1
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
2
|
Rasras S, Akade E, Mohammadianinejad SE, Barahman M, Bahadoram M. Early growth response 1 transcription factor and its context-dependent functions in glioblastoma. Contemp Oncol (Pozn) 2024; 28:91-97. [PMID: 39421709 PMCID: PMC11480913 DOI: 10.5114/wo.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma is the most aggressive form of primary brain tumour in adults. This tumour employs numerous transcription factors to advance and sustain its progression. Current evidence suggest that early growth response 1 (EGR1) plays a dual role as both an oncogene and a tumour suppressor in glioblastoma. Early growth response 1 expression is prevalent in glioblastoma, affecting over 80% of cases. Early growth response 1 regulatory roles extend to angiogenesis, cell adhesion, and resistance to chemotherapy, notably influencing pathways like hypoxia-inducible factor 1α and vascular endothelial growth factor A. Early growth response 1 can also induce cell adhesion, migration, chemoresistance against temozolomide, stemness, and self-renewal in glioblastoma cells. Despite its oncogenic functions, EGR1 can also suppress tumours by upregulating non-steroidal anti-inflammatory drug-activated gene 1 and phosphatase and tensin homolog deleted on chromosome ten, and inhibiting invasion and metastasis. Additionally, EGR1 may have hypothetical implications in the viral hit-and-run theory, particularly regarding cytomegalovirus infection. The key findings of this review are the context- dependent nature of EGR1's actions and its potential as a prognostic marker in glioblastoma. Further research is needed to understand EGR1's role fully and exploit its potential in clinics.
Collapse
Affiliation(s)
- Saleh Rasras
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maedeh Barahman
- Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Imam Khomeini Hospital, Iran University of Medical Sciences, Iran
| | - Mohammad Bahadoram
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024:e13705. [PMID: 38992867 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mu Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Maliano MR, Yetming KD, Kalejta RF. Triple lysine and nucleosome-binding motifs of the viral IE19 protein are required for human cytomegalovirus S-phase infections. mBio 2024; 15:e0016224. [PMID: 38695580 PMCID: PMC11237493 DOI: 10.1128/mbio.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 06/13/2024] Open
Abstract
Herpesvirus genomes are maintained as extrachromosomal plasmids within the nuclei of infected cells. Some herpesviruses persist within dividing cells, putting the viral genome at risk of being lost to the cytoplasm during mitosis because karyokinesis (nuclear division) requires nuclear envelope breakdown. Oncogenic herpesviruses (and papillomaviruses) avoid genome loss during mitosis by tethering their genomes to cellular chromosomes, thereby ensuring viral genome uptake into newly formed nuclei. These viruses use viral proteins with DNA- and chromatin-binding capabilities to physically link viral and cellular genomes together in a process called tethering. The known viral tethering proteins of human papillomavirus (E2), Epstein-Barr virus (EBNA1), and Kaposi's sarcoma-associated herpesvirus (LANA) each contain two independent domains required for genome tethering, one that binds sequence specifically to the viral genome and another that binds to cellular chromatin. This latter domain is called a chromatin tethering domain (CTD). The human cytomegalovirus UL123 gene encodes a CTD that is required for the virus to productively infect dividing fibroblast cells within the S phase of the cell cycle, presumably by tethering the viral genome to cellular chromosomes during mitosis. The CTD-containing UL123 gene product that supports S-phase infections is the IE19 protein. Here, we define two motifs in IE19 required for S-phase infections: an N-terminal triple lysine motif and a C-terminal nucleosome-binding motif within the CTD.IMPORTANCEThe IE19 protein encoded by human cytomegalovirus (HCMV) is required for S-phase infection of dividing cells, likely because it tethers the viral genome to cellular chromosomes, thereby allowing them to survive mitosis. The mechanism through which IE19 tethers viral genomes to cellular chromosomes is not understood. For human papillomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, viral genome tethering is required for persistence (latency) and pathogenesis (oncogenesis). Like these viruses, HCMV also achieves latency, and it modulates the properties of glioblastoma multiforme tumors. Therefore, defining the mechanism through which IE19 tethers viral genomes to cellular chromosomes may help us understand, and ultimately combat or control, HCMV latency and oncomodulation.
Collapse
Affiliation(s)
- Minor R. Maliano
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kristen D. Yetming
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Molecular Biology, Charles River Laboratories, Wayne, Pennsylvania, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Hudock TR, Song JJ, Chobrutskiy A, Chobrutskiy BI, Blanck G. IGH Complementarity Determining Region-3-Cytomegalovirus Protein Chemical Complementarity Linked to Better Overall Survival Probabilities for Glioblastoma. Viral Immunol 2024; 37:259-265. [PMID: 38848306 DOI: 10.1089/vim.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Cytomegalovirus (CMV) has long been thought to have an association with glioblastoma multiforme (GBM), although the exact role of CMV and any subsequent implications for treatment have yet to be fully understood. This study addressed whether IGH complementarity determining region-3 (CDR3)-CMV protein chemical complementarity, with IGH CDR3s representing both tumor resident and blood-sourced IGH recombinations, was associated with overall survival (OS) distinctions. IGH recombination sequencing reads were obtained from (a) the Clinical Proteomic Tumor Analysis Consortium, tumor RNAseq files; and (b) the cancer genome atlas, blood exome-derived files. The Adaptive Match web tool was used to calculate chemical complementarity scores (CSs) based on hydrophobic interactions, and those scores were used to group GBM cases and assess survival probabilities. We found a higher OS probability for cases whose hydrophobic IGH CDR3-CMV protein chemical complementarity scores (Hydro CSs) were in the upper 50th percentile for several CMV proteins, including UL99 and UL123, as well as for CSs based on known B cell epitopes representing these proteins. We also identified multiple immune signature genes, including CD79A and TNFRSF17, for which higher RNA expression was associated with higher Hydro CSs. Results were consistent with the idea that stronger immunoglobulin responses to CMV are associated with better OS probabilities for GBM.
Collapse
Affiliation(s)
- Tabitha R Hudock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
6
|
Sanami S, Shamsabadi S, Dayhimi A, Pirhayati M, Ahmad S, Pirhayati A, Ajami M, Hemati S, Shirvani M, Alagha A, Abbarin D, Alizadeh A, Pazoki-Toroudi H. Association between cytomegalovirus infection and neurological disorders: A systematic review. Rev Med Virol 2024; 34:e2532. [PMID: 38549138 DOI: 10.1002/rmv.2532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Cytomegalovirus (CMV) belongs to the Herpesviridae family and is also known as human herpesvirus type 5. It is a common virus that usually doesn't cause any symptoms in healthy individuals. However, once infected, the virus remains in the host's body for life and can reactivate when the host's immune system weakens. This virus has been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, Huntington's disease (HD), ataxia, Bell's palsy (BP), and brain tumours, which can cause a wide range of symptoms and challenges for those affected. CMV may influence inflammation, contribute to brain tissue damage, and elevate the risk of moderate-to-severe dementia. Multiple studies suggest a potential association between CMV and ataxia in various conditions, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, acute cerebellitis, etc. On the other hand, the evidence regarding CMV involvement in BP is conflicting, and also early indications of a link between CMV and HD were challenged by subsequent research disproving CMV's presence. This systematic review aims to comprehensively investigate any link between the pathogenesis of CMV and its potential role in neurological disorders and follows the preferred reporting items for systematic review and meta-analysis checklist. Despite significant research into the potential links between CMV infection and various neurological disorders, the direct cause-effect relationship is not fully understood and several gaps in knowledge persist. Therefore, continued research is necessary to gain a better understanding of the role of CMV in neurological disorders and potential treatment avenues.
