1
|
Wefel JS, Deshmukh S, Brown PD, Grosshans DR, Sulman EP, Cerhan JH, Mehta MP, Khuntia D, Shi W, Mishra MV, Suh JH, Laack NN, Chen Y, Curtis AA, Laba JM, Elsayed A, Thakrar A, Pugh SL, Bruner DW. Impact of Apolipoprotein E Genotype on Neurocognitive Function in Patients With Brain Metastases: An Analysis of NRG Oncology's RTOG 0614. Int J Radiat Oncol Biol Phys 2024; 119:846-857. [PMID: 38101486 PMCID: PMC11162903 DOI: 10.1016/j.ijrobp.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Snehal Deshmukh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | | | | - Erik P Sulman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone, New York, New York
| | | | - Minesh P Mehta
- Baptist Hospital of Miami and Florida International University, Miami, Florida
| | | | - Wenyin Shi
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Mark V Mishra
- University of Maryland Medical Systems, Baltimore, Maryland
| | - John H Suh
- Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Amarinthia Amy Curtis
- Spartanburg Medical Center, Accruals for Upstate Carolina NCORP-Gibbs Regional Cancer Center, Spartanburg, South Carolina
| | - Joanna M Laba
- London Regional Cancer Program, Accruals for University of Western Ontario, London, Ontario, Canada
| | - Ahmed Elsayed
- Toledo Community Hospital Oncology Program CCOP, Toledo, Ohio
| | - Anu Thakrar
- John H. Stroger Jr Hospital of Cook County MBCCOP, Chicago, Illinois
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | |
Collapse
|
2
|
Grob ST, Miller KR, Sanford B, Donson AM, Jones K, Griesinger AM, Amani V, Foreman NK, Liu A, Handler M, Hankinson TC, Milgrom S, Levy JMM. Genetic predictors of neurocognitive outcomes in survivors of pediatric brain tumors. J Neurooncol 2023; 165:161-169. [PMID: 37878192 PMCID: PMC10638163 DOI: 10.1007/s11060-023-04472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Neurocognitive deficits are common in pediatric brain tumor survivors. The use of single nucleotide polymorphism (SNP) analysis in DNA repair genes may identify children treated with radiation therapy for brain tumors at increased risk for treatment toxicity and adverse neurocognitive outcomes. MATERIALS The Human 660W-Quad v1.0 DNA BeadChip analysis (Illumina) was used to evaluate 1048 SNPs from 59 DNA repair genes in 46 subjects. IQ testing was measured by the Wechsler Intelligence Scale for Children. Linear regression was used to identify the 10 SNPs with the strongest association with IQ scores while adjusting for radiation type. RESULTS The low vs high IQ patient cohorts were well matched for time from first treatment to most recent IQ, first treatment age, sex, and treatments received. 5 SNPs on 3 different genes (CYP29, XRCC1, and BRCA1) and on 3 different chromosomes (10, 19, and 17) had the strongest association with most recent IQ score that was not modified by radiation type. Furthermore, 5 SNPs on 4 different genes (WRN, NR3C1, ERCC4, RAD51L1) on 4 different chromosomes (8, 5, 16, 14) had the strongest association with change in IQ independent of radiation type, first IQ, and years between IQ measures. CONCLUSIONS SNPs offer the potential to predict adverse neurocognitive outcomes in pediatric brain tumor survivors. Our results require validation in a larger patient cohort. Improving the ability to identify children at risk of treatment related neurocognitive deficits could allow for better treatment stratification and early cognitive interventions.
Collapse
Affiliation(s)
- Sydney T Grob
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Kristen R Miller
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Kenneth Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Arthur Liu
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
- Department of Radiation Oncology, University of Colorado Anschutz, Aurora, CO, USA
| | - Michael Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Sarah Milgrom
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
- Department of Radiation Oncology, University of Colorado Anschutz, Aurora, CO, USA
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Grob ST, Miller KR, Sanford B, Donson AM, Jones K, Griesinger AM, Amani V, Foreman NK, Liu A, Handler M, Hankinson TC, Milgrom S, Levy JM. Genetic Predictors of Neurocognitive Outcomes in Survivors of Pediatric Brain Tumors. RESEARCH SQUARE 2023:rs.3.rs-3225952. [PMID: 37609195 PMCID: PMC10441450 DOI: 10.21203/rs.3.rs-3225952/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Purpose Neurocognitive deficits are common in pediatric brain tumor survivors. The use of single nucleotide polymorphism (SNP) analysis in DNA repair genes may identify children treated with radiation therapy for brain tumors at increased risk for treatment toxicity and adverse neurocognitive outcomes. Methods The Human 660W-Quad v1.0 DNA BeadChip analysis (Illumina) was used to evaluate 1048 SNPs from 59 DNA repair genes in 46 subjects. IQ testing was measured by the Wechsler Intelligence Scale for Children. Linear regression was used to identify the 10 SNPs with the strongest association with IQ scores while adjusting for radiation type. Results The low vs high IQ patient cohorts were well matched for time from first treatment to most recent IQ, first treatment age, gender, and treatments received. 5 SNPs on 3 different genes (CYP29, XRCC1, and BRCA1) and on 3 different chromosomes (10, 19, and 17) had the strongest association with most recent IQ score that was not modified by radiation type. Furthermore, 5 SNPs on 4 different genes (WRN, NR3C1, ERCC4, RAD51L1) on 4 different chromosomes (8, 5, 16, 14) had the strongest association with change in IQ independent of radiation type, first IQ, and years between IQ measures. Conclusions SNP polymorphisms offer potential to predict adverse neurocognitive outcomes in pediatric brain tumor survivors. Our results require validation in a larger patient cohort. Improving the ability to identify children at risk of treatment related neurocognitive deficits could allow for better treatment stratification and early cognitive interventions.
Collapse
|
4
|
Soffietti R, Pellerino A, Bruno F, Mauro A, Rudà R. Neurotoxicity from Old and New Radiation Treatments for Brain Tumors. Int J Mol Sci 2023; 24:10669. [PMID: 37445846 DOI: 10.3390/ijms241310669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Research regarding the mechanisms of brain damage following radiation treatments for brain tumors has increased over the years, thus providing a deeper insight into the pathobiological mechanisms and suggesting new approaches to minimize this damage. This review has discussed the different factors that are known to influence the risk of damage to the brain (mainly cognitive disturbances) from radiation. These include patient and tumor characteristics, the use of whole-brain radiotherapy versus particle therapy (protons, carbon ions), and stereotactic radiotherapy in various modalities. Additionally, biological mechanisms behind neuroprotection have been elucidated.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessandro Mauro
- Department of Neuroscience "Rita Levi Montalcini", University of Turin and City of Health and Science University Hospital, 10126 Turin, Italy
- I.R.C.C.S. Istituto Auxologico Italiano, Division of Neurology and Neuro-Rehabilitation, San Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| |
Collapse
|
5
|
Sleurs C, Zegers CML, Compter I, Dijkstra J, Anten MHME, Postma AA, Schijns OEMG, Hoeben A, Sitskoorn MM, De Baene W, De Roeck L, Sunaert S, Van Elmpt W, Lambrecht M, Eekers DBP. Neurocognition in adults with intracranial tumors: does location really matter? J Neurooncol 2022; 160:619-629. [PMID: 36346497 PMCID: PMC9758085 DOI: 10.1007/s11060-022-04181-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/22/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE As preservation of cognitive functioning increasingly becomes important in the light of ameliorated survival after intracranial tumor treatments, identification of eloquent brain areas would enable optimization of these treatments. METHODS This cohort study enrolled adult intracranial tumor patients who received neuropsychological assessments pre-irradiation, estimating processing speed, verbal fluency and memory. Anatomical magnetic resonance imaging scans were used for multivariate voxel-wise lesion-symptom predictions of the test scores (corrected for age, gender, educational level, histological subtype, surgery, and tumor volume). Potential effects of histological and molecular subtype and corresponding WHO grades on the risk of cognitive impairment were investigated using Chi square tests. P-values were adjusted for multiple comparisons (p < .001 and p < .05 for voxel- and cluster-level, resp.). RESULTS A cohort of 179 intracranial tumor patients was included [aged 19-85 years, median age (SD) = 58.46 (14.62), 50% females]. In this cohort, test-specific impairment was detected in 20-30% of patients. Higher WHO grade was associated with lower processing speed, cognitive flexibility and delayed memory in gliomas, while no acute surgery-effects were found. No grading, nor surgery effects were found in meningiomas. The voxel-wise analyses showed that tumor locations in left temporal areas and right temporo-parietal areas were related to verbal memory and processing speed, respectively. INTERPRETATION Patients with intracranial tumors affecting the left temporal areas and right temporo-parietal areas might specifically be vulnerable for lower verbal memory and processing speed. These specific patients at-risk might benefit from early-stage interventions. Furthermore, based on future validation studies, imaging-informed surgical and radiotherapy planning could further be improved.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Monique H M E Anten
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | | | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
6
|
Ciobanu LG, Stankov L, Schubert KO, Amare AT, Jawahar MC, Lawrence-Wood E, Mills NT, Knight M, Clark SR, Aidman E. General intelligence and executive functioning are overlapping but separable at genetic and molecular pathway levels: An analytical review of existing GWAS findings. PLoS One 2022; 17:e0272368. [PMID: 36251633 PMCID: PMC9576059 DOI: 10.1371/journal.pone.0272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
Understanding the genomic architecture and molecular mechanisms of cognitive functioning in healthy individuals is critical for developing tailored interventions to enhance cognitive functioning, as well as for identifying targets for treating impaired cognition. There has been substantial progress in uncovering the genetic composition of the general cognitive ability (g). However, there is an ongoing debate whether executive functioning (EF)–another key predictor of cognitive health and performance, is separable from general g. To provide an analytical review on existing findings on genetic influences on the relationship between g and EF, we re-analysed a subset of genome-wide association studies (GWAS) from the GWAS catalogue that used measures of g and EF as outcomes in non-clinical populations. We identified two sets of single nucleotide polymorphisms (SNPs) associated with g (1,372 SNPs across 12 studies), and EF (300 SNPs across 5 studies) at p<5x10-6. A comparative analysis of GWAS-identified g and EF SNPs in high linkage disequilibrium (LD), followed by pathway enrichment analyses suggest that g and EF are overlapping but separable at genetic variant and molecular pathway levels, however more evidence is required to characterize the genetic overlap/distinction between the two constructs. While not without limitations, these findings may have implications for navigating further research towards translatable genetic findings for cognitive remediation, enhancement, and augmentation.
Collapse
Affiliation(s)
- Liliana G. Ciobanu
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| | - Lazar Stankov
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - K. Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Services, Adelaide, SA, Australia
| | - Azmeraw T. Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
| | | | | | - Natalie T. Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Knight
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Weapons and Combat Systems Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| | - Scott R. Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Aidman
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Land Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| |
Collapse
|
7
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
8
|
Kline C, Stoller S, Byer L, Samuel D, Lupo JM, Morrison MA, Rauschecker AM, Nedelec P, Faig W, Dubal DB, Fullerton HJ, Mueller S. An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro). Front Oncol 2022; 12:874317. [PMID: 35814456 PMCID: PMC9259981 DOI: 10.3389/fonc.2022.874317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation. Methods One hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging. Utilizing RadART Pro, we collected clinical history, genomic sequencing, CNS imaging, and neurocognitive outcomes. We performed single nucleotide polymorphism (SNP) genotyping for candidate genes associated with neurocognition: COMT, BDNF, KIBRA, APOE, KLOTHO. Longitudinal neurocognitive testing were performed using validated computer-based CogState batteries. The imaging cohort was made of patients with available iron-sensitive (n = 28) and/or T2 FLAIR (n = 41) sequences. Cerebral microbleeds (CMB) were identified using a semi-automated algorithm. Volume of T2 FLAIR white matter lesions (WML) was measured using an automated method based on a convolutional neural network. Summary statistics were performed for patient characteristics, neurocognitive assessments, and imaging. Linear mixed effects and hierarchical models assessed patient characteristics and SNP relationship with neurocognition over time. Nested case-control analysis was performed to compare candidate gene carriers to non-carriers. Results CMB presence at baseline correlated with worse performance in 3 of 7 domains, including executive function. Higher baseline WML volumes correlated with worse performance in executive function and verbal learning. No candidate gene reliably predicted neurocognitive outcomes; however, APOE ϵ4 carriers trended toward worse neurocognitive function over time compared to other candidate genes and carried the highest odds of low neurocognitive performance across all domains (odds ratio 2.85, P=0.002). Hydrocephalus and seizures at diagnosis were the clinical characteristics most frequently associated with worse performance in neurocognitive domains (5 of 7 domains). Overall, executive function and verbal learning were the most frequently negatively impacted neurocognitive domains. Conclusion Presence of CMB, APOE ϵ4 carrier status, hydrocephalus, and seizures correlate with worse neurocognitive outcomes in pediatric cancer survivors, enriched with CNS tumors exposed to radiation. Ongoing research is underway to verify trends in larger cohorts.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
| | - Lennox Byer
- UCSF School of Medicine, University of California, San Francisco, United States
| | - David Samuel
- Division of Pediatric Hematology/Oncology, Valley Children’s Hospital, Madera, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Andreas M. Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Walter Faig
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dena B. Dubal
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Heather J. Fullerton
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Sabine Mueller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, CA, United States
- *Correspondence: Sabine Mueller,
| |
Collapse
|
9
|
van Kessel E, Berendsen S, Baumfalk AE, Venugopal H, Krijnen EA, Spliet WGM, van Hecke W, Giuliani F, Seute T, van Zandvoort MJE, Snijders TJ, Robe PA. Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma. Neuro Oncol 2022; 24:1660-1670. [PMID: 35148403 PMCID: PMC9527514 DOI: 10.1093/neuonc/noac036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cognitive impairment is a common and debilitating symptom in patients with diffuse glioma, and is the result of multiple factors. We hypothesized that molecular tumor characteristics influence neurocognitive functioning (NCF), and aimed to identify tumor-related markers of NCF in diffuse glioma patients. METHODS We examined the relation between cognitive performance (executive function, memory, and psychomotor speed) and intratumoral expression levels of molecular markers in treatment-naive patients with diffuse glioma. We performed a single-center study in a consecutive cohort, through a two-step design: (1) hypothesis-free differential expression and gene set enrichment analysis to identify candidate oncogenetic markers for cognitive impairment. Nineteen molecular markers of interest were derived from this set of genes, as well as from prior knowledge; (2) correlation of cognitive performance to intratumoral expression levels of these nineteen molecular markers, measured with immunohistochemistry. RESULTS From 708 included patients with immunohistochemical data, we performed an in-depth analysis of neuropsychological data in 197, and differential expression analysis in 65 patients. After correcting for tumor volume and location, we found significant associations between expression levels of CD3 and IDH-1 and psychomotor speed; between IDH-1, ATRX, NLGN3, BDNF, CK2Beta, EAAT1, GAT-3, SRF, and memory performance; and between IDH-1, P-STAT5b, NLGN3, CK2Beta, and executive functioning. P-STAT5b, CD163, CD3, and Semaphorin-3A were independently associated after further correction for histopathological grade. CONCLUSION Molecular characteristics of glioma can be independent determinants of patients' cognitive functioning. This suggests that besides tumor volume, location, and histological grade, variations in glioma biology influence cognitive performance through mechanisms that include perturbation of neuronal communication. These results pave the way towards targeted cognition improving therapies in neuro-oncology.
Collapse
Affiliation(s)
- Emma van Kessel
- Corresponding Author: Emma van Kesssel, MD, University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, internal address G03.232, PO Box 85500, 3508 XC Utrecht, The Netherlands ()
| | - Sharon Berendsen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Anniek E Baumfalk
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Hema Venugopal
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Eva A Krijnen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Wim G M Spliet
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Wim van Hecke
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Fabrizio Giuliani
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Tatjana Seute
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
10
|
Noll K, King AL, Dirven L, Armstrong TS, Taphoorn MJB, Wefel JS. Neurocognition and Health-Related Quality of Life Among Patients with Brain Tumors. Hematol Oncol Clin North Am 2021; 36:269-282. [PMID: 34711455 DOI: 10.1016/j.hoc.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with brain tumors experience great symptom burden across various domains of functioning, with associated decreases in health-related quality of life and general well-being. Impaired neurocognitive functioning is among the primary concerns of these patients. Unfortunately, most patients will experience such impairment at some point in the disease. However, impaired neurocognitive functioning, symptom burden, and well-being vary according numerous patient-, tumor-, and treatment-related factors. Recent work has furthered our understanding of these contributors to patient functioning and health-related quality of life and also points to various potential targets for prevention and intervention strategies, though more efficacious treatments remain needed.
Collapse
Affiliation(s)
- Kyle Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA
| | - Amanda L King
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9030 Old Georgetown Road, Building 82, Room 214, Bethesda, MD 20892, USA
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, PO Box 432, 2501 CK, The Hague, the Netherlands
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 82, Room 201, Bethesda, MD 20892, USA
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, PO Box 432, 2501 CK, The Hague, the Netherlands
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Farace P, Tamburin S. Combining Low-Dose Radiation Therapy and Magnetic Resonance Guided Focused Ultrasound to Reduce Amyloid-β Deposition in Alzheimer's Disease. J Alzheimers Dis 2021; 84:69-72. [PMID: 34487049 DOI: 10.3233/jad-215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β deposition is one of the neuropathological hallmarks of Alzheimer's disease (AD), but pharmacological strategies toward its reduction are poorly effective.Preclinical studies indicate that low-dose radiation therapy (LD-RT) may reduce brain amyloid-β. Animal models and proof-of-concept preliminary data in humans have shown that magnetic resonance guided focused ultrasound (MRgFUS) can reversibly open the blood-brain-barrier and facilitate the delivery of targeted therapeutics to the hippocampus, to reduce amyloid-β and promote neurogenesis in AD. Ongoing clinical trials on AD are exploring whole-brain LD-RT, which may damage radio-sensitive structures, i.e., hippocampus and white matter, thus contributing to reduced neurogenesis and radiation-induced cognitive decline. However, selective irradiation of cortical amyloid-β plaques through advanced LD-RT techniques might spare the hippocampus and white matter. We propose combined use of advanced LD-RT and targeted drug delivery through MRgFUS for future clinical trials to reduce amyloid-β deposition in AD since its preclinical stages.
Collapse
Affiliation(s)
- Paolo Farace
- Protontherapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona, Italy.,Verona University Hospital, Verona, Italy
| |
Collapse
|
12
|
Kautiainen RJ, Keeler C, Dwivedi B, MacDonald TJ, King TZ. MTHFR single nucleotide polymorphism associated with working memory in pediatric medulloblastoma survivors. Child Neuropsychol 2021; 28:287-301. [PMID: 34448443 DOI: 10.1080/09297049.2021.1970736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background Associations have been found between single nucleotide polymorphisms (SNPs) in the MTHFR gene and cognitive outcomes in cancer survivors. Prior research has demonstrated that the presence of MTHFR SNPs (rs1801131 and rs1801133) in survivors of acute lymphoblastic leukemia (ALL) corresponds to impairments in attention and executive functioning. The current study examines the associations between rs1801131 and/or rs1801133 SNPs and cognitive performance in long-term survivors of medulloblastoma. Procedure: Eighteen pediatric medulloblastoma survivors, on average 12.42 years post-diagnosis, completed the Digit Span Forward, Digit Span Backward, California Verbal Learning Test Trial 1, and Auditory Consonant Trigrams tests. MTHFR SNPs were detected using whole genome sequencing data and custom scripts within R software. Results: Survivors with a rs1801131 SNP performed significantly worse on Digit Span Backward than survivors without this SNP exhibiting a large effect (p = 0.049; d = 0.95). Survivors with a rs1801131 SNP performed worse on Digit Span Forward (d = 0.478) and the CVLT Trial 1 (d = 0.417) with medium effect sizes. In contrast to rs1801131, relationships were not identified between a rs1801133 SNP and these performance measures. Conclusions Our findings demonstrate the potential links between MTHFR SNPs and cognitive outcomes following treatment in brain tumor survivors. The current findings establish a novel relationship between rs1801131 and working memory in medulloblastoma. Increases in homocysteine levels and oxidative damage from radiation may lead to adverse long-term outcomes. This establishes the need to look beyond leukemia and methotrexate treatment to consider the risk of MTHFR SNPs for medulloblastoma survivors.
Collapse
Affiliation(s)
| | - Courtney Keeler
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta GA, USA.,Emory University Medical School, Atlanta, GA, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Butterbrod E, Sitskoorn M, Bakker M, Jakobs B, Fleischeuer R, Roijers J, Rutten G, Gehring K. The APOE ε4 allele in relation to pre- and postsurgical cognitive functioning of patients with primary brain tumors. Eur J Neurol 2021; 28:1665-1676. [PMID: 33