1
|
Qi X. Advances in antitumour therapy with oncolytic herpes simplex virus combinations. Discov Oncol 2024; 15:302. [PMID: 39046631 PMCID: PMC11269532 DOI: 10.1007/s12672-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Oncolytic Virus (OVs) is an emerging approach to tumour immunity that allows the use of natural or genetically modified viruses to specifically infect and lyse tumour cells without damaging normal cells. Oncolytic herpes simplex virus (oHSV) is one of the more widely researched and applied OVs in the field of oncology, which can directly kill tumour cells to promote anti-tumour immune responses. oHSV is one of the few viruses with good antiviral drugs, so oHSV is also more clinically safe. In recent years, in addition to monotherapy of oHSV in tumours, more and more studies have been devoted to exploring the anti-tumour effects of oHSV in combination with other therapeutic approaches. In this article we describe the progress of oHSV combination therapy against tumours in the nervous system, digestive system, reproductive system and other systems.
Collapse
Affiliation(s)
- Xuejiao Qi
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
2
|
Liu Y, Tang Q, Tao Q, Dong H, Shi Z, Zhou L. Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives. J Adv Res 2024:S2090-1232(24)00125-5. [PMID: 38565404 DOI: 10.1016/j.jare.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumour of the central nervous system. Despite recent advances in multimodal GBM therapy incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive care, the overall survival (OS) remains poor, and long-term survival is rare. Currently, the primary obstacles hindering the effectiveness of GBM treatment are still the blood-brain barrier and tumor heterogeneity. In light of its substantial advantages over conventional therapies, such as strong penetrative ability and minimal side effects, low-frequency magnetic fields (LF-MFs) therapy has gradually caught the attention of scientists. AIM OF REVIEW In this review, we shed the light on the current status of applying LF-MFs in the treatment of GBM. We specifically emphasize our current understanding of the mechanisms by which LF-MFs mediate anticancer effects and the challenges faced by LF-MFs in treating GBM cells. Furthermore, we discuss the prospective applications of magnetic field therapy in the future treatment of GBM. Key scientific concepts of review: The review explores the current progress on the use of LF-MFs in the treatment of GBM with a special focus on the potential underlying mechanisms of LF-MFs in anticancer effects. Additionally, we also discussed the complex magnetic field features and biological characteristics related to magnetic bioeffects. Finally, we proposed a promising magnetic field treatment strategy for future applications in GBM therapy.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Quan Tao
- Shanghai Institute of Microsystem and Information Technology, China
| | - Hui Dong
- Shanghai Institute of Microsystem and Information Technology, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| |
Collapse
|
3
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
5
|
Liu J, Piranlioglu R, Ye F, Shu K, Lei T, Nakashima H. Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions. Front Cell Infect Microbiol 2023; 13:1141034. [PMID: 37234776 PMCID: PMC10206241 DOI: 10.3389/fcimb.2023.1141034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma is a highly aggressive form of brain cancer characterized by the abundance of myeloid lineage cells in the tumor microenvironment. Tumor-associated macrophages and microglia (TAM) and myeloid-derived suppressor cells (MDSCs), play a pivotal role in promoting immune suppression and tumor progression. Oncolytic viruses (OVs) are self-amplifying cytotoxic agents that can stimulate local anti-tumor immune responses and have the potential to suppress immunosuppressive myeloid cells and recruit tumor-infiltrating T lymphocytes (TILs) to the tumor site, leading to an adaptive immune response against tumors. However, the impact of OV therapy on the tumor-resident myeloid population and the subsequent immune responses are not yet fully understood. This review provides an overview of how TAM and MDSC respond to different types of OVs, and combination therapeutics that target the myeloid population to promote anti-tumor immune responses in the glioma microenvironment.
Collapse
Affiliation(s)
- Junfeng Liu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhu X, Fang Y, Chen Y, Chen Y, Hong W, Wei W, Tu J. Interaction of tumor-associated microglia/macrophages and cancer stem cells in glioma. Life Sci 2023; 320:121558. [PMID: 36889666 DOI: 10.1016/j.lfs.2023.121558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.