Collapse
Affiliation(s)
- Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahnam Shamsabadi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Dayhimi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pirhayati
- Psychiatric Department, Rasool Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | | | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Shirvani
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Ahmad Alagha
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Davood Abbarin
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
De la Cerda-Vargas MF, Pantalone MR, Söderberg Nauclér C, Medrano-Guzman R, Jauregui Renaud K, Nettel Rueda B, Reynoso-Sanchez MDJ, Lopez-Quintana B, Rodriguez-Florido MA, Feria-Romero IA, Trejo-Rosales RR, Arreola-Rosales RL, Candelas-Rangel JA, Navarro-Dominguez P, Meza-Mata E, Muñoz- Hernandez MA, Segura-Lopez F, Gonzalez-Martinez MDR, Delgado-Aguirre HA, Sandoval-Bonilla BA. Focal-to-bilateral tonic-clonic seizures and High-grade CMV-infection are poor survival predictors in Tumor-related Epilepsy Adult-type diffuse gliomas-A single-center study and literature review. Heliyon 2024; 10:e28555. [PMID: 38623248 PMCID: PMC11016600 DOI: 10.1016/j.heliyon.2024.e28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Previous studies have reported a correlation between a high-grade CMV-infection and an unfavorable prognosis in glioblastoma (GB). Coversely, epilepsy has been associated with a more favorable outcome in GB patients. Despites epilepsy and CMV share similar molecular mechanisms in GB tumoral microenvironment, the correlation between Tumor-Related-Epilepsy (TRE) and CMVinfection remains unexplored. The aim of our study is to examine the correlation between the dregree of CMV infection and seizure types on the survival of TRE Adult-type-diffuse-glioma. To achieve this objective, we conducted a comprehensive literature review to assess our results regarding previous publications. Methods We conducted a retrospective-observational study on TRE Adult-type-diffuse-gliomas treated at a single center in Mexico from 2010 to 2018. Tumor tissue and cDNA were analyzed by immunochemistry (IHC) for CMV (IE and LA antigens) at the Karolinska Institute in Sweden, and RT-PCR for CMV-gB in Torreon Mexico, respectively. Bivariate analysis (X2-test) was performed to evaluate the association between subtypes of Adult-type-diffuse-glioma (IDH-mut grade 4 astrocytoma vs. IDH-wt glioblastoma) and the following variables: type of hemispheric involvement (mesial vs. neocortical involvement), degree of CMV infection (<25%vs. >25% infected-tumoral cells) and seizure types [Focal awareness, focal impaired awareness, and FBTCS]. Kaplan Meier and Cox analyses were performed to determine the risk, p < 0.05 was considered statistically significant. Results Sixty patients with TRE Adult type diffuse gliomas were included (80% IDH-wt glioblastoma and 20% IDH-mut grade 4astrocytomas). The mean age was 61.5 SD ± 18.4, and 57% were male. Fifty percent of the patients presented with mesial involvement of the hemysphere. Seizure types included focal awareness (15%), focal impaired awareness (43.3%), and FBTCS (41.7%). Ninety percent of cases were treated with Levetiracetam and 33.3% presented Engel-IA postoperative seizure control. More than 90% of samples were positive for CMV-immunohistochemistry (IHC). However, all cDNA analyzed by RT-PCR return negative results. The median of overall survival (OS) was 15 months. High-grade CMV-IE infection (14 vs. 25 months, p<0.001), mesial involvement (12 vs. 18 months, p<0.001), and FBTCS were associated with worse OS (9 vs.18 months for non-FBTCS). Multivariate analysis demonstrated that high-grade CMV infection (HR = 3.689, p=0.002) and FBTCS (HR=7.007, p<0.001) were independent unfavorable survival factors. Conclusions CMV induces a proinflammatory tumoral microenvironment that contributes to the developmet of epilepsy. Tumor progression could be associated not only with a higher degree of CMV infection but also to epileptogenesis, resulting in a seizure phenotype chracterized by FBTCS and poor survival outcomes. This study represents the first survival analysis in Latin America to include a representative sample of TRE Adult-type diffuse gliomas considering CMV-infection-degree and distinguishing features (such as FBTCS) that might have potential clinical relevance in this group of patients. Further prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Maria F. De la Cerda-Vargas
- Department of Neurosurgery and Neurotechnology, Universitätsklinik Tübingen, Tübingen, Germany
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cecilia Söderberg Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Biosciences at the University of Turku, InFLAMES Research Flagship Center, MediCity, University of Turku, Finland
| | - Rafael Medrano-Guzman
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City, Mexico
| | - Kathrine Jauregui Renaud
- Medical Research Unit in Otoneurology, Mexican Institute of Social Security, Mexico City, 06720, Mexico
| | - Barbara Nettel Rueda
- Department of Neurosurgery, Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma de Jesus Reynoso-Sanchez
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | - Brenda Lopez-Quintana
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | | | - Iris A. Feria-Romero
- Medical Research Unit in Neurological Diseases, Specialties Hospital, National Medical Center Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Rogelio R. Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City, 06720, Mexico
| | | | - Jose A. Candelas-Rangel
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Pedro Navarro-Dominguez
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Elizabeth Meza-Mata
- Department of Pathology, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon, Coahuila, Mexico
| | - Melisa A. Muñoz- Hernandez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - F.K. Segura-Lopez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | | | - Hector A. Delgado-Aguirre
- Department of Transplants, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - Bayron A. Sandoval-Bonilla
- Department of Neurosurgery, Epilepsy Surgery Multidisciplinary Board, Functional NeuroOncology Clinic, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| |
Collapse
|
9
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Zhong S, Yang W, Zhang Z, Xie Y, Pan L, Ren J, Ren F, Li Y, Xie H, Chen H, Deng D, Lu J, Li H, Wu B, Chen Y, Peng F, Puduvalli VK, Sai K, Li Y, Cheng Y, Mou Y. Association between viral infections and glioma risk: a two-sample bidirectional Mendelian randomization analysis. BMC Med 2023; 21:487. [PMID: 38053181 PMCID: PMC10698979 DOI: 10.1186/s12916-023-03142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Glioma is one of the leading types of brain tumor, but few etiologic factors of primary glioma have been identified. Previous observational research has shown an association between viral infection and glioma risk. In this study, we used Mendelian randomization (MR) analysis to explore the direction and magnitude of the causal relationship between viral infection and glioma. METHODS We conducted a two-sample bidirectional MR analysis using genome-wide association study (GWAS) data. Summary statistics data of glioma were collected from the largest meta-analysis GWAS, involving 12,488 cases and 18,169 controls. Single-nucleotide polymorphisms (SNPs) associated with exposures were used as instrumental variables to estimate the causal relationship between glioma and twelve types of viral infections from corresponding GWAS data. In addition, sensitivity analyses were performed. RESULTS After correcting for multiple tests and sensitivity analysis, we detected that genetically predicted herpes zoster (caused by Varicella zoster virus (VZV) infection) significantly decreased risk of low-grade glioma (LGG) development (OR = 0.85, 95% CI: 0.76-0.96, P = 0.01, FDR = 0.04). No causal effects of the other eleven viral infections on glioma and reverse causality were detected. CONCLUSIONS This is one of the first and largest studies in this field. We show robust evidence supporting that genetically predicted herpes zoster caused by VZV infection reduces risk of LGG. The findings of our research advance understanding of the etiology of glioma.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wenzhuo Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhiyun Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyiran Xie
