1
|
Liu Z, Yang L, Wu W, Chen Z, Xie Z, Shi D, Cai N, Zhuo S. Prognosis and therapeutic significance of IGF-1R-related signaling pathway gene signature in glioma. Front Cell Dev Biol 2024; 12:1375030. [PMID: 38665430 PMCID: PMC11043541 DOI: 10.3389/fcell.2024.1375030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background Glioma is the most common cancer of the central nervous system with poor therapeutic response and clinical prognosis. Insulin-like growth factor 1 receptor (IGF-1R) signaling is implicated in tumor development and progression and induces apoptosis of cancer cells following functional inhibition. However, the relationship between the IGF-1R-related signaling pathway genes and glioma prognosis or immunotherapy/chemotherapy is poorly understood. Methods LASSO-Cox regression was employed to develop a 16-gene risk signature in the TCGA-GBMLGG cohort, and all patients with glioma were divided into low-risk and high-risk subgroups. The relationships between the risk signature and the tumor immune microenvironment (TIME), immunotherapy response, and chemotherapy response were then analyzed. Immunohistochemistry was used to evaluate the HSP90B1 level in clinical glioma tissue. Results The gene risk signature yielded superior predictive efficacy in prognosis (5-year area under the curve: 0.875) and can therefore serve as an independent prognostic indicator in patients with glioma. The high-risk subgroup exhibited abundant immune infltration and elevated immune checkpoint gene expression within the TIME. Subsequent analysis revealed that patients in the high-risk subgroup benefited more from chemotherapy. Immunohistochemical analysis confirmed that HSP90B1 was overexpressed in glioma, with significantly higher levels observed in glioblastoma than in astrocytoma or oligodendrocytoma. Conclusion The newly identified 16-gene risk signature demonstrates a robust predictive capacity for glioma prognosis and plays a pivotal role in the TIME, thereby offering valuable insights for the exploration of novel biomarkers and targeted therapeutics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wenqi Wu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zejun Chen
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhengxing Xie
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Daoming Shi
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ning Cai
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
3
|
Caridi M, Alborghetti M, Pellicelli V, Orlando R, Pontieri FE, Battaglia G, Arcella A. Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach. Curr Neuropharmacol 2024; 22:1923-1939. [PMID: 38509672 PMCID: PMC11284726 DOI: 10.2174/1570159x22666240320112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.
Collapse
Affiliation(s)
- Matteo Caridi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marika Alborghetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Ernesto Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
4
|
Dyshlovoy SA, Hauschild J, Venz S, Krisp C, Kolbe K, Zapf S, Heinemann S, Fita KD, Shubina LK, Makarieva TN, Guzii AG, Rohlfing T, Kaune M, Busenbender T, Mair T, Moritz M, Poverennaya EV, Schlüter H, Serdyuk V, Stonik VA, Dierlamm J, Bokemeyer C, Mohme M, Westphal M, Lamszus K, von Amsberg G, Maire CL. Rhizochalinin Exhibits Anticancer Activity and Synergizes with EGFR Inhibitors in Glioblastoma In Vitro Models. Mol Pharm 2023; 20:4994-5005. [PMID: 37733943 DOI: 10.1021/acs.molpharmaceut.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Laboratory of Biologically Active Compounds, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald 17489, Germany
| | - Christoph Krisp
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katharina Kolbe
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Sarina Heinemann
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Krystian D Fita
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thomas Mair
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manuela Moritz
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ekaterina V Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Volodymyr Serdyuk
- Zentrum für Molekulare Neurobiologie (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Malte Mohme
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
5
|
Caglar HO, Duzgun Z. Identification of upregulated genes in glioblastoma and glioblastoma cancer stem cells using bioinformatics analysis. Gene X 2023; 848:146895. [DOI: 10.1016/j.gene.2022.146895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
6
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
8
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
9
|