Collapse
Affiliation(s)
- Xiangling Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Zhang J, Wang J, Li M, Su X, Tian Y, Wang P, Zhou X, Jin G, Liu F. Oncolytic HSV-1 suppresses cell invasion through downregulating Sp1 in experimental glioblastoma. Cell Signal 2023; 103:110581. [PMID: 36572188 DOI: 10.1016/j.cellsig.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gliomas are highly aggressive intracranial tumors that are difficult to resect and have high lethality and recurrence rates. According to WHO grading criteria, glioblastoma with wild-type IDH1 has a poorer prognosis than WHO grade 4 IDH-mutant astrocytomas. To date, no effective therapeutic strategies have been developed to treat glioblastoma. Clinical trials have shown that herpes simplex virus (HSV)-1 is the safest and most efficacious oncolytic virus against glioblastoma, but the molecular antitumor mechanism of action of HSV-1 has not yet been determined. Deletion of the γ34.5 and ICP47 genes from a strain of HSV-1 yielded the oncolytic virus, oHSV-1, which reduced glioma cell viability, migration, and invasive capacity, as well as the growth of microvilli. Infected cell polypeptide 4 (ICP4) expressed by oHSV-1 was found to suppress the expression of the transcription factor Sp1, reducing the expression of host invasion-related genes. In vivo, oHSV-1 showed significant antitumor effects by suppressing the expression of Sp1 and invasion-associated genes, highly expressed in high-grade glioblastoma tissue specimens. These findings indicate that Sp1 may be a molecular marker predicting the antitumor effects of oHSV-1 in the treatment of glioma and that oHSV-1 suppresses host cell invasion through the ICP4-mediated downregulation of Sp1.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xianzhe Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
9
|
Fudaba H, Wakimoto H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin Biol Ther 2023; 23:269-282. [PMID: 36809883 DOI: 10.1080/14712598.2023.2184256] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION To overcome the challenge of treating malignant brain tumors, oncolytic viruses (OVs) represent an innovative therapeutic approach, featuring unique mechanisms of action. The recent conditional approval of the oncolytic herpes simplex virus G47Δ as a therapeutic for malignant brain tumors marked a significant milestone in the long history of OV development in neuro-oncology. AREAS COVERED This review summarizes the results of recently completed and active clinical studies that investigate the safety and efficacy of different OV types in patients with malignant gliomas. The changing landscape of the OV trial design includes expansion of subjects to newly diagnosed tumors and pediatric populations. A variety of delivery methods and new routes of administration are vigorously tested to optimize tumor infection and overall efficacy. New therapeutic strategies such as combination with immunotherapies are proposed that take advantage of the characteristics of OV therapy as an immunotherapy. Preclinical studies of OV have been active and aim to translate new OV strategies to the clinic. EXPERT OPINION For the next decade, clinical trials and preclinical and translational research will continue to drive the development of innovative OV treatments for malignant gliomas and benefit patients and define new OV biomarkers.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Anagnostakis F, Piperi C. Targeting Options of Tumor-Associated Macrophages (TAM) Activity in Gliomas. Curr Neuropharmacol 2023; 21:457-470. [PMID: 35048810 PMCID: PMC10207914 DOI: 10.2174/1570159x20666220120120203] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor-associated macrophages (TAMs), the most plastic cells of the hematopoietic system, exhibit increased tumor-infiltrating properties and functional heterogeneity depending on tumor type and associated microenvironment. TAMs constitute a major cell type of cancer-related inflammation, commonly enhancing tumor growth. They are profoundly involved in glioma pathogenesis, contributing to many cancer hallmarks such as angiogenesis, survival, metastasis, and immunosuppression. Efficient targeting of TAMs presents a promising approach to tackle glioma progression. Several targeting options involve chemokine signaling axes inhibitors and antibodies, antiangiogenic factors, immunomodulatory molecules, surface immunoglobulins blockers, receptor and transcription factor inhibitors, as well as microRNAs (miRNAs), administered either as standalone or in combination with other conventional therapies. Herein, we provide a critical overview of current therapeutic approaches targeting TAMs in gliomas with the promising outcome.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| |
Collapse
|
11
|
Protein Kinase Inhibitors as a New Target for Immune System Modulation and Brain Cancer Management. Int J Mol Sci 2022; 23:ijms232415693. [PMID: 36555334 PMCID: PMC9778944 DOI: 10.3390/ijms232415693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
High-grade brain tumors are malignant tumors with poor survival and remain the most difficult tumors to treat. An important contributing factor to the development and progression of brain tumors is their ability to evade the immune system. Several immunotherapeutic strategies including vaccines and checkpoint inhibitors have been studied to improve the effectiveness of the immune system in destroying cancer cells. Recent studies have shown that kinase inhibitors, capable of inhibiting signal transduction cascades that affect cell proliferation, migration, and angiogenesis, have additional immunological effects. In this review, we explain the beneficial therapeutic effects of novel small-molecule kinase inhibitors and explore how, through different mechanisms, they increase the protective antitumor immune response in high-grade brain tumors.