- Vanderbilt University School of Medicine, Vanderbilt University, 1161 21St Ave S # D3300, Nashville, TN, 37232, USA
| | - Lin Pan
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Fei Ren
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Yifan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Haoqun Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hongyu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Davy Deng
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Jie Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hui Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Bo Wu
- Department of Orthopaedics, The First Hospital of Jilin University, No.71, Street Xinmin Road, Chaoyang District, Changchun, Jilin, People's Republic of China
| | - Youqi Chen
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ke Sai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yonggao Mou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
11
|
Pantalone MR, Almazan NM, Lattanzio R, Taher C, De Fabritiis S, Valentinuzzi S, Bishehsari F, Mahdavinia M, Verginelli F, Rahbar A, Mariani-Costantini R, Söderberg-Naucler C. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int J Oncol 2023; 63:116. [PMID: 37654195 PMCID: PMC10546380 DOI: 10.3892/ijo.2023.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Collapse
Affiliation(s)
- Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Nerea Martin Almazan
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Laboratory Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Chato Taher
- Department of Basic Sciences, Hawler Medical University, Erbil 44001, Iraq
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
| | - Mahboobeh Mahdavinia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
- Department of Internal Medicine, Division of Allergy and Immunology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabio Verginelli
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
12
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Bergkamp ND, van Senten JR, Brink HJ, Bebelman MP, van den Bor J, Çobanoğlu TS, Dinkla K, Köster J, Klau G, Siderius M, Smit MJ. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P 1 signaling axis. Sci Signal 2023; 16:eade6737. [PMID: 37582160 DOI: 10.1126/scisignal.ade6737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.
Collapse
Affiliation(s)
- Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hendrik J Brink
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuğçe S Çobanoğlu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Medical Oncology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gunnar Klau
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Peredo-Harvey I, Bartek J, Ericsson C, Yaiw KC, Nistér M, Rahbar A, Söderberg-Naucler C. Higher Human Cytomegalovirus (HCMV) Specific IgG Antibody Levels in Plasma Samples from Patients with Metastatic Brain Tumors Are Associated with Longer Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1248. [PMID: 37512060 PMCID: PMC10384986 DOI: 10.3390/medicina59071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Koon-Chu Yaiw
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Institute of Biomedicine, Infection and Immunology Unit, MediCity Research Laboratory, Turku University, FI-20014 Turku, Finland
| |
Collapse
|
15
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Yoshikawa MH, Rabelo NN, Telles JPM, Figueiredo EG. Modifiable risk factors for glioblastoma: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:143. [PMID: 37340151 DOI: 10.1007/s10143-023-02051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive glioma histological subtype, associated with high disability and poor survival. The etiology of this condition is still mostly unknown, and evidence about risk factors is elusive. The aim of this study is to identify modifiable risk factors for GBM. Electronic search was performed by two reviewers independently using the keywords and MeSH terms 'glioblastoma' OR 'glioma' OR 'brain tumor' AND 'risk factor'. The inclusion criteria were (1) observational studies or experimental studies on humans, (2) studies assessing the association between glioblastoma and exposure to modifiable conditions, and (3) studies published in English or Portuguese. Studies on the pediatric population or about exposure to ionizing radiation were excluded. A total of 12 studies were included. Seven were case-control studies, and five were cohort studies. The risk factors assessed included body mass index, alcohol consumption, exposure to magnetic fields, diabetes mellitus type 2 (DM2), and use of non-steroidal anti-inflammatory drugs (NSAID). No significant link was found between GBM incidence and DM2 or magnetic field exposure. On the other hand, higher BMI, alcohol consumption, and NSAID use demonstrated a protective effect on GMB risk. However, given the limited number of studies, it is not possible to obtain a behavioral recommendation; instead, these findings are relevant to guide future basic scientific studies on GBM oncogenesis.
Collapse
|
17
|
Guerra G, McCoy L, Hansen HM, Rice T, Molinaro AM, Wiemels JL, Wiencke JK, Wrensch M, Francis SS. Antibodies to varicella-zoster virus and three other herpesviruses and survival in adults with glioma. Neuro Oncol 2023; 25:1047-1057. [PMID: 36610073 PMCID: PMC10237424 DOI: 10.1093/neuonc/noac283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lifetime exposure to the varicella-zoster virus (VZV) has been consistently inversely associated with glioma risk, however, the relationship of VZV with survival in adults with glioma has not been investigated. In this study, we analyzed the survival of adults with glioma in relation to their antibody measurements to 4 common herpes viral infections, including VZV, measured post-diagnosis. METHODS We analyzed IgG antibody measurements to VZV, cytomegalovirus (CMV), herpes simplex virus 1/2 (HSV), and Epstein-Barr virus (EBV) collected from 1378 adults with glioma diagnosed between 1991 and 2010. Blood was obtained a median of 3 months after surgery. Associations of patient IgG levels with overall survival were estimated using Cox models adjusted for age, sex, self-reported race, surgery type, dexamethasone usage at blood draw, and tumor grade. Models were stratified by recruitment series and meta-analyzed to account for time-dependent treatment effects. RESULTS VZV antibody seropositivity was associated with improved survival outcomes in adults with glioma (Hazard ratio, HR = 0.70, 95% Confidence Interval 0.54-0.90, P = .006). Amongst cases who were seropositive for VZV antibodies, survival was significantly improved for those above the 25th percentile of continuous reactivity measurements versus those below (HR = 0.76, 0.66-0.88, P = .0003). Antibody seropositivity to EBV was separately associated with improved survival (HR = 0.71, 0.53-0.96, P = .028). Antibody positivity to 2 other common viruses (CMV, HSV) was not associated with altered survival. CONCLUSIONS Low levels of VZV or EBV antibodies are associated with poorer survival outcomes for adults with glioma. Differential immune response rather than viral exposure may explain these findings.
