and networks, and by emotional aspects reactive to BTRE diagnosis, including the possible loss of autonomy, poor prognosis, and fear of death. Unfortunately, it seems there is a lack of uniformity in assessment methodologies, such as the administration of different batteries of neuropsychological tests, different times, frames, and purposes. Further research is needed to establish causality and deepen our understanding of the interplay between all these variables and our intervention in terms of diagnosis, treatment, psychosocial assessment, and their timing. We propose that the care of these patients to rely on the concepts of "BTRE-induced disability" and "biopsychosocial model" of BTRE, to prompt healthcare providers to handle and monitor BTRE-related psychological and social aspects, as to maintain the patient's best possible QoL.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Maialetti
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
3
|
Scheepens JCC, Taphoorn MJB, Koekkoek JAF. Patient-reported outcomes in neuro-oncology. Curr Opin Oncol 2024; 36:560-568. [PMID: 38984633 PMCID: PMC11460742 DOI: 10.1097/cco.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW To provide up-to-date evidence on patient-reported outcomes (PROs) in neuro-oncology, with a focus on the core constructs of health-related quality of life (HRQoL) and the use of PROs in clinical trials and clinical practice.[Supplemental Digital Content: Video Abstract PROs in Neuro-Oncology.mov]. RECENT FINDINGS PROs are gaining importance in brain tumor research and medical care. For patients with a brain tumor, core PRO constructs are pain, difficulty communicating, perceived cognition, seizures, symptomatic adverse events, physical functioning and role and social functioning, which are assessed through patient-reported outcome measures (PROMs). Initiatives have been taken to improve the reliability and robustness of PRO data, including standardization of items included in clinical trial protocols (the SPIRIT-PRO extension) and formulation of PRO priority objectives for use in clinical trials (the SISAQOL-Innovative Medicines Initiative). In brain tumor patients with cognitive impairment, caregiver-reported outcomes may complement or replace PROs to increase accuracy. The next key challenge will be to widely implement PROs and apply PRO data in clinical practice to benefit patients with brain tumors. SUMMARY PROs are clinically relevant endpoints providing information only known by the patient. Standardization of the use of PROs in clinical trials and wide implementation in clinical practice is needed to improve HRQoL of brain tumor patients.
Collapse
Affiliation(s)
- Josien C C Scheepens
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
4
|
Boelders SM, De Baene W, Postma E, Gehring K, Ong LL. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024; 22:329-352. [PMID: 38900230 PMCID: PMC11329426 DOI: 10.1007/s12021-024-09671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
Collapse
Affiliation(s)
- S M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - W De Baene
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands
| | - E Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands.
| | - L L Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
5
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Hou Z, Sun A, Li Y, Song X, Liu S, Hu X, Luan Y, Guan H, He C, Sun Y, Chen J. What Are the Reliable Plasma Biomarkers for Mild Cognitive Impairment? A Clinical 4D Proteomics Study and Validation. Mediators Inflamm 2024; 2024:7709277. [PMID: 38883967 PMCID: PMC11178428 DOI: 10.1155/2024/7709277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective At present, Alzheimer's disease (AD) lacks effective treatment means, and early diagnosis and intervention are the keys to treatment. Therefore, for mild cognitive impairment (MCI) and AD patients, blood sample analysis using the 4D nonstandard (label-free) proteomic in-depth quantitative analysis, looking for specific protein marker expression differences, is important. These marker levels change as AD progresses, and the analysis of these biomarkers changes with this method, which has the potential to show the degree of disease progression and can be used for the diagnosis and preventive treatment of MCI and AD. Materials and Methods Patients were recruited according to the inclusion and exclusion criteria and divided into three groups according to scale scores. Elderly patients diagnosed with AD were selected as the AD group (n = 9). Patients diagnosed with MCI were classified into the MCI group (n = 10). Cognitively healthy elderly patients were included in the normal cognition control group (n = 10). Patients' blood samples were used for 4D label-free proteomic in-depth quantitative analysis to identify potential blood biomarkers. The sample size of each group was expanded (n = 30), and the selected biomarkers were verified by enzyme-linked immunosorbent assay (ELISA) to verify the accuracy of the proteomic prediction. Results Six specific blood markers, namely, APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8, were detected by 4D label-free proteomic quantitative analysis. These markers showed a statistically significant upregulation trend in the MCI and AD groups compared with the normal cognition control group (P < 0.05). ELISA results showed that the levels of these six proteins in the MCI group were significantly higher than those in the normal cognition control group, and the levels of these six proteins in the AD group were significantly higher than those in the MCI group (P < 0.05). Conclusion The plasma levels of APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8 in cognitively healthy elderly patients and patients with MCI and AD were significantly different and, more importantly, showed a trend of increasing expression. These results indicate that these six human plasma markers have important diagnostic and therapeutic potential in the identification of cognitive impairment and have value for in-depth research and clinical application.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania, Philadelphia 19104, PA, USA