Collapse
|
12
|
Wang Z, Zhong H, Liang X, Ni S. Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navigating the clinical and translational landscape. Front Immunol 2022; 13:1024921. [PMID: 36311702 PMCID: PMC9606568 DOI: 10.3389/fimmu.2022.1024921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can directly clear tumor cells and enhance the phagocytic ability of immune cells. An abundance of TAMs at the site of the glioblastoma tumor indicates that TAM-targeting immunotherapy could represent a potential form of treatment for this aggressive cancer. Herein, we discuss: i) the dynamic role of TAMs in glioblastoma; ii) describe the formation of the immunosuppressive tumor microenvironment; iii) summarize the latest clinical trial data that reveal how TAM function can be regulated in favor tumor eradication; and lastly, iv) evaluate the implications of existing and novel translational approaches for treating glioblastoma in clinical practice.
Collapse
Affiliation(s)
- Zide Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, China
- *Correspondence: Xiaohong Liang, ; Shilei Ni,
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xiaohong Liang, ; Shilei Ni,
| |
Collapse
|
13
|
Witkowski J, Polak S, Rogulski Z, Pawelec D. In Vitro/In Vivo Translation of Synergistic Combination of MDM2 and MEK Inhibitors in Melanoma Using PBPK/PD Modelling: Part II. Int J Mol Sci 2022; 23:11939. [PMID: 36233247 PMCID: PMC9570053 DOI: 10.3390/ijms231911939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
The development of in vitro/in vivo translational methods for synergistically acting drug combinations is needed to identify the most effective therapeutic strategies. We performed PBPK/PD modelling for siremadlin, trametinib, and their combination at various dose levels and dosing schedules in an A375 xenografted mouse model (melanoma cells). In this study, we built models based on in vitro ADME and in vivo PK/PD data determined from the literature or estimated by the Simcyp Animal simulator (V21). The developed PBPK/PD models allowed us to account for the interactions between siremadlin and trametinib at PK and PD levels. The interaction at the PK level was described by an interplay between absorption and tumour disposition levels, whereas the PD interaction was based on the in vitro results. This approach allowed us to reasonably estimate the most synergistic and efficacious dosing schedules and dose levels for combinations of siremadlin and trametinib in mice. PBPK/PD modelling is a powerful tool that allows researchers to properly estimate the in vivo efficacy of the anticancer drug combination based on the results of in vitro studies. Such an approach based on in vitro and in vivo extrapolation may help researchers determine the most efficacious dosing strategies and will allow for the extrapolation of animal PBPK/PD models into clinical settings.
Collapse
Affiliation(s)
- Jakub Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Adamed Pharma S.A., Adamkiewicza 6a, 05-152 Czosnów, Poland
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Zbigniew Rogulski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
14
|
Qi Z, Long X, Liu J, Cheng P. Glioblastoma microenvironment and its reprogramming by oncolytic virotherapy. Front Cell Neurosci 2022; 16:819363. [PMID: 36159398 PMCID: PMC9507431 DOI: 10.3389/fncel.2022.819363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain tumor, responds poorly to current conventional therapies, including surgery, radiation therapy, and systemic chemotherapy. The reason is that the delicate location of the primary tumor and the existence of the blood-brain barrier limit the effectiveness of traditional local and systemic therapies. The immunosuppressive status and multiple carcinogenic pathways in the complex GBM microenvironment also pose challenges for immunotherapy and single-targeted therapy. With an improving understanding of the GBM microenvironment, it has become possible to consider the immunosuppressive and highly angiogenic GBM microenvironment as an excellent opportunity to improve the existing therapeutic efficacy. Oncolytic virus therapy can exert antitumor effects on various components of the GBM microenvironment. In this review, we have focused on the current status of oncolytic virus therapy for GBM and the related literature on antitumor mechanisms. Moreover, the limitations of oncolytic virus therapy as a monotherapy and future directions that may enhance the field have also been discussed.