Collapse
Affiliation(s)
- Geno Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
19
|
Clinical Effects of Immuno-Oncology Therapy on Glioblastoma Patients: A Systematic Review. Brain Sci 2023; 13:brainsci13020159. [PMID: 36831702 PMCID: PMC9953849 DOI: 10.3390/brainsci13020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The most prevalent and deadly primary malignant glioma in adults is glioblastoma (GBM), which has a median survival time of about 15 months. Despite the standard of care for glioblastoma, which includes gross total resection, high-dose radiation, and temozolomide chemotherapy, this tumor is still one of the most aggressive and difficult to treat. So, it is critical to find more potent therapies that can help glioblastoma patients have better clinical outcomes. Additionally, the prognosis for recurring malignant gliomas is poor, necessitating the need for innovative therapeutics. Immunotherapy is a rather new treatment for glioblastoma and its effects are not well studied when it is combined with standard chemoradiation therapy. We conducted this study to evaluate different glioblastoma immunotherapy approaches in terms of feasibility, efficacy, and safety. We conducted a computer-assisted literature search of electronic databases for essays that are unique, involve either prospective or retrospective research, and are entirely written and published in English. We examined both observational data and randomized clinical trials. Eighteen studies met the criteria for inclusion. In conclusion, combining immunotherapy with radiochemotherapy and tumor removal is generally possible and safe, and rather effective in the prolongation of survival measures.
Collapse
|
20
|
Association between XRCC3 p.Thr241Met polymorphism and risk of glioma: A systematic review and meta-analysis. PLoS One 2022; 17:e0276313. [PMID: 36264998 PMCID: PMC9584405 DOI: 10.1371/journal.pone.0276313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The XRCC3 p.Thr241Met (rs861539) polymorphism has been extensively studied for its association with glioma risk, but results remain conflicting. Therefore, we performed a systematic review and meta-analysis to resolve this inconsistency. METHODS Studies published up to June 10, 2022, were searched in PubMed, Web of Science, Scopus, VIP, Wanfang, and China National Knowledge Infrastructure databases and screened for eligibility. Then, the combined odds ratio (OR) of the included studies was estimated based on five genetic models, i.e., homozygous (Met/Met vs. Thr/Thr), heterozygous (Thr/Met vs. Thr/Thr), dominant (Thr/Met + Met/Met vs. Thr/Thr), recessive (Met/Met vs. Thr/Thr + Thr/Met) and allele (Met vs. Thr). The study protocol was preregistered at PROSPERO (registration number: CRD42021235704). RESULTS Overall, our meta-analysis of 14 eligible studies involving 12,905 subjects showed that the p.Thr241Met polymorphism was significantly associated with increased glioma risk in both homozygous and recessive models (homozygous, OR = 1.381, 95% CI = 1.081-1.764, P = 0.010; recessive, OR = 1.305, 95% CI = 1.140-1.493, P<0.001). Subgroup analyses by ethnicity also revealed a statistically significant association under the two aforementioned genetic models, but only in the Asian population and not in Caucasians (P>0.05). CONCLUSION We demonstrated that the XRCC3 p.Thr241Met polymorphism is associated with an increased risk of glioma only in the homozygous and recessive models.
Collapse
|
21
|
Yang T, Liu D, Fang S, Ma W, Wang Y. Cytomegalovirus and Glioblastoma: A Review of the Biological Associations and Therapeutic Strategies. J Clin Med 2022; 11:jcm11175221. [PMID: 36079151 PMCID: PMC9457369 DOI: 10.3390/jcm11175221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignancy in the adult central nervous system. Cytomegalovirus (CMV) plays a crucial role in the pathogenesis and treatment of glioblastoma. We reviewed the epidemiology of CMV in gliomas, the mechanism of CMV-related carcinogenesis, and its therapeutic strategies, offering further clinical practice insights. To date, the CMV infection rate in glioblastoma is controversial, while mounting studies have suggested a high infection rate. The carcinogenesis mechanism of CMV has been investigated in relation to various aspects, including oncomodulation, oncogenic features, tumor microenvironment regulation, epithelial–mesenchymal transition, and overall immune system regulation. In clinical practice, the incidence of CMV-associated encephalopathy is high, and CMV-targeting treatment bears both anti-CMV and anti-tumor effects. As the major anti-CMV treatment, valganciclovir has demonstrated a promising survival benefit in both newly diagnosed and recurrent glioblastoma as an adjuvant therapy, regardless of surgery and the MGMT promoter methylation state. Immunotherapy, including DC vaccines and adoptive CMV-specific T cells, is also under investigation, and preliminary results have been promising. There are still questions regarding the significance of CMV infection and the carcinogenic mechanism of CMV. Meanwhile, studies have demonstrated the clinical benefits of anti-CMV therapy in glioblastoma. Therefore, anti-CMV therapies are worthy of further recognition and investigation.
Collapse
Affiliation(s)
- Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiyuan Fang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| |
Collapse
|
22
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
23
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Ahn J, Shin C, Kim YS, Park JS, Jeun SS, Ahn S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor Res Treat 2022; 10:135-143. [PMID: 35929110 PMCID: PMC9353163 DOI: 10.14791/btrt.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, numerous studies have investigated the presence of human cytomegalovirus (CMV) within glioblastoma or gliomas; however, the results are severely conflicting. While a few researchers have suggested the potential benefits of cytotoxic T lymphocyte or dendritic cell-based vaccines for recurrent or newly diagnosed glioblastoma patients, several studies did not at all agree with the existence of CMV in glioblastoma cells. In this review, we summarized the conflicting results and issues about the detection of CMV in glioblastoma or glioma patients. We also provided the clinical data of published and unpublished clinical trials using CMV-specific immunotherapy for glioblastomas.