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing 100700, China
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Ailin Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Pudong Hospital Affiliated with Fudan University, Shanghai 200120, China
| | - Yan Li
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Xiaochen Song
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Shu Liu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xinying Hu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yihan Luan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Huibo Guan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Changyuan He
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yuefeng Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Jing Chen
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
7
|
Boelders SM, Gehring K, Postma EO, Rutten GJM, Ong LLS. Cognitive functioning in untreated glioma patients: The limited predictive value of clinical variables. Neuro Oncol 2024; 26:670-683. [PMID: 38039386 PMCID: PMC10995520 DOI: 10.1093/neuonc/noad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Previous research identified many clinical variables that are significantly related to cognitive functioning before surgery. It is not clear whether such variables enable accurate prediction for individual patients' cognitive functioning because statistical significance does not guarantee predictive value. Previous studies did not test how well cognitive functioning can be predicted for (yet) untested patients. Furthermore, previous research is limited in that only linear or rank-based methods with small numbers of variables were used. METHODS We used various machine learning models to predict preoperative cognitive functioning for 340 patients with glioma across 18 outcome measures. Predictions were made using a comprehensive set of clinical variables as identified from the literature. Model performances and optimized hyperparameters were interpreted. Moreover, Shapley additive explanations were calculated to determine variable importance and explore interaction effects. RESULTS Best-performing models generally demonstrated above-random performance. Performance, however, was unreliable for 14 out of 18 outcome measures with predictions worse than baseline models for a substantial number of train-test splits. Best-performing models were relatively simple and used most variables for prediction while not relying strongly on any variable. CONCLUSIONS Preoperative cognitive functioning could not be reliably predicted across cognitive tests using the comprehensive set of clinical variables included in the current study. Our results show that a holistic view of an individual patient likely is necessary to explain differences in cognitive functioning. Moreover, they emphasize the need to collect larger cross-center and multimodal data sets.
Collapse
Affiliation(s)
- Sander M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Eric O Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Lee-Ling S Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
8
|
Zhang K, Yang T, Xia Y, Guo X, Chen W, Wang L, Li J, Wu J, Xiao Z, Zhang X, Jiang W, Xu D, Guo S, Wang Y, Shi Y, Liu D, Li Y, Wang Y, Xing H, Liang T, Niu P, Wang H, Liu Q, Jin S, Qu T, Li H, Zhang Y, Ma W, Wang Y. Molecular Determinants of Neurocognitive Deficits in Glioma: Based on 2021 WHO Classification. J Mol Neurosci 2024; 74:17. [PMID: 38315329 PMCID: PMC10844410 DOI: 10.1007/s12031-023-02173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lijun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhiyuan Xiao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenwen Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dongrui Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Pei Niu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
9
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Tomasino B, De Fraja G, Guarracino I, Ius T, D’Agostini S, Skrap M, Ida Rumiati R. Cognitive reserve and individual differences in brain tumour patients. Brain Commun 2023; 5:fcad198. [PMID: 37483531 PMCID: PMC10361024 DOI: 10.1093/braincomms/fcad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of the paper is to determine the effects of the cognitive reserve on brain tumour patients' cognitive functions and, specifically, if cognitive reserve helps patients cope with the negative effects of brain tumours on their cognitive functions. We retrospectively studied a large sample of around 700 patients, diagnosed with a brain tumour. Each received an MRI brain examination and performed a battery of tests measuring their cognitive abilities before they underwent neurosurgery. To account for the complexity of cognitive reserve, we construct our cognitive reserve proxy by combining three predictors of patients' cognitive performance, namely, patients' education, occupation, and the environment where they live. Our statistical analysis controls for the type, side, site, and size of the lesion, for fluid intelligence quotient, and for age and gender, in order to tease out the effect of cognitive reserve on each of these tests. Clinical neurological variables have the expected effects on cognitive functions. We find a robust positive effect of cognitive reserve on patients' cognitive performance. Moreover, we find that cognitive reserve modulates the effects of the volume of the lesion: the additional negative impact of an increase in the tumour size on patients' performance is less severe for patients with higher cognitive reserve. We also find substantial differences in these effects depending on the cerebral hemisphere where the lesion occurred and on the cognitive function considered. For several of these functions, the positive effect of cognitive reserve is stronger for patients with lesions in the left hemisphere than for patients whose lesions are in the right hemisphere. The development of prevention strategies and personalized rehabilitation interventions will benefit from our contribution to understanding the role of cognitive reserve, in addition to that of neurological variables, as one of the factors determining the patients' individual differences in cognitive performance caused by brain tumours.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Unità Operativa Pasian di Prato, Udine 33037, Italy