Collapse
Affiliation(s)
- Zhongbing Qi
- Department of State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Long
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Oncology, West China Guang’an Hospital, Sichuan University, Guangan, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Ping Cheng Jiyan Liu
| | - Ping Cheng
- Department of State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Cheng Jiyan Liu
| |
Collapse
|
15
|
Tzeng YDT, Tsui KH, Tseng LM, Hou MF, Chu PY, Sheu JJC, Li CJ. Integrated analysis of pivotal biomarker of LSM1, immune cell infiltration and therapeutic drugs in breast cancer. J Cell Mol Med 2022; 26:4007-4020. [PMID: 35692083 PMCID: PMC9279588 DOI: 10.1111/jcmm.17436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
The discovery of early diagnosis and prognostic markers for breast cancer can significantly improve survival and reduce mortality. LSM1 is known to be involved in the general process of mRNA degradation in complexes containing LSm subunits, but the molecular and biological functions in breast cancer remain unclear. Here, the expression of LSM1 mRNA in breast cancer was estimated using The Cancer Genome Atlas (TCGA), Oncomine, TIMER and bc‐GenExMiner databases. We found that functional LSM1 inactivation caused by mutations and profound deletions predicted poor prognosis in breast cancer (BRCA) patients. LSM1 was highly expressed in both BRCA tissues and cells compared to normal breast tissues/cells. High LSM1 expression is associated with poorer overall survival and disease‐free survival. The association between LSM1 and immune infiltration of breast cancer was assessed by TIMER and CIBERSORT algorithms. LSM1 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of BRCA cell lines revealed that LSM1 inactivation was associated with increased sensitivity to refametinib and trametinib. However, both drugs could mimic the effects of LSM1 inhibition and their drug sensitivity was associated with MEK molecules. Therefore, we investigated the clinical application of LSM1 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Chlorogenic Acid Alleviates the Inflammatory Stress of LPS-Induced BV2 Cell via Interacting with TLR4-Mediated Downstream Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6282167. [PMID: 35633920 PMCID: PMC9132620 DOI: 10.1155/2022/6282167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Background Neuroinflammation is related with the inflammatory stress of brain tissue induced by the activation of microglial in the central nervous system (CNS), which is still an intractable disease for modern clinical system. Chlorogenic acid has multiple biological activities such as antivirus and anti-inflammation, while few researches have revealed its therapeutic functions in neuroinflammation. Methods BV2 cells were treated with lipopolysaccharide (LPS) to establish neuroinflammation cell models, and the effects and mechanism of chlorogenic acid in improving the inflammatory progression were investigated. In brief, the toxicity of chlorogenic acid on BV2 cells was detected with MTT assay. The levels of the inflammatory factors including TNF-α, IL-6, IL-1β, and IFN-α were measured with ELISA, and the abundances of TLR4, MyD88, TRIF, and NF-κB were observed by qRT-PCR and western blot. Results Chlorogenic acid did not exhibit obvious toxic and side effects on BV2 cells. The levels of TNF-α, IL-6, IL-1β, and IFN-α were observably upregulated in BV2 cells after treating with LPS. Chlorogenic acid significantly reduced the levels of TNF-α, IL-6, IL-1β, and IFN-α. Moreover, the abundances of TLR4, MyD88, TRIF, and NF-κB were increased in LPS-induced BV2 cells, while chlorogenic acid could obviously reduce their expressions. Conclusion This study suggests that chlorogenic acid can improve the inflammatory stress of LPS-induced BV2 cell via interacting with the TLR4-mediated downstream pathway, which is a potential drug for neuroinflammation treatment.
Collapse
|
17
|
Sahu U, Barth RF, Otani Y, McCormack R, Kaur B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J Neuropathol Exp Neurol 2022; 81:312-329. [PMID: 35446393 PMCID: PMC9113334 DOI: 10.1093/jnen/nlac021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and “humanized” mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.
Collapse
Affiliation(s)
- Upasana Sahu
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Yoshihiro Otani
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ryan McCormack
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Balveen Kaur
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Otani Y, Yoo JY, Lewis CT, Chao S, Swanner J, Shimizu T, Kang JM, Murphy SA, Rivera-Caraballo K, Hong B, Glorioso JC, Nakashima H, Lawler SE, Banasavadi-Siddegowda Y, Heiss JD, Yan Y, Pei G, Caligiuri MA, Zhao Z, Chiocca EA, Yu J, Kaur B. NOTCH induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates anti-tumor immunotherapy. Clin Cancer Res 2022; 28:1460-1473. [PMID: 35022322 PMCID: PMC8976724 DOI: 10.1158/1078-0432.ccr-21-2347] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Address correspondence and reprint request to Dr. Balveen Kaur, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R164, Houston, TX, 77030. Tel: 713-500-6131, , Or, Dr. Yoshihiro Otani, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R129, Houston, TX, 77030. Tel: 713-500-6118.
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cole T. Lewis
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Samantha Chao
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jessica Swanner
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Toshihiko Shimizu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sara A. Murphy
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Kimberly Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hiroshi Nakashima
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sean E. Lawler
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | | | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yuanqing Yan
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Jianhua Yu
- City of Hope Medical Center, Duarte, CA, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
- Address correspondence and reprint request to Dr. Balveen Kaur, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R164, Houston, TX, 77030. Tel: 713-500-6131, , Or, Dr. Yoshihiro Otani, The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R129, Houston, TX, 77030. Tel: 713-500-6118.
| |
Collapse
|
19
|
Hong B, Sahu U, Mullarkey MP, Kaur B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors. Viruses 2022; 14:v14010118. [PMID: 35062322 PMCID: PMC8778098 DOI: 10.3390/v14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a highly promising treatment for solid tumors. Intense research and development efforts have led to first-in-class approval for an oHSV for melanoma, but barriers to this promising therapy still exist that limit efficacy. The process of infection, replication and transmission of oHSV in solid tumors is key to obtaining a good lytic destruction of infected cancer cells to kill tumor cells and release tumor antigens that can prime anti-tumor efficacy. Intracellular tumor cell signaling and tumor stromal cells present multiple barriers that resist oHSV activity. Here, we provide a review focused on oncolytic HSV and the essential viral genes that allow for virus replication and spread in order to gain insight into how manipulation of these pathways can be exploited to potentiate oHSV infection and replication among tumor cells.