Collapse
Affiliation(s)
- Jaehyun Ahn
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Christopher Shin
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeo Song Kim
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
25
|
Yu Z, Wang J, Nan F, Shi W, Zhang X, Jiang S, Wang B. Human Cytomegalovirus Induced Aberrant Expression of Non-coding RNAs. Front Microbiol 2022; 13:918213. [PMID: 35770158 PMCID: PMC9234646 DOI: 10.3389/fmicb.2022.918213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus whose genome consists of double stranded linear DNA. HCMV genome can generate non-coding RNAs (ncRNAs) through transcription in its host cells. Besides that, HCMV infection also changes the ncRNAs expression profile of the host cells. ncRNAs play a key role in maintaining the normal physiological activity of cells, and the disorder of ncRNAs expression has numerous adverse effects on cells. However, until now, the relationship between ncRNAs and HCMV-induced adverse effects are not summarized in detail. This review aims to give a systematic summary of the role of HCMV infection in ncRNAs expression while providing insights into the molecular mechanism of unnormal cellular events caused by ncRNAs disorder. ncRNAs disorder induced by HCMV infection is highly associated with cell proliferation, apoptosis, tumorigenesis, and immune regulation, as well as the development of cardiovascular diseases, and the potential role of biomarker. We summarize the studies on HCMV associated ncRNAs disorder and suggest innovative strategies for eliminating the adverse effects caused by HCMV infection.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jing Wang
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wenyi Shi
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Bin Wang,
| |
Collapse
|
26
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
27
|
Adhikari AS, Macauley J, Johnson Y, Connolly M, Coleman T, Heiland T. Development and Characterization of an HCMV Multi-Antigen Therapeutic Vaccine for Glioblastoma Using the UNITE Platform. Front Oncol 2022; 12:850546. [PMID: 35651802 PMCID: PMC9149224 DOI: 10.3389/fonc.2022.850546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with a median survival of 15 months that has remained unchanged despite advances in the standard of care. GBM cells express human cytomegalovirus (HCMV) proteins, providing a unique opportunity for targeted therapy. We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins pp65, gB, and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated membrane protein 1 (LAMP1) with target ntigens. We demonstrate evidence of increased antigen presentation by both MHC-I and -II, delivering a robust antigen-specific CD4 and CD8 T-cell response in addition to a strong humoral response. Using a syngeneic orthotopic GBM mouse model, therapeutic treatment with the ITI-1001 vaccine resulted in ~56% survival of tumor-bearing mice. Investigation of the tumor microenvironment showed significant CD4 infiltration as well as enhanced Th1 and cytotoxic CD8 T activation. Regulatory T cells were also upregulated after ITI-1001 vaccination. In addition, tumor burden negatively correlated with activated interferon (IFN)γ+ CD4 T cells, reiterating the importance of CD4 activation in ITI-1001 efficacy and in identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+, and CD8+ T cells in responders compared to non-responders. Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant antitumor activity, leading to enhanced survival in a mouse model of GBM.
Collapse
Affiliation(s)
| | | | | | - Mike Connolly
- Immunomic Therapeutics, Rockville, MD, United States
| | | | - Teri Heiland
- Immunomic Therapeutics, Rockville, MD, United States
| |
Collapse
|
28
|
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 2022; 60:69. [PMID: 35445737 PMCID: PMC9084550 DOI: 10.3892/ijo.2022.5359] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF‑κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.
Collapse
Affiliation(s)
- Marsel Khabibov
- Department of Oncology, I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Yanis Boumber
- Division of Hematology/Oncology at The Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Karam Khaddour
- Department of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manuel Fernandez
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Firat Khamitov
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Larisa Khalikova
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Natalia Kuznetsova
- Department of Neuro-Oncology, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Oleg Kit
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Leonid Kharin
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
29
|
Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers (Basel) 2022; 14:cancers14051148. [PMID: 35267456 PMCID: PMC8909033 DOI: 10.3390/cancers14051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Human cytomegalovirus (HCMV) infects 40–70% of adult populations in developed countries and this is thought to be involved in breast cancer progression; however, reports of detection of the viral genome in breast tumors ranges from 0–100%. We optimized a method that is both sensitive and specific to detect HCMV DNA in tissues from Canadian breast cancer patients. Only ~42% of HCMV-seropositive patients expressed viral DNA in their breast tumors. Viral transcription was not detected in any HCMV-infected breast tumors, indicating a latent infection; however, HCMV seropositivity and the presence of latent infections in breast tumors were independently, and in combination, associated with increased metastasis. HCMV DNA-positive tumors were also associated with lower relapse-free survival. Therefore, HCMV infection status should be accounted for during the monitoring and treatment of breast cancer patients. Prevention or reducing the effects of HCMV infection could decrease morbidity and mortality from metastatic disease. Abstract Human cytomegalovirus (HCMV) infects 40–70% of adults in developed countries. Detection of HCMV DNA and/or proteins in breast tumors varies considerably, ranging from 0–100%. In this study, nested PCR to detect HCMV glycoprotein B (gB) DNA in breast tumors was shown to be sensitive and specific in contrast to the detection of DNA for immediate early genes. HCMV gB DNA was detected in 18.4% of 136 breast tumors while 62.8% of 94 breast cancer patients were seropositive for HCMV. mRNA for the HCMV immediate early gene was not detected in any sample, suggesting viral latency in breast tumors. HCMV seropositivity was positively correlated with age, body mass index and menopause. Patients who were HCMV seropositive or had HCMV DNA in their tumors were 5.61 (CI 1.77–15.67, p = 0.003) or 5.27 (CI 1.09–28.75, p = 0.039) times more likely to develop Stage IV metastatic tumors, respectively. Patients with HCMV DNA in tumors experienced reduced relapse-free survival (p = 0.042). Being both seropositive with HCMV DNA-positive tumors was associated with vascular involvement and metastasis. We conclude that determining the seropositivity for HCMV and detection of HCMV gB DNA in the breast tumors could identify breast cancer patients more likely to develop metastatic cancer and warrant special treatment.
Collapse
|
30
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
31
|
Alonso-Álvarez S, Colado E, Moro-García MA, Alonso-Arias R. Cytomegalovirus in Haematological Tumours. Front Immunol 2021; 12:703256. [PMID: 34733270 PMCID: PMC8558552 DOI: 10.3389/fimmu.2021.703256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The exquisite coupling between herpesvirus and human beings is the result of millions of years of relationship, coexistence, adaptation, and divergence. It is probably based on the ability to generate a latency that keeps viral activity at a very low level, thereby apparently minimising harm to its host. However, this evolutionary success disappears in immunosuppressed patients, especially in haematological patients. The relevance of infection and reactivation in haematological patients has been a matter of interest, although one fundamentally focused on reactivation in the post-allogeneic stem cell transplant (SCT) patient cohort. Newer transplant modalities have been progressively introduced in clinical settings, with successively more drugs being used to manipulate graft composition and functionality. In addition, new antiviral drugs are available to treat CMV infection. We review the immunological architecture that is key to a favourable outcome in this subset of patients. Less is known about the effects of herpesvirus in terms of mortality or disease progression in patients with other malignant haematological diseases who are treated with immuno-chemotherapy or new molecules, or in patients who receive autologous SCT. The absence of serious consequences in these groups has probably limited the motivation to deepen our knowledge of this aspect. However, the introduction of new therapeutic agents for haematological malignancies has led to a better understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B lymphocytes interact, and of the role of CMV infection in the context of recently introduced drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis and recommendations regarding these scenarios.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Enrique Colado
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Marco A Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
32
|
Association of Epstein–Barr Virus and Cytomegalovirus Infections with Esophageal Carcinoma. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.114566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Given the fact that viral infections play an important role, either directly or indirectly, in around 20 percent of human cancers, this study aimed at investigating the potential association of Epstein–Barr virus (EBV) and cytomegalovirus (CMV) infections in esophageal cancer that is the sixth most common cause of cancer-related deaths. Methods: In this case-control study, a total of 200 paraffin-embedded biopsies of cancerous and benign esophageal tissues were gathered from the biopsy bank of Imam Reza Hospital, Tabriz, Iran in 2017. All samples were first deparaffinized, and then subjected to commercial DNA extraction. The quality of extracted DNA was evaluated by amplification of the beta globulin gene. Identification of EBV and CMV DNA was performed using primers designed for the EBER region of EBV and the immediate early (IE) region of the CMV genome, respectively. Results: The mean age of the subjects in the test and control groups was 52.2 (17.1) and 59.9 (18.9), respectively. The distribution of gender (male/female) in patient and control groups was 54/46 and 53/47, respectively. Our results showed that the frequency of EBV (P < 0.001) and CMV (P < 0.001) in cancerous samples was statistically higher than control group. Moreover, in the cancerous group the rate of EBV was significantly higher in the esophageal adenocarcinomas (EAC) sample (12 out of 70) than esophageal squamous cell carcinomas (ESCC) (0 out of 30) (P = 0.016) but, in the ESCC group, 17 out of 30 subjects were positive for CMV which was significantly higher in comparison with EAC patients (1 out of 70) (P < 0.001). Conclusions: Findings indicated that EBV and CMV might be contributed to the pathogenesis of EAC and ESCC types of esophageal carcinoma, respectively, although further studies are warranted.