| | - Gianni De Fraja
- Nottingham School of Economics, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- CEPR, London EC1V 7DB, UK
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Unità Operativa Pasian di Prato, Udine 33037, Italy
| | - Tamara Ius
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Serena D’Agostini
- Unità Operativa di Neuroradiologia, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Miran Skrap
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Raffaella Ida Rumiati
- Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy
- Dipartimento di Medicina dei Sistemi, University of Rome ‘Tor Vergata’, Roma 00133, Italy
| |
Collapse
|
11
|
Zhou Z, Zhou Y, Huang Z, Wang M, Jiang J, Yan M, Xiang W, Li S, Yu Y, Chen L, Zhou J, Dong W. Notopterol improves cognitive dysfunction and depression-like behavior via inhibiting STAT3/NF-ĸB pathway mediated inflammation in glioma-bearing mice. Int Immunopharmacol 2023; 118:110041. [PMID: 37004346 DOI: 10.1016/j.intimp.2023.110041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
Over the past few decades, clinicians and experts applied kinds of therapies for patients with malignant gliomas such as chemotherapy, radiation or surgical extraction. However, they used to ignore the real seriousness of neuropsychiatric symptoms after glioma, including cognitive dysfunction, anxiety, and depression, which severely impeded patients' recovery and prognosis. Interestingly, one of our previous clinical studies have found some behavioral symptoms in glioma patients were associated with systemic inflammation. Notopterol is one of the principal extracts of the traditional Chinese medicinal herb Notopterygium incisum having anti-tumour and anti-inflammatory activity. However, whether notopterol is beneficial to the treatment of glioma has not been reported. In this study, we found that notopterol inhibited growth and increased apoptosis of glioma via inhibiting STAT3 activity. In addition, notopterol treatment improved cognitive impairment and depression-like behavior in GL261 cell-based glioma mice via preventing the loss of dendritic spines and the reduction of synapse related proteins (PSD95 and Synapsin-1) in hippocampal neurons. Notopterol significantly reduced the levels of cytokines (iNOS, TNF-α, IL-6, and IL-β) and the activity of STAT3/NF-kB signalling pathway in peritumoural brain tissues and GL261 conditioned medium (GCM) treated microglial cell line (BV2 cells). These results demonstrated that notopterol not only exerted anti-glioma effects via inhibiting STAT3 activity, but improved neuropsychiatric symptoms via inhibiting tumour associated inflammation through modulation of the STAT3/NF-kB pathway in glioma-bearing mice.
Collapse
|
12
|
van Grinsven EE, Smits AR, van Kessel E, Raemaekers MAH, de Haan EHF, Huenges Wajer IMC, Ruijters VJ, Philippens MEP, Verhoeff JJC, Ramsey NF, Robe PAJT, Snijders TJ, van Zandvoort MJE. The impact of etiology in lesion-symptom mapping - A direct comparison between tumor and stroke. Neuroimage Clin 2022; 37:103305. [PMID: 36610310 PMCID: PMC9850191 DOI: 10.1016/j.nicl.2022.103305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Lesion-symptom mapping is a key tool in understanding the relationship between brain structures and behavior. However, the behavioral consequences of lesions from different etiologies may vary because of how they affect brain tissue and how they are distributed. The inclusion of different etiologies would increase the statistical power but has been critically debated. Meanwhile, findings from lesion studies are a valuable resource for clinicians and used across different etiologies. Therefore, the main objective of the present study was to directly compare lesion-symptom maps for memory and language functions from two populations, a tumor versus a stroke population. METHODS Data from two different studies were combined. Both the brain tumor (N = 196) and stroke (N = 147) patient populations underwent neuropsychological testing and an MRI, pre-operatively for the tumor population and within three months after stroke. For this study, we selected two internationally widely used standardized cognitive tasks, the Rey Auditory Verbal Learning Test and the Verbal Fluency Test. We used a state-of-the-art machine learning-based, multivariate voxel-wise approach to produce lesion-symptom maps for these cognitive tasks for both populations separately and combined. RESULTS Our lesion-symptom mapping results for the separate patient populations largely followed the expected neuroanatomical pattern based on previous literature. Substantial differences in lesion distribution hindered direct comparison. Still, in brain areas with adequate coverage in both groups, considerable LSM differences between the two populations were present for both memory and fluency tasks. Post-hoc analyses of these locations confirmed that the cognitive consequences of focal brain damage varied between etiologies. CONCLUSION The differences in the lesion-symptom maps between the stroke and tumor population could partly be explained by differences in lesion volume and topography. Despite these methodological limitations, both the lesion-symptom mapping results and the post-hoc analyses confirmed that etiology matters when investigating the cognitive consequences of lesions with lesion-symptom mapping. Therefore, caution is advised with generalizing lesion-symptom results across etiologies.