Tschernichovsky R, Katz LH, Derazne E, Berliner MBZ, Simchoni M, Levine H, Keinan-Boker L, Benouaich-Amiel A, Kanner AA, Laviv Y, Honig A, Dudnik E, Siegal T, Mandel J, Twig G, Yust-Katz S. Height in adolescence as a risk factor for glioma subtypes: a nationwide retrospective cohort study of 2.2 million subjects. Neuro Oncol 2021; 23:1383-1392. [PMID: 33631004 DOI: 10.1093/neuonc/noab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gliomas manifest in a variety of histological phenotypes with varying aggressiveness. The etiology of glioma remains largely unknown. Taller stature in adulthood has been linked with glioma risk. The aim of this study was to discern whether this association can be detected in adolescence. METHODS The cohort included 2 223 168 adolescents between the ages of 16 and 19 years. Anthropometric measurements were collected at baseline. Incident cases of glioma were extracted from the Israel National Cancer Registry over a follow-up period spanning 47 635 745 person-years. Cox proportional hazard models were used to estimate the hazard ratio (HR) for glioma and glioma subtypes according to height, body mass index (BMI), and sex. RESULTS A total of 1195 patients were diagnosed with glioma during the study period. Mean (SD) age at diagnosis was 38.1 (11.7) years. Taller adolescent height (per 10-cm increase) was positively associated with the risk for glioma of any type (HR: 1.15; P = .002). The association was retained in subgroup analyses for low-grade glioma (HR: 1.17; P = .031), high-grade glioma (HR: 1.15; P = .025), oligodendroglioma (HR: 1.31; P = .015), astrocytoma (HR: 1.12; P = .049), and a category of presumed IDH-mutated glioma (HR: 1.17; P = .013). There was a trend toward a positive association between height and glioblastoma, however this had borderline statistical significance (HR: 1.15; P = .07). After stratification of the cohort by sex, height remained a risk factor for men but not for women. CONCLUSIONS The previously established association between taller stature in adulthood and glioma risk can be traced back to adolescence. The magnitude of association differs by glioma subtype.
Collapse
Affiliation(s)
- Roi Tschernichovsky
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior H Katz
- Department of Gastroenterology and Hepatology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Estela Derazne
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matan Ben-Zion Berliner
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Simchoni
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah University Hospital - Ein Kerem, Jerusalem, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel.,School of Public Health, University of Haifa, Haifa, Israel
| | - Alexandra Benouaich-Amiel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Andrew A Kanner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Yosef Laviv
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Asaf Honig
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Elizabeth Dudnik
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Siegal
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Jacob Mandel
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Gilad Twig
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Endocrinology, Sheba Medical Center, Tel HaShomer, Israel
| | - Shlomit Yust-Katz
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
11
|
Tirrò E, Massimino M, Romano C, Martorana F, Pennisi MS, Stella S, Pavone G, Di Gregorio S, Puma A, Tomarchio C, Vitale SR, Manzella L, Vigneri P. Prognostic and Therapeutic Roles of the Insulin Growth Factor System in Glioblastoma. Front Oncol 2021; 10:612385. [PMID: 33604294 PMCID: PMC7885861 DOI: 10.3389/fonc.2020.612385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus, the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF) signaling entails a complex system that is a key regulator of cell transformation, growth and cell-cycle progression. Hence, its deregulation is frequently involved in the development of several cancers, including brain malignancies. In GBM, differential expression of several IGF system components and alterations of this signaling axis are linked to significantly worse prognosis and reduced responsiveness to temozolomide, the most commonly used pharmacological agent for the treatment of the disease. In the present review we summarize the biological role of the IGF system in the pathogenesis of GBM and comprehensively discuss its clinical significance and contribution to the development of resistance to standard chemotherapy and experimental treatments.
Collapse
Affiliation(s)
- Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Giuliana Pavone
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| |
Collapse
|
12
|
Tian A, Kang B, Li B, Qiu B, Jiang W, Shao F, Gao Q, Liu R, Cai C, Jing R, Wang W, Chen P, Liang Q, Bao L, Man J, Wang Y, Shi Y, Li J, Yang M, Wang L, Zhang J, Hippenmeyer S, Zhu J, Bian X, Wang Y, Liu C. Oncogenic State and Cell Identity Combinatorially Dictate the Susceptibility of Cells within Glioma Development Hierarchy to IGF1R Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001724. [PMID: 33173731 PMCID: PMC7610337 DOI: 10.1002/advs.202001724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Indexed: 05/03/2023]
Abstract
Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells-of-origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin-like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new-generation brain-penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma.
Collapse
Affiliation(s)
- Anhao Tian
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Baizhou Li
- Department of Pathology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Biying Qiu
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Wenhong Jiang
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Fangjie Shao
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Qingqing Gao
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Rui Liu
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Chengwei Cai
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Rui Jing
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Wei Wang
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Pengxiang Chen
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Qinghui Liang
- College of Basic Medical ScienceInner Mongolia Medical UniversityHohhot010059China
| | - Lili Bao
- College of Basic Medical ScienceInner Mongolia Medical UniversityHohhot010059China
| | - Jianghong Man
- State Key Laboratory of ProteomicsInstitute of Basic Medical SciencesNational Center of Biomedical AnalysisBeijing100850China
| | - Yan Wang
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yu Shi
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jin Li
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Minmin Yang
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Lisha Wang
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Simon Hippenmeyer
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Junming Zhu
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Xiuwu Bian
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ying‐Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Chong Liu
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
- School of Brain Science and Brain MedicineNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| |
Collapse
|
13
|
Samani AA, Nalbantoglu J, Brodt P. Glioma Cells With Genetically Engineered IGF-I Receptor Downregulation Can Persist in the Brain in a Dormant State. Front Oncol 2020; 10:555945. [PMID: 33072581 PMCID: PMC7539665 DOI: 10.3389/fonc.2020.555945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme is an aggressive malignancy, resistant to standard treatment modalities and associated with poor prognosis. We analyzed the role of the IGF system in intracerebral glioma growth using human and rat glioma cells. The glioma cells C6 and U87MG were transduced with a genetically engineered retrovirus expressing type 1 insulin-like growth factor (IGF-IR) antisense RNA, either before or after intra-cerebral implantation of the cells into Sprague Dawley rats or nude mice, respectively and tumor growth and animal survival were monitored. Rat glioma cells transduced prior to orthotopic, intra-cerebral implantation had a significantly increased apoptotic rate in vivo and a significantly reduced tumor volume as seen 24 days post implantation (p < 0.0015). This resulted in increased survival, as greater than 70% of the rats were still alive 182 days after tumor implantation (p < 0.01), as compared to 80% mortality by day 24 in the control group. Histomorphology and histochemical studies performed on brain tissue that was obtained from rats that survived for 182 days revealed numerous single cells that were widely disseminated throughout the brain. These cells expressed the β-galactosidase marker protein, but were Ki67negative, suggesting that they acquired a dormant phenotype. Direct targeting of the C6 cells with retroviral particles in vivo was effective and reduced tumor volumes by 22% relative to controls. A significant effect on tumor growth was also seen with human glioma U87MG cells that were virally transduced and implanted intra-cerebrally in nude mice. We observed in these mice a significant reduction in tumor volumes and 70% of the animals were still alive 6 months after tumor implantation, as compared to 100% mortality in the control group by day 63. Our results show that IGF-IR targeting can inhibit the intracerebral growth of glioma cells. They also suggest that IGF-IR expression levels may determine a delicate balance between glioma cell growth, death and the acquisition of a dormant state in the brain.
Collapse
Affiliation(s)
- Amir A Samani
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Josephine Nalbantoglu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Surgery, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
14
|
Fiorica F, Colella M, Taibi R, Bonetti A, Giuliani J, Perrone MS, Missiroli S, Giorgi C. Glioblastoma: Prognostic Factors and Predictive Response to Radio and Chemotherapy. Curr Med Chem 2020; 27:2814-2825. [PMID: 32003678 DOI: 10.2174/0929867327666200131095256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by poor prognosis despite an aggressive therapeutic strategy. In recent years, many advances have been achieved in the field of glioblastoma biology. Here we try to summarize the main clinical and biological factors impacting clinical prognostication and therapy of GBM patients. From that standpoint, hopefully, in the near future, personalized therapies will be available.
Collapse
Affiliation(s)
- Francesco Fiorica
- Department of Radiation Oncology, AULSS 9 Scaligera, Verona, Italy.,Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Maria Colella
- Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Rosaria Taibi
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Andrea Bonetti
- Department of Oncology, AULSS 9 Scaligera, Verona, Italy
| | | | - Maria Sole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
16
|
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH, Lee CC. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One 2019; 14:e0225913. [PMID: 31805126 PMCID: PMC6894868 DOI: 10.1371/journal.pone.0225913] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Temozolomide (TMZ) is a first-line alkylating agent for glioblastoma multiforme (GBM). Clarifying the mechanisms inducing TMZ insensitivity may be helpful in improving its therapeutic effectiveness against GBM. Insulin-like growth factor (IGF)-1 signaling and micro (mi)RNAs are relevant in mediating GBM progression. However, their roles in desensitizing GBM cells to TMZ are still unclear. We aimed to identify IGF-1-mediated miRNA regulatory networks that elicit TMZ insensitivity for GBM. IGF-1 treatment attenuated TMZ cytotoxicity via WNT/β-catenin signaling, but did not influence glioma cell growth. By miRNA array analyses, 93 upregulated and 148 downregulated miRNAs were identified in IGF-1-treated glioma cells. miR-513a-5p from the miR-513a-2 gene locus was upregulated by IGF-1-mediated phosphoinositide 3-kinase (PI3K) signaling. Its elevated levels were also observed in gliomas versus normal cells, in array data of The Cancer Genome Atlas (TCGA), and the GSE61710, GSE37366, and GSE41032 datasets. In addition, lower levels of neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin protein ligase that inhibits WNT signaling, were found in gliomas by analyzing cells, arrays, and RNA sequencing data of TCGA glioma patients. Furthermore, a negative correlation was identified between miR-513a-5p and NEDD4L in glioma. NEDD4L was also validated as a direct target gene of miR-513a-5p, and it was reduced by IGF-1 treatment. Overexpression of NEDD4L inhibited glioma cell viability and reversed IGF-1-repressed TMZ cytotoxicity. In contrast, miR-513a-5p significantly affected NEDD4L-inhibited WNT signaling and reduced TMZ cytotoxicity. These findings demonstrate a distinct role of IGF-1 signaling through miR-513a-5p-inhibited NEDD4L networks in influencing GBM's drug sensitivity to TMZ.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Halle B, Mongelard K, Poulsen FR. Convection-enhanced Drug Delivery for Glioblastoma: A Systematic Review Focused on Methodological Differences in the Use of the Convection-enhanced Delivery Method. Asian J Neurosurg 2019; 14:5-14. [PMID: 30937002 PMCID: PMC6417332 DOI: 10.4103/ajns.ajns_302_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a leading cause of brain cancer-related death. The blood–brain barrier (BBB) prevents the transport of most systemic delivered molecules to the brain. This constitutes a major problem in the therapy of brain tumors. In the last decade, numerous different drug-delivery approaches have been developed to overcome the BBB. The objective of this study is to provide an overview of the methodological aspects used in all preclinical and clinical studies published from 2011 to 2016 where convection-enhanced delivery (CED) was used for drug delivery in the treatment of GBM. A systematic review of English articles published in the past 5 years was undertaken using PubMed and Embase. The search terms (brain tumor [MeSH Terms]) AND (CED OR convection enhanced delivery) were used in PubMed and a similar search was carried out in Embase using their “multi-field search.” All studies using CED on an intracranial GBM model were included. The search resulted in 151 hits after duplicates were removed. In total, 30 studies were included in the review. Of these, two publications studied the technical aspects of the CED method. Furthermore, only one study was a clinical study. The research field is focused on preclinical drug development trials and less emphasis is placed on the CED technique itself. However, it is important that future studies focus on establishing optimal protocols for the use of CED in rodents as well as for big brain models to be able to use the CED method in patients with GBM.
Collapse
Affiliation(s)
- Bo Halle
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristian Mongelard
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
19
|
Oliva CR, Halloran B, Hjelmeland AB, Vazquez A, Bailey SM, Sarkaria JN, Griguer CE. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun Signal 2018; 16:61. [PMID: 30231881 PMCID: PMC6148802 DOI: 10.1186/s12964-018-0273-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs), the most common and most lethal of the primary brain tumors, are characterized by marked intra-tumor heterogeneity. Several studies have suggested that within these tumors a restricted population of chemoresistant glioma cells is responsible for recurrence. However, the gene expression patterns underlying chemoresistance are largely unknown. Numerous efforts have been made to block IGF-1R signaling pathway in GBM. However, those therapies have been repeatedly unsuccessful. This failure may not only be due to the complexity of IGF receptor signaling, but also due to complex cell-cell interactions in the tumor mass. We hypothesized that differential expression of proteins in the insulin-like growth factor (IGF) system underlie cell-specific differences in the resistance to temozolomide (TMZ) within GBM tumors. METHODS Expression of IGF-1R was analyzed in cell lines, patient-derived xenograft cell lines and human biopsies by cell surface proteomics, flow cytometry, immunofluorescence and quantitative real time polymerase chain reaction (qRT-PCR). Using gain-of-function and loss-of-function strategies, we dissected the molecular mechanism responsible for IGF-binding protein 6 (IGFBP6) tumor suppressor functions both in in vitro and in vivo. Site direct mutagenesis was used to study IGFBP6-IGF2 interactions. RESULTS We determined that in human glioma tissue, glioma cell lines, and patient-derived xenograft cell lines, treatment with TMZ enhances the expression of IGF1 receptor (IGF-1R) and IGF2 and decreases the expression of IGFBP6, which sequesters IGF2. Using chemoresistant and chemosensitive wild-type and transgenic glioma cells, we further found that a paracrine mechanism driven by IGFBP6 secreted from TMZ-sensitive cells abrogates the proliferation of IGF-1R-expressing TMZ-resistant cells in vitro and in vivo. In mice bearing intracranial human glioma xenografts, overexpression of IGFBP6 in TMZ-resistant cells increased survival. Finally, elevated expression of IGF-1R and IGF2 in gliomas associated with poor patient survival and tumor expression levels of IGFBP6 directly correlated with overall survival time in patients with GBM. CONCLUSIONS Our findings support the view that proliferation of chemoresistant tumor cells is controlled within the tumor mass by IGFBP6-producing tumor cells; however, TMZ treatment eliminates this population and enriches the TMZ-resistant cell populationleading to accelerated growth of the entire tumor mass.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
- Free Radical & Radiation Biology Program, 4210 Medical Education and Biomedical Research Facility (MERF), The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Ana Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48823 USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823 USA
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902 USA
| | - Corinne E. Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
20
|
Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, Hicks J, Loe J, Ratan A, McConnell MJ. Improved molecular karyotyping in glioblastoma. Mutat Res 2018; 811:16-26. [PMID: 30055482 DOI: 10.1016/j.mrfmmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Uneven replication creates artifacts during whole genome amplification (WGA) that confound molecular karyotype assignment in single cells. Here, we present an improved WGA recipe that increased coverage and detection of copy number variants (CNVs) in single cells. We examined serial resections of glioblastoma (GBM) tumor from the same patient and found low-abundance clones containing CNVs in clinically relevant loci that were not observable using bulk DNA sequencing. We discovered extensive genomic variability in this class of tumor and provide a practical approach for investigating somatic mosaicism.
Collapse
Affiliation(s)
- Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Matt Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Mark Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - David Schiff
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - James Hicks
- Michelson Center, University of Southern California, Los Angeles, CA, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Justin Loe
- Full Genomes Corp, Inc., Rockville, MD, United States
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia, School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
21
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
22
|
Yan S, Wu G. Could ALDH2 *2 be the reason for low incidence and mortality of ovarian cancer for East Asia women? Oncotarget 2017; 9:12503-12512. [PMID: 29552329 PMCID: PMC5844765 DOI: 10.18632/oncotarget.23605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
It is curious that East Asian women have a low incidence and mortality of ovarian cancer in various epidemiological studies. Although different explanations were given, they appear unsubstantial. We notice that East Asian population usually are inactive aldehyde dehydrogenase 2 mutation (ALDH2 * 2) carriers, and ALDH plays an important role in the resistance of ovarian cancer to chemotherapeutics, especially in ovarian cancer stem cells. Therefore, we hypothesize whether ALDH2 mutation is the major reason for low incidence and mortality of ovarian cancer in East Asian women, and use the evidence from literature, transcriptomic data with average 5-year overall survival to confirm our hypothesis.
Collapse
Affiliation(s)
- Shaomin Yan
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Guang Wu
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| |
Collapse
|
23
|
Bibes R, Gobron S, Vincent F, Mélin C, Vedrenne N, Perraud A, Labrousse F, Jauberteau MO, Lalloué F. SCO-spondin oligopeptide inhibits angiogenesis in glioblastoma. Oncotarget 2017; 8:85969-85983. [PMID: 29156770 PMCID: PMC5689660 DOI: 10.18632/oncotarget.20837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis plays a critical role in glioblastoma growth and progression. We therefore aimed at evaluating the anti-angiogenic properties of an oligopeptide originating from SCO-spondin (NX) on a model of human glioblastoma. To this end, we studied the impact of NX treatment on human brain endothelial cells (HBMECs) alone or co-cultured with glioblastoma cells (U87-MG) on apoptosis, proliferation, migration and release of angiogenic factors. We further investigated the anti-angiogenic potential of NX on human glioblastoma cells grown on chorio-allantoic membrane (CAM) or in glioblastoma xenografts. The results of our experiments showed that NX treatment impaired the microvascular network and induced a decrease in cell proliferation, vascularization and tumor growth in the CAM model as well as in xenotransplants. Interestingly, our in vitro experiments showed that NX impairs HBMECs migration but also regulates the release of angiogenic factors from U87-MG. These results are confirmed by the profiling of NX-treated U87-MG grown on CAM that highlighted modifications of several genes involved in angiogenesis. In conclusion, NX inhibits tumorigenesis by impairing the ability of glioblastoma cells to induce angiogenesis and by inhibiting endothelial cell migration. This molecule might therefore be an interesting candidate for future cancer therapies.
Collapse
Affiliation(s)
- Romain Bibes
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Stéphane Gobron
- Neuronax, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France
| | - François Vincent
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Physiological Functional Investigation, 87042 Limoges Cedex, France
| | - Carole Mélin
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Nicolas Vedrenne
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Aurélie Perraud
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Digestive Surgery, 87042 Limoges Cedex, France
| | - Francois Labrousse
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Pathology, 87042 Limoges Cedex, France
| | - Marie-Odile Jauberteau
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Immunology, 87042 Limoges Cedex, France
| | - Fabrice Lalloué
- EA3842 Cellular Homeostasis and Diseases, University of Limoges, Faculty of Medicine, 87025 Limoges Cedex, France
| |
Collapse
|
24
|
Georgakis MK, Kalogirou EI, Liaskas A, Karalexi MA, Papathoma P, Ladopoulou K, Kantzanou M, Tsivgoulis G, Petridou ET. Anthropometrics at birth and risk of a primary central nervous system tumour: A systematic review and meta-analysis. Eur J Cancer 2017; 75:117-131. [PMID: 28219020 DOI: 10.1016/j.ejca.2016.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The aetiology of primary central nervous system (CNS) tumours remains largely unknown, but their childhood peak points to perinatal parameters as tentative risk factors. In this meta-analysis, we opted to quantitatively synthesise published evidence on the association between birth anthropometrics and risk of primary CNS tumour. METHODS Eligible studies were identified via systematic literature review; random-effects meta-analyses were conducted for the effect of birth weight and size-for-gestational-age on childhood and adult primary CNS tumours; subgroup, sensitivity, meta-regression and dose-response by birth weight category analyses were also performed. RESULTS Forty-one articles, encompassing 53,167 CNS tumour cases, were eligible. Birth weight >4000 g was associated with increased risk of childhood CNS tumour (OR: 1.14, [1.08-1.20]; 22,330 cases). The risk was higher for astrocytoma (OR: 1.22, [1.13-1.31]; 7456 cases) and embryonal tumour (OR: 1.16, [1.04-1.29]; 3574 cases) and non-significant for ependymoma (OR: 1.12, [0.94-1.34]; 1374 cases). Increased odds for a CNS tumour were also noted among large-for-gestational-age children (OR: 1.12, [1.03-1.22]; 10,339 cases), whereas insufficient data for synthesis were identified for other birth anthropometrics. The findings remained robust across subgroup and sensitivity analyses controlling for several sources of bias, whereas no significant heterogeneity or publication bias were documented. The limited available evidence on adults (4 studies) did not reveal significant associations between increasing birth weight (500-g increment) and overall risk CNS tumour (OR: 0.99, [0.98-1.00]; 1091 cases) or glioma (OR: 1.03, [0.98-1.07]; 2052 cases). CONCLUSIONS This meta-analysis confirms a sizeable association of high birth weight, with childhood CNS tumour risk, particularly astrocytoma and embryonal tumour, which seems to be independent of gestational age. Further research is needed to explore underlying mechanisms, especially modifiable determinants of infant macrosomia, such as gestational diabetes.
Collapse
Affiliation(s)
- Marios K Georgakis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Eleni I Kalogirou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Athanasios Liaskas
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Maria A Karalexi
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Paraskevi Papathoma
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Kyriaki Ladopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Chaidari, Athens, Greece
| | | | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece.
| |
Collapse
|
25
|
Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R, Lamszus K. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol 2016; 18:1219-29. [PMID: 26917237 DOI: 10.1093/neuonc/now024] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dichotomy between glioblastoma cell migration and proliferation is regulated by various parameters including oxygen tension. In glioblastoma stem-like cells, hypoxia induces downregulation of pentose phosphate pathway (PPP) enzymes and a flux shift towards glycolysis. We investigated whether the 2 parallel glucose metabolic pathways are intrinsically linked with cell function and whether these pathways are mechanistically involved in regulating functional programs. METHODS Enzyme expression, migration, and proliferation under hypoxia were studied in multiple cell types. Rapidly and slowly dividing or migrating glioblastoma cells were separated, and enzyme profiles were compared. Glucose-6-phosphate dehydrogenase (G6PD) and Aldolase C (ALDOC), the most strongly inversely regulated PPP and glycolysis enzymes, were knocked down by short hairpin RNA. RESULTS Hypoxia caused downregulation of PPP enzymes and upregulation of glycolysis enzymes in a broad spectrum of cancer and nonneoplastic cells and consistently stimulated migration while reducing proliferation. PPP enzyme expression was increased in rapidly dividing glioblastoma cells, whereas glycolysis enzymes were decreased. Conversely, glycolysis enzymes were elevated in migrating cells, whereas PPP enzymes were diminished. Knockdown of G6PD reduced glioblastoma cell proliferation, whereas ALDOC knockdown decreased migration. Enzyme inhibitors had similar effects. G6PD knockdown in a highly proliferative but noninvasive glioblastoma cell line resulted in prolonged survival of mice with intracerebral xenografts, whereas ALDOC knockdown shortened survival. In a highly invasive glioblastoma xenograft model, tumor burden was unchanged by either knockdown. CONCLUSIONS Cell function and metabolic state are coupled independently of hypoxia, and glucose metabolic pathways are causatively involved in regulating "go or grow" cellular programs.
Collapse
Affiliation(s)
- Annegret Kathagen-Buhmann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Jonathan Weller
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Mareike Holz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Christel Herold-Mende
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Rainer Glass
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| |
Collapse
|
26
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|
27
|
Maris C, D'Haene N, Trépant AL, Le Mercier M, Sauvage S, Allard J, Rorive S, Demetter P, Decaestecker C, Salmon I. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer 2015; 113:729-37. [PMID: 26291053 PMCID: PMC4559821 DOI: 10.1038/bjc.2015.242] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 01/18/2023] Open
Abstract
Background: Glioblastomas (GBMs) are the most common malignant primary brain tumours in adults and are refractory to conventional therapy, including surgical resection, radiotherapy and chemotherapy. The insulin-like growth factor (IGF) system is a complex network that includes ligands (IGFI and IGFII), receptors (IGF-IR and IGF-IIR) and high-affinity binding proteins (IGFBP-1 to IGFBP-6). Many studies have reported a role for the IGF system in the regulation of tumour cell biology. However, the role of this system remains unclear in GBMs. Methods: We investigate the prognostic value of both the IGF ligands' and receptors' expression in a cohort of human GBMs. Tissue microarray and image analysis were conducted to quantitatively analyse the immunohistochemical expression of these proteins in 218 human GBMs. Results: Both IGF-IR and IGF-IIR were overexpressed in GBMs compared with normal brain (P<10−4 and P=0.002, respectively). Moreover, with regard to standard clinical factors, IGF-IR positivity was identified as an independent prognostic factor associated with shorter survival (P=0.016) and was associated with a less favourable response to temozolomide. Conclusions: This study suggests that IGF-IR could be an interesting target for GBM therapy.
Collapse
Affiliation(s)
- C Maris
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - N D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - A-L Trépant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - M Le Mercier
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - S Sauvage
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| | - J Allard
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - S Rorive
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| | - P Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - C Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium.,Laboratories of Image, Signal processing and Acoustics (LISA), Brussels School of Engineering/Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - I Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| |
Collapse
|