Collapse
|
33
|
Peredo-Harvey I, Rahbar A, Söderberg-Nauclér C. Presence of the Human Cytomegalovirus in Glioblastomas-A Systematic Review. Cancers (Basel) 2021; 13:cancers13205051. [PMID: 34680198 PMCID: PMC8533734 DOI: 10.3390/cancers13205051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Whether the human cytomegalovirus (HCMV) is present in samples obtained from patients with glioblastoma (GBM) has been a matter under debate during the last two decades. Many investigators have demonstrated the presence of HCMV proteins and nucleic acids in GBM tumors, while some have not been able to detect it. It is important to evaluate current data and resolve these issues to clarify the possible role of the HCMV in GBM tumorigenesis and if this virus can serve as a potential target of therapy for these patients. In the present systematic review, we aim to review published research studies with a focus to identify differences and similarities in methods used for the detection of the HCMV in GBM samples found to be positive or negative for HCMV. Our data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it. Abstract Glioblastoma is a malignant brain tumor with a dismal prognosis. The standard treatment has not changed in the past 15 years as clinical trials of new treatment protocols have failed. A high prevalence of the human cytomegalovirus (HCMV) in glioblastomas was first reported in 2002. The virus was found only in the tumor and not in the surrounding healthy brain tissue. Many groups have confirmed the presence of the HCMV in glioblastomas, but others could not. To resolve this discrepancy, we systematically reviewed 645 articles identified in different databases. Of these, 81 studies included results from 247 analyses of 9444 clinical samples (7024 tumor samples and 2420 blood samples) by different techniques, and 81 articles included 191 studies that identified the HCMV in 2529 tumor samples (36% of all tumor samples). HCMV proteins were often detected, whereas HCMV nucleic acids were not reliably detected by PCR methods. Optimized immunohistochemical techniques identified the virus in 1391 (84,2%) of 1653 samples. These data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Afsar Rahbar
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
34
|
Dapash M, Castro B, Hou D, Lee-Chang C. Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:4548. [PMID: 34572775 PMCID: PMC8467991 DOI: 10.3390/cancers13184548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic, translational, and clinical research, the treatment outcomes for patients with GBM are virtually unchanged over the past 15 years. GBM is one of the most immunologically "cold" tumors, in which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM characteristics contribute to the poor results obtained from immunotherapy. However, as indicated by an ongoing and expanding number of clinical trials, and despite the mostly disappointing results to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investigated immunotherapeutic strategies. This review article aims to provide a general overview of the current state of glioblastoma immunotherapy. Information was compiled through a literature search conducted on PubMed and clinical trials between 1961 to 2021.
Collapse
Affiliation(s)
- Mark Dapash
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Mihelson N, McGavern DB. Viral Control of Glioblastoma. Viruses 2021; 13:v13071264. [PMID: 34209584 PMCID: PMC8310222 DOI: 10.3390/v13071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a universally lethal cancer of the central nervous system. Patients with GBM have a median survival of 14 months and a 5-year survival of less than 5%, a grim statistic that has remained unchanged over the last 50 years. GBM is intransigent for a variety of reasons. The immune system has a difficult time mounting a response against glioblastomas because they reside in the brain (an immunologically dampened compartment) and generate few neoantigens relative to other cancers. Glioblastomas inhabit the brain like sand in the grass and display a high degree of intra- and inter-tumoral heterogeneity, impeding efforts to therapeutically target a single pathway. Of all potential therapeutic strategies to date, virotherapy offers the greatest chance of counteracting each of the obstacles mounted by GBM. Virotherapy can xenogenize a tumor that is deft at behaving like “self”, triggering adaptive immune recognition in an otherwise immunologically quiet compartment. Viruses can also directly lyse tumor cells, creating damage and further stimulating secondary immune reactions that are detrimental to tumor growth. In this review, we summarize the basic immune mechanisms underpinning GBM immune evasion and the recent successes achieved using virotherapies.
Collapse
|
36
|
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan ST. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses 2021; 13:v13061014. [PMID: 34071559 PMCID: PMC8229678 DOI: 10.3390/v13061014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
37
|
Yaiw KC, Mohammad AA, Taher C, Cui HL, Costa H, Kostopoulou ON, Jung M, Assinger A, Wilhelmi V, Yang J, Strååt K, Rahbar A, Pernow J, Söderberg-Nauclér C. Human Cytomegalovirus Reduces Endothelin-1 Expression in Both Endothelial and Vascular Smooth Muscle Cells. Microorganisms 2021; 9:microorganisms9061137. [PMID: 34070407 PMCID: PMC8229579 DOI: 10.3390/microorganisms9061137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of atherosclerosis. Endothelin-1 (ET-1), a potent vasoconstrictive peptide, is overexpressed and strongly associated with many vasculopathies. The main objective of this study was to investigate whether HCMV could affect ET-1 production. As such, both endothelial and smooth muscle cells, two primary cell types involved in the pathogenesis of atherosclerosis, were infected with HCMV in vitro and ET-1 mRNA and proteins were assessed by quantitative PCR assay, immunofluorescence staining and ELISA. HCMV infection significantly decreased ET-1 mRNA and secreted bioactive ET-1 levels from both cell types and promoted accumulation of the ET-1 precursor protein in infected endothelial cells. This was associated with inhibition of expression of the endothelin converting enzyme-1 (ECE-1), which cleaves the ET-1 precursor protein to mature ET-1. Ganciclovir treatment did not prevent the virus suppressive effects on ET-1 expression. Consistent with this observation we identified that the IE2-p86 protein predominantly modulated ET-1 expression. Whether the pronounced effects of HCMV in reducing ET-1 expression in vitro may lead to consequences for regulation of the vascular tone in vivo remains to be proven.
Collapse
Affiliation(s)
- Koon-Chu Yaiw
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
- Correspondence: (K.-C.Y.); (C.S.-N.)
| | - Abdul-Aleem Mohammad
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Chato Taher
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Huanhuan Leah Cui
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Helena Costa
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Ourania N. Kostopoulou
- Department of Oncology and Pathology, Karolinska Institutet, SE 171 64 Stockholm, Sweden;
| | - Masany Jung
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Vanessa Wilhelmi
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - Jiangning Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital Solna, SE 171 64 Stockholm, Sweden; (J.Y.); (J.P.)
| | - Klas Strååt
- Department of Medicine, Division of Hematology, BioClinicum and Centre for Molecular Medicine, Karolinska University, Hospital Solna and Karolinska Institutet, SE 171 64 Stockholm, Sweden;
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
| | - John Pernow
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital Solna, SE 171 64 Stockholm, Sweden; (J.Y.); (J.P.)
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, SE 171 64 Stockholm, Sweden; (A.-A.M.); (C.T.); (H.L.C.); (H.C.); (M.J.); (V.W.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE 171 64 Stockholm, Sweden
- Correspondence: (K.-C.Y.); (C.S.-N.)
| |
Collapse
|
38
|
Detection of Human Cytomegalovirus Proteins in Paraffin-Embedded Breast Cancer Tissue Specimens-A Novel, Automated Immunohistochemical Staining Protocol. Microorganisms 2021; 9:microorganisms9051059. [PMID: 34068349 PMCID: PMC8153275 DOI: 10.3390/microorganisms9051059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence supports a significant association between human cytomegalovirus (HCMV) and human malignancies, suggesting HCMV as a human oncomodulatory virus. HCMV gene products are found in >90% of breast cancer tumors and seem to be correlated with more aggressive disease. The definitive diagnosis of HCMV relies on identification of virus inclusions and/or viral proteins by different techniques including immunohistochemical staining. In order to reduce biases and improve clinical value of HCMV diagnostics in oncological pathology, automation of the procedure is needed and this was the purpose of this study. Tumor specimens from 115 patients treated for primary breast cancer at Akershus University Hospital in Norway were available for the validation of the staining method in this retrospective study. We demonstrate that our method is highly sensitive and delivers excellent reproducibility for staining of HCMV late antigen (LA), which makes this method useful for future routine diagnostics and scientific applications.
Collapse
|
39
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
40
|
Zheng Y, Luo Y, Chen X, Li H, Huang B, Zhou B, Zhu L, Kang X, Geng W. The role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors. Mol Cancer 2021; 20:49. [PMID: 33673851 PMCID: PMC7934508 DOI: 10.1186/s12943-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Neural tumors can generally be divided into central nervous system tumors and peripheral nervous tumors. Because this type of tumor is located in the nerve, even benign tumors are often difficult to remove by surgery. In addition, the majority of neural tumors are malignant, and it is particular the same for the central nervous system tumors. Even treated with the means such as chemotherapy and radiotherapy, they are also difficult to completely cure. In recent years, an increasingly number of studies have focused on the use of mRNA to treat tumors, representing an emerging gene therapy. The use of mRNA can use the expression of some functional proteins for the treatment of genetic disorders or tissue repair, and it can also be applied to immunotherapy through the expression of antigens, antibodies or receptors. Therefore, although these therapies are not fully-fledged enough, they have a broad research prospect. In addition, there are many ways to treat tumors using mRNA vaccines and exosomes carrying mRNA, which have drawn much attention. In this study, we reviewed the current research on the role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors, and examine the future research prospects of mRNA in neural tumors and the opportunities and challenges that will arise in the future application of clinical treatment.
Collapse
Affiliation(s)
- Yiyang Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yanyan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xixi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Huiting Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baofeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Liqing Zhu
- Department of clinical laboratory, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
41
|
The Association of Human Herpesviruses with Malignant Brain Tumor Pathology and Therapy: Two Sides of a Coin. Int J Mol Sci 2021; 22:ijms22052250. [PMID: 33668202 PMCID: PMC7956256 DOI: 10.3390/ijms22052250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The role of certain viruses in malignant brain tumor development remains controversial. Experimental data demonstrate that human herpesviruses (HHVs), particularly cytomegalovirus (CMV), Epstein–Barr virus (EBV) and human herpes virus 6 (HHV-6), are implicated in brain tumor pathology, although their direct role has not yet been proven. CMV is present in most gliomas and medulloblastomas and is known to facilitate oncomodulation and/or immunomodulation, thus promoting cancer cell proliferation, invasion, apoptosis, angiogenesis, and immunosuppression. EBV and HHV-6 have also been detected in brain tumors and high-grade gliomas, showing high rates of expression and an inflammatory potential. On the other hand, due to the neurotropic nature of HHVs, novel studies have highlighted the engagement of such viruses in the development of new immunotherapeutic approaches in the context of oncolytic viral treatment and vaccine-based strategies against brain tumors. This review provides a comprehensive evaluation of recent scientific data concerning the emerging dual role of HHVs in malignant brain pathology, either as potential causative agents or as immunotherapeutic tools in the fight against these devastating diseases.
Collapse
|
42
|
Human cytomegalovirus DNA and immediate early protein 1/2 are highly associated with glioma and prognosis. Protein Cell 2021; 11:525-533. [PMID: 32189197 PMCID: PMC7305282 DOI: 10.1007/s13238-020-00696-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
43
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
44
|
Clinicopathological and Prognostic Roles of STAT3 and Its Phosphorylation in Glioma. DISEASE MARKERS 2020; 2020:8833885. [PMID: 33299498 PMCID: PMC7704152 DOI: 10.1155/2020/8833885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
Glioma is defined as a common brain tumor which causes severe disability or death. As many genes are reported to relate with glioma's occurrence and development, their prognostic and therapeutic value still remains uncertain. This study aimed at investigating the association between STAT3/p-STAT3 and glioma prognosis. Nine studies (12 trials) scored ≥5 on the Newcastle-Ottawa scale were meta-analysed from the Medline, Embase, and Web of Science databases. We found that STAT3/p-STAT3 overexpression in glioma patients was associated with worse overall survival (hazard ratio (HR) = 1.40, 95%confidence interval (CI) = 1.05 ~ 1.86, P = 0.020), progression-free survival (HR = 2.05, 95%CI = 1.63 ~ 2.58, P < 0.001), and better recurrence-free survival (HR = 0.37, 95%CI = 0.15 ~ 0.95, P < 0.039). Subgroup analysis implied that STAT3/p-STAT3 overexpression was associated with worse OS in standard treatment (HR = 1.80, 95%CI = 1.06 ~ 3.04, P = 0.030), and in China (HR = 2.18, 95%CI = 1.77 ~ 2.70, P < 0.001), and metaregression analysis indicated countries (P = 0.001) may be the source of heterogeneity in our study. In conclusion, we suggested STAT3/p-STAT3 was associated with poor prognosis in patients with glioma, which indicated that STAT3/p-STAT3 might be a valuable prognostic biomarker and a promising therapeutic target for glioma.
Collapse
|
45
|
Batich KA, Mitchell DA, Healy P, Herndon JE, Sampson JH. Once, Twice, Three Times a Finding: Reproducibility of Dendritic Cell Vaccine Trials Targeting Cytomegalovirus in Glioblastoma. Clin Cancer Res 2020; 26:5297-5303. [PMID: 32719000 PMCID: PMC9832384 DOI: 10.1158/1078-0432.ccr-20-1082] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023]
Abstract
Despite standard of care for glioblastoma, including gross total resection, high-dose radiation, and dose-limited chemotherapy, this tumor remains one of the most aggressive and therapeutically challenging. The relatively small number of patients with this diagnosis compared with more common solid tumors in clinical trials commits new glioblastoma therapies to testing in small, underpowered, nonrandomized settings. Among approximately 200 registered glioblastoma trials identified between 2005 and 2015, nearly half were single-arm studies with sample sizes not exceeding 50 patients. These constraints have made demonstrating efficacy for novel therapies difficult in glioblastoma and other rare and aggressive cancers. Novel immunotherapies for glioblastoma such as vaccination with dendritic cells (DC) have yielded mixed results in clinical trials. To address limited numbers, we sequentially conducted three separate clinical trials utilizing cytomegalovirus (CMV)-specific DC vaccines in patients with newly diagnosed glioblastoma whereby each follow-up study had nearly doubled in sample size. Follow-up data from the first blinded, randomized phase II clinical trial (NCT00639639) revealed that nearly one third of this cohort is without tumor recurrence at 5 years from diagnosis. A second clinical trial (NCT00639639) resulted in a 36% survival rate at 5 years from diagnosis. Results of the first two-arm trial (NCT00639639) showed increased migration of the DC vaccine to draining lymph nodes, and this increased migration has been recapitulated in our larger confirmatory clinical study (NCT02366728). We have now observed that nearly one third of the glioblastoma study patient population receiving CMV-specific DC vaccines results in exceptional long-term survivors.
Collapse
Affiliation(s)
- Kristen A. Batich
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA,Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Duane A. Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Patrick Healy
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - James E. Herndon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - John H. Sampson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA,Corresponding Author: John H. Sampson, M.D., Ph.D., Professor of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke Brain Tumor Immunotherapy Program, DUMC Box 3050, 303 Research Drive, 220 Sands Building, Duke University Medical Center, Durham, North Carolina 27710, USA, , Phone: (919) 684-9041, Fax: (919) 684-9045
| |
Collapse
|
46
|
Fischer I, Mijderwijk HJ, Kahlert UD, Rapp M, Sabel M, Hänggi D, Steiger HJ, Forster MT, Kamp MA. Association between health insurance status and malignant glioma. Neurooncol Pract 2020; 7:531-540. [PMID: 33014394 DOI: 10.1093/nop/npaa030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Prior studies have suggested an association between patient socioeconomic status and brain tumors. In the present study we attempt to indirectly validate the findings, using health insurance status as a proxy for socioeconomic status. Methods There are 2 types of health insurance in Germany: statutory and private. Owing to regulations, low- and middle-income residents are typically statutory insured, whereas high-income residents have the option of choosing a private insurance. We compared the frequencies of privately insured patients suffering from malignant neoplasms of the brain with the corresponding frequencies among other neurosurgical patients at our hospital and among the German population. To correct for age, sex, and distance from the hospital, we included these variables as predictors in logistic and binomial regression. Results A significant association (odds ratio [OR] = 1.59, CI = 1.45-1.74, P < .001) between health insurance status and brain tumors was found. The association is independent of patients' sex or age. Whereas privately insured patients generally tend to come from farther away, such a relationship was not observed for patients suffering from brain tumors. Comparing the out of house and in-house brain tumor patients showed no selection bias on our side. Conclusion Previous studies have found that people with a higher income, level of education, or socioeconomic status are more likely to suffer from malignant brain tumors. Our findings are in line with these studies. Although the reason behind the association remains unclear, the probability that our results are due to some random effect in the data is extremely low.
Collapse
Affiliation(s)
- Igor Fischer
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Division of Informatics and Statistics, Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hendrik-Jan Mijderwijk
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulf D Kahlert
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Lyon SM, Yetming KD, Paulus C, Nevels M, Kalejta RF. Human Cytomegalovirus Genomes Survive Mitosis via the IE19 Chromatin-Tethering Domain. mBio 2020; 11:e02410-20. [PMID: 32994332 PMCID: PMC7527735 DOI: 10.1128/mbio.02410-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis through the action of a viral protein with a chromatin-tethering domain (CTD). Here, we report that the human cytomegalovirus (HCMV) genome is maintained during mitosis by the CTD of the viral IE19 protein. Deletion of the IE19 CTD or disruption of the IE19 splice acceptor site reduced viral genome maintenance and progeny virion formation during infection of dividing fibroblasts, both of which were rescued by IE19 ectopic expression. The discovery of a viral genome maintenance factor during productive infection provides new insight into the mode of HCMV infection implicated in birth defects, organ transplant failure, and cancer.IMPORTANCE Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects, represents a serious complication for immunocompromised HIV/AIDS and organ transplant patients, and contributes to both immunosenescence and cardiovascular diseases. HCMV is also implicated in cancers such as glioblastoma multiforme (GBM) and infects ex vivo-cultured GBM tumor cells. In dividing tumor cells, the genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis. This mitotic survival is mediated by a viral protein with a chromatin-tethering domain (CTD). Here, we report that the HCMV genome is maintained in dividing fibroblasts by the CTD of the viral IE19 protein. The discovery of a viral genome maintenance factor during productive infection could help explain viral genome dynamics within HCMV-positive tumors as well as during latency.
Collapse
Affiliation(s)
- Shelby M Lyon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen D Yetming
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina Paulus
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael Nevels
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | - Robert F Kalejta
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Takesh M, Sonnen JA, Chankowsky J. Unusual rapid progression of glioblastoma initially mimicking herpes encephalitis. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Pandey RK, Ojha R, Dipti K, Kumar R, Prajapati VK. Immunoselective algorithm to devise multi-epitope subunit vaccine fighting against human cytomegalovirus infection. INFECTION GENETICS AND EVOLUTION 2020; 82:104282. [DOI: 10.1016/j.meegid.2020.104282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
|
50
|
Limam S, Missaoui N, Hmissa S, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of Human Cytomegalovirus and Human Papillomavirus in Glioma. Cancer Invest 2020; 38:394-405. [PMID: 32643440 DOI: 10.1080/07357907.2020.1793352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study investigated the human cytomegalovirus (HCMV) and human papillomavirus (HPV) in gliomas. A retrospective study was conducted on 112 samples. HCMV was investigated by PCR, in situ hybridization (ISH) and immunohistochemistry. HPV was tested by PCR and DNA ISH. HCMV was identified in 60 gliomas, including 55 GBM. However, RNA ISH and immunohistochemistry failed to detect HCMV positivity. HPV was identified in 44 GBM. No significant relationship was identified between HCMV and HPV and tumour characteristics (p > 0.05). Our findings support the HCMV and HPV presence in gliomas. Further assays are required to more explore the potential efficient antiviral management.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, Sousse University, Sousse, Tunisia.,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | | | - Hedi Krifa
- Department of Neurosurgery, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Boulbeba Selmi
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|