Collapse
Affiliation(s)
- E E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - A R Smits
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - E van Kessel
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M A H Raemaekers
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - E H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; St. Hugh's College, Oxford University, UK
| | - I M C Huenges Wajer
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| | - V J Ruijters
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N F Ramsey
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - P A J T Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - T J Snijders
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M J E van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| |
Collapse
|
13
|
Sleurs C, Zegers CML, Compter I, Dijkstra J, Anten MHME, Postma AA, Schijns OEMG, Hoeben A, Sitskoorn MM, De Baene W, De Roeck L, Sunaert S, Van Elmpt W, Lambrecht M, Eekers DBP. Neurocognition in adults with intracranial tumors: does location really matter? J Neurooncol 2022; 160:619-629. [PMID: 36346497 PMCID: PMC9758085 DOI: 10.1007/s11060-022-04181-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/22/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE As preservation of cognitive functioning increasingly becomes important in the light of ameliorated survival after intracranial tumor treatments, identification of eloquent brain areas would enable optimization of these treatments. METHODS This cohort study enrolled adult intracranial tumor patients who received neuropsychological assessments pre-irradiation, estimating processing speed, verbal fluency and memory. Anatomical magnetic resonance imaging scans were used for multivariate voxel-wise lesion-symptom predictions of the test scores (corrected for age, gender, educational level, histological subtype, surgery, and tumor volume). Potential effects of histological and molecular subtype and corresponding WHO grades on the risk of cognitive impairment were investigated using Chi square tests. P-values were adjusted for multiple comparisons (p < .001 and p < .05 for voxel- and cluster-level, resp.). RESULTS A cohort of 179 intracranial tumor patients was included [aged 19-85 years, median age (SD) = 58.46 (14.62), 50% females]. In this cohort, test-specific impairment was detected in 20-30% of patients. Higher WHO grade was associated with lower processing speed, cognitive flexibility and delayed memory in gliomas, while no acute surgery-effects were found. No grading, nor surgery effects were found in meningiomas. The voxel-wise analyses showed that tumor locations in left temporal areas and right temporo-parietal areas were related to verbal memory and processing speed, respectively. INTERPRETATION Patients with intracranial tumors affecting the left temporal areas and right temporo-parietal areas might specifically be vulnerable for lower verbal memory and processing speed. These specific patients at-risk might benefit from early-stage interventions. Furthermore, based on future validation studies, imaging-informed surgical and radiotherapy planning could further be improved.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Monique H M E Anten
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | | | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Taylor JW, Weyer-Jamora C, Hervey-Jumper S. Molecularly determining cognition in glioma: New insights as the plot thickens. Neuro Oncol 2022; 24:1671-1672. [PMID: 36036973 PMCID: PMC9527517 DOI: 10.1093/neuonc/noac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Affiliation(s)
- Jennie W Taylor
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Christina Weyer-Jamora
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Psychiatry, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
16
|
Ng DQ, Chan D, Agrawal P, Zhao W, Xu X, Acharya M, Chan A. EVIDENCE OF BRAIN-DERIVED NEUROTROPHIC FACTOR IN AMELIORATING CANCER-RELATED COGNITIVE IMPAIRMENT: A SYSTEMATIC REVIEW OF HUMAN STUDIES. Crit Rev Oncol Hematol 2022; 176:103748. [PMID: 35718064 DOI: 10.1016/j.critrevonc.2022.103748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis and neuroplasticity and may be a key protein in cancer-related cognitive impairment (CRCI). This systematic review assessed the relationship between BDNF biomarkers and neurocognitive outcomes in cancer patients and survivors. A search in PubMed, Scopus, and PsycINFO yielded 638 articles, of which 26 were eligible. Fourteen (54%)studied BDNF protein levels while 15 (58%) analyzed BDNF rs6265 polymorphism. Of the nine observational studies reporting BDNF plasma/serum levels, five (56%) exhibited a positive association between BDNF and cognitive function. One study reported intra-tumoral BDNF levels that were negatively associated with memory. For rs6265, three (20%) of 15 studies reported an association with cognitive function with inconsistent directions. Among seven neuroimaging studies, three (43%) demonstrated an effect of BDNF on brain function and structure. These results suggest that BDNF is a potential monitoring biomarker and druggable target for CRCI.
Collapse
Affiliation(s)
- Ding Quan Ng
- Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, California, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Daniella Chan
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Parisa Agrawal
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Weian Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America; Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA; Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, California, USA; Institute for Immunology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California, USA; The Center for Neural Circuit Mapping, University of California Irvine, Irvine, California, USA
| | - Munjal Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California, USA; Department of Radiation Oncology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, California, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|