Collapse
|
20
|
Banasavadi-Siddegowda YK, Namagiri S, Otani Y, Sur H, Rivas S, Bryant JP, Shellbourn A, Rock M, Chowdhury A, Lewis CT, Shimizu T, Walbridge S, Kumarasamy S, Shah AH, Lee TJ, Maric D, Yan Y, Yoo JY, Kumbar SG, Heiss JD, Kaur B. Targeting protein arginine methyltransferase 5 sensitizes glioblastoma to trametinib. Neurooncol Adv 2022; 4:vdac095. [PMID: 35875691 PMCID: PMC9297944 DOI: 10.1093/noajnl/vdac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. METHODS Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. RESULTS PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. CONCLUSION Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.
Collapse
Affiliation(s)
| | - Sriya Namagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Shellbourn
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Rock
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashis Chowdhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cole T Lewis
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ashish H Shah
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tae Jin Lee
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, Maryland, USA
| | - Yuanqing Yan
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Tang L, Feng Y, Gao S, Mu Q, Liu C. Nanotherapeutics Overcoming the Blood-Brain Barrier for Glioblastoma Treatment. Front Pharmacol 2021; 12:786700. [PMID: 34899350 PMCID: PMC8655904 DOI: 10.3389/fphar.2021.786700] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still highly needed to improve the therapeutic outcome of GBM treatment. The blood-brain barrier (BBB) is the main barrier that prevents therapeutic drugs from reaching the brain. Nanotechnologies that enable drug delivery across the BBB hold great promise for the treatment of GBM. This review summarizes various drug delivery systems used to treat glioma and focuses on their approaches for overcoming the BBB to enhance the accumulation of small molecules, protein and gene drugs, etc. in the brain.
Collapse
Affiliation(s)
- Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qingchun Mu
- The People’s Hospital of Gaozhou, Gaozhou, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Zhou X, Zhao J, Zhang JV, Wu Y, Wang L, Chen X, Ji D, Zhou GG. Enhancing Therapeutic Efficacy of Oncolytic Herpes Simplex Virus with MEK Inhibitor Trametinib in Some BRAF or KRAS-Mutated Colorectal or Lung Carcinoma Models. Viruses 2021; 13:1758. [PMID: 34578339 PMCID: PMC8473197 DOI: 10.3390/v13091758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virus (OV) as a promising therapeutic agent can selectively infect and kill tumor cells with naturally inherited or engineered properties. Considering the limitations of OVs monotherapy, combination therapy has been widely explored. MEK inhibitor (MEKi) Trametinib is an FDA-approved kinase inhibitor indicated for the treatment of tumors with BRAF V600E or V600K mutations. In this study, the oncolytic activity in vitro and anti-tumor therapeutic efficacy in vivo when combined with oHSV and MEKi Trametinib were investigated. We found: (1) Treatment with MEKi Trametinib augmented oHSV oncolytic activity in BRAF V600E-mutated tumor cells. (2) Combination treatment with oHSV and MEKi Trametinib enhanced virus replication mediated by down-regulation of STAT1 and PKR expression or phosphorylation in BRAF V600E-mutated tumor cells as well as BRAF wt/KRAS-mutated tumor cells. (3) A remarkably synergistic therapeutic efficacy was shown in vivo for BRAF wt/KRAS-mutated tumor models, when a combination of oHSV including PD-1 blockade and MEK inhibition. Collectively, these data provide some new insights for clinical development of combination therapy with oncolytic virus, MEK inhibition, and checkpoint blockade for BRAF or KRAS-mutated tumors.
Collapse
Affiliation(s)
- XuSha Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinglin Wu
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (Y.W.); (L.W.)
| | - Lei Wang
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (Y.W.); (L.W.)
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| | - Dongmei Ji
- Department of Medical Oncology, Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China; (X.Z.); (J.Z.); (X.C.)
| |
Collapse
|
23
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
24
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
25
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
26
|
Hong B, Chapa V, Saini U, Modgil P, Cohn DE, He G, Siddik ZH, Sood AK, Yan Y, Selvendiran K, Pei G, Zhao Z, Yoo JY, Kaur B. Oncolytic HSV Therapy Modulates Vesicular Trafficking Inducing Cisplatin Sensitivity and Antitumor Immunity. Clin Cancer Res 2021; 27:542-553. [PMID: 33087329 PMCID: PMC8147278 DOI: 10.1158/1078-0432.ccr-20-2210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Here we investigated the impact of oncolytic herpes simplex virus (HSV) treatment on cisplatin sensitivity of platinum-resistant ovarian cancer, and the impact of the combination on immunotherapy. EXPERIMENTAL DESIGN Therapeutic efficacy of the combination was assessed in platinum-resistant human and murine ovarian cancer peritoneal metastatic mouse models (n = 9-10/group). RNA sequencing along with flow cytometry of splenocytes from treated mice was employed to examine the effect of antitumor immune response (n = 3/group). Anti-PD-1 antibody was performed to evaluate impact on checkpoint inhibition in vivo. RESULTS Gene Ontology pathway analysis uncovered disruption of cellular extracellular vesicle (EV)-related pathways in infected cells (FDR = 2.97E-57). Mechanistically, we identified reduced expression of transporters expressed on EV implicated in cisplatin efflux. The increased cisplatin retention led to increased cisplatin-DNA adducts, which resulted in micronuclei and the subsequent activation of cGAS-STING pathway with a significant activation of innate immune cells and translated to an increase in antitumor immunity and efficacy. In mice bearing platinum-resistant ovarian cancer, we also observed a feedback induction of PD-L1 on tumor cells, which sensitized combination-treated mice to anti-PD-1 immune checkpoint therapy. CONCLUSIONS To our knowledge, this is the first report to show HSV-induced cisplatin retention in infected cells. The consequential increased damaged DNA was then expelled from cells as micronuclei which resulted in induction of inflammatory responses and education of antitumor immunity. The combination therapy also created an environment that sensitized tumors to immune checkpoint therapy.
Collapse
Affiliation(s)
- Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Valerie Chapa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Puneet Modgil
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Guangan He
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Yan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
27
|
Patrizz A, Dono A, Zorofchian S, Hines G, Takayasu T, Husein N, Otani Y, Arevalo O, Choi HA, Savarraj J, Tandon N, Ganesh BP, Kaur B, McCullough LD, Ballester LY, Esquenazi Y. Glioma and temozolomide induced alterations in gut microbiome. Sci Rep 2020; 10:21002. [PMID: 33273497 PMCID: PMC7713059 DOI: 10.1038/s41598-020-77919-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome is fundamental in neurogenesis processes. Alterations in microbial constituents promote inflammation and immunosuppression. Recently, in immune-oncology, specific microbial taxa have been described to enhance the effects of therapeutic modalities. However, the effects of microbial dysbiosis on glioma are still unknown. The aim of this study was to explore the effects of glioma development and Temozolomide (TMZ) on fecal microbiome in mice and humans. C57BL/6 mice were implanted with GL261/Sham and given TMZ/Saline. Fecal samples were collected longitudinally and analyzed by 16S rRNA sequencing. Fecal samples were collected from healthy controls as well as glioma patients at diagnosis, before and after chemoradiation. Compared to healthy controls, mice and glioma patients demonstrated significant differences in beta diversity, Firmicutes/Bacteroides (F/B) ratio, and increase of Verrucomicrobia phylum and Akkermansia genus. These changes were not observed following TMZ in mice. TMZ treatment in the non-tumor bearing mouse-model diminished the F/B ratio, increase Muribaculaceae family and decrease Ruminococcaceae family. Nevertheless, there were no changes in Verrucomicrobia/Akkermansia. Glioma development leads to gut dysbiosis in a mouse-model, which was not observed in the setting of TMZ. These findings seem translational to humans and warrant further study.
Collapse
Affiliation(s)
- Anthony Patrizz
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Soheil Zorofchian
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Gabriella Hines
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Takeshi Takayasu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Nuruddin Husein
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Yoshihiro Otani
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - H Alex Choi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jude Savarraj
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, The University of Texas Health Science Center At Houston, McGovern Medical School, Houston, TX, USA
| | - Balveen Kaur
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, The University of Texas Health Science Center At Houston, McGovern Medical School, Houston, TX, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA. .,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA. .,Department of Pathology & Laboratory Medicine and Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin Street, MSB 2.136, Houston, TX, 77030, USA.
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA. .,Center for Precision Health, The University of Texas Health Science Center At Houston, McGovern Medical School, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA. .,Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston - McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Chastkofsky MI, Pituch KC, Katagi H, Zannikou M, Ilut L, Xiao T, Han Y, Sonabend AM, Curiel DT, Bonner ER, Nazarian J, Horbinski CM, James CD, Saratsis AM, Hashizume R, Lesniak MS, Balyasnikova IV. Mesenchymal Stem Cells Successfully Deliver Oncolytic Virotherapy to Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2020; 27:1766-1777. [PMID: 33272983 DOI: 10.1158/1078-0432.ccr-20-1499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is among the deadliest of pediatric brain tumors. Radiotherapy is the standard-of-care treatment for DIPG, but offers only transient relief of symptoms for patients with DIPG without providing significant survival benefit. Oncolytic virotherapy is an anticancer treatment that has been investigated for treating various types of brain tumors. EXPERIMENTAL DESIGN Here, we have explored the use of mesenchymal stem cells (MSC) for oncolytic virus (OV) delivery and evaluated treatment efficacy using preclinical models of DIPG. The survivin promoter drives the conditional replication of OV used in our studies. The efficiency of OV entry into the cells is mediated by fiber modification with seven lysine residues (CRAd.S.pK7). Patients' samples and cell lines were analyzed for the expression of viral entry proteins and survivin. The ability of MSCs to deliver OV to DIPG was studied in the context of a low dose of irradiation. RESULTS Our results show that DIPG cells and tumors exhibit robust expression of cell surface proteins and survivin that enable efficient OV entry and replication in DIPG cells. MSCs loaded with OV disseminate within a tumor and release OV throughout the DIPG brainstem xenografts in mice. Administration of OV-loaded MSCs with radiotherapy to mice bearing brainstem DIPG xenografts results in more prolonged survival relative to that conferred by either therapy alone (P < 0.01). CONCLUSIONS Our study supports OV, CRAd.S.pK7, encapsulated within MSCs as a therapeutic strategy that merits further investigation and potential translation for DIPG treatment.
Collapse
Affiliation(s)
- Michael I Chastkofsky
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Markella Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Liliana Ilut
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David T Curiel
- Department of Radiation Oncology, University of Washington, St. Louis, Missouri
| | - Erin R Bonner
- Center for Genomics and Precision Medicine, Children's National Medical Center, Washington, D.C.,Institute for Biomedical Sciences, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Javad Nazarian
- Center for Genomics and Precision Medicine, Children's National Medical Center, Washington, D.C.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amanda M Saratsis
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Neurosurgery, Department of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
29
|
Liu P, Wang Y, Wang Y, Kong Z, Chen W, Li J, Chen W, Tong Y, Ma W, Wang Y. Effects of oncolytic viruses and viral vectors on immunity in glioblastoma. Gene Ther 2020; 29:115-126. [PMID: 33191399 DOI: 10.1038/s41434-020-00207-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is regarded as an incurable disease due to its poor prognosis and limited treatment options. Virotherapies were once utilized on cancers for their oncolytic effects. And they are being revived on GBM treatment, as accumulating evidence presents the immunogenic effects of virotherapies in remodeling immunosuppressive GBM microenvironment. In this review, we focus on the immune responses induced by oncolytic virotherapies and viral vectors in GBM. The current developments of GBM virotherapies are briefly summarized, followed by a detailed depiction of their immune response. Limitations and lessons inferred from earlier experiments and trials are discussed. Moreover, we highlight the importance of engaging the immune responses induced by virotherapies into the multidisciplinary management of GBM.
Collapse
Affiliation(s)
- Penghao Liu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziren Kong
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wanqi Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiatong Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenlin Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanren Tong
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
31
|
Hu F, Huang Y, Semtner M, Zhao K, Tan Z, Dzaye O, Kettenmann H, Shu K, Lei T. Down-regulation of Aquaporin-1 mediates a microglial phenotype switch affecting glioma growth. Exp Cell Res 2020; 396:112323. [PMID: 33058832 DOI: 10.1016/j.yexcr.2020.112323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/29/2020] [Accepted: 10/10/2020] [Indexed: 10/25/2022]
Abstract
Aquaporin 1 (AQP1), a transmembrane protein that forms water channels, has previously been shown to facilitate growth and progression of many types of tumors by modulating tumor cell migration, proliferation and angiogenesis. Here, we determined the impact of AQP1 expression in the tumor environment on the progression of brain tumors. Primary microglia from wild type(WT) and AQP1 knockout(KO) mice were used to test AQP1 effect on microglia function by using Western blot, quantative PCR, in an experimental in vivo mouse glioma model and organotypic brain slice culture. Deletion of AQP1 in the host tissue significantly reduced the survival of the mice implanted with GL261 glioma cells. The density of glioma-associated microglia/macrophages was almost doubled in AQP1KO mice. We found that factors secreted from GL261 cells decrease microglial AQP1 expression via the MEK/ERK pathway, and that inhibition of this pathway with Trametinib reduced tumor growth and prolonged the survival of tumor bearing mice, an effect which required the presence of microglia. Deletion of AQP1 in cultured microglia resulted in an increase in migratory activity and a decrease in TLR4-dependent innate immune responses. Our study demonstrates a functional relevance of AQP1 expression in microglia and hints to AQP1 as a potential novel target for glioma therapy.
Collapse
Affiliation(s)
- Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Marcus Semtner
- Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Omar Dzaye
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
33
|
Dono A, Patrizz A, McCormack RM, Putluri N, Ganesh BP, Kaur B, McCullough LD, Ballester LY, Esquenazi Y. Glioma induced alterations in fecal short-chain fatty acids and neurotransmitters. CNS Oncol 2020; 9:CNS57. [PMID: 32602743 PMCID: PMC7341178 DOI: 10.2217/cns-2020-0007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore fecal short-chain fatty acids and neurotransmitter alterations in a mouse-glioma model and glioma patients. Methods: Liquid chromatography-mass spectrometry and 16S rRNA-sequencing from fecal samples were performed to measure metabolite levels and taxa abundance in mice/humans. Mice underwent GL261 implantation with/without temozolomide. Glioma patients were compared with healthy controls. Results: Glioma altered several short-chain fatty acids and neurotransmitter levels. Reduced 5-hydroxyindoleaceic acid and norepinephrine levels were seen in mice and humans. Interestingly, temozolomide treatment abrogates the effects of glioma on fecal metabolites. Conclusion: Our findings demonstrate the interplay between glioma and the gut-brain axis. Further work is required to identify pathways within the gut-brain axis by which glioma influences and promotes the modulation of fecal metabolites and microbiome.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anthony Patrizz
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ryan M McCormack
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TTX 77030, USA
| | - Bhanu P Ganesh
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TTX 77030, USA
| | - Balveen Kaur
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Louise D McCullough
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TTX 77030, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Memorial Hermann Hospital-TMC, Houston, TX 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Memorial Hermann Hospital-TMC, Houston, TX 77030, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TTX 77030, USA
| |
Collapse
|
34
|
Enhancing Antitumor Efficacy of Heavily Vascularized Tumors by RAMBO Virus through Decreased Tumor Endothelial Cell Activation. Cancers (Basel) 2020; 12:cancers12041040. [PMID: 32340193 PMCID: PMC7225935 DOI: 10.3390/cancers12041040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Vascularization is a common pathology for many solid tumors, and therefore anti-angiogenic strategies are being investigated as a therapeutic target for treatment. Numerous studies are also being conducted regarding the effects of oncolytic viruses, including ImlygicTM, an FDA approved oncolytic herpes simplex virus-1 (oHSV) for the treatment of highly vascularized tumors such as Kaposi sarcoma (NCT04065152), and brain tumors. To our knowledge, the effects of combining oncolytic HSV with angiogenesis inhibition on endothelial cell activation has not been previously described. Here, we tested the effects of Rapid Antiangiogenesis Mediated By Oncolytic Virus (RAMBO), an oHSV which expresses a potent anti-angiogenic gene Vasculostatin on endothelial cell activation in heavily vascularized solid tumors. oHSV treatment induces endothelial cell activation, which inhibits virus propagation and oncolysis in adjacent tumor cells in vitro. Consistently, this was also observed in intravital imaging of intracranial tumor-bearing mice in vivo where infected tumor endothelial cells could efficiently clear the virus without cell lysis. Quantitative real-time PCR (Q-PCR), leukocyte adhesion assay, and fluorescent microscopy imaging data, however, revealed that RAMBO virus significantly decreased expression of endothelial cell activation markers and leukocyte adhesion, which in turn increased virus replication and cytotoxicity in endothelial cells. In vivo RAMBO treatment of subcutaneously implanted sarcoma tumors significantly reduced tumor growth in mice bearing sarcoma compared to rHSVQ. In addition, histological analysis of RAMBO-treated tumor tissues revealed large areas of necrosis and a statistically significant reduction in microvessel density (MVD). This study provides strong preclinical evidence of the therapeutic benefit for the use of RAMBO virus as a treatment option for highly vascularized tumors.
Collapse
|
35
|
Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Virotherapy: From single agents to combinatorial treatments. Biochem Pharmacol 2020; 177:113986. [PMID: 32330494 DOI: 10.1016/j.bcp.2020.113986] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | | | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy.
| |
Collapse
|
36
|
Youssef GC, Gomez-Manzano C, Sawaya R, Fueyo J. Antitumor immune response during glioma virotherapy. Neuro Oncol 2019; 21:1087-1088. [PMID: 31348516 DOI: 10.1093/neuonc/noz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gilbert C Youssef
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Sawaya
- Department of Neurosurgery, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Department of Neuro-Oncology, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neurosurgery, Brain Tumor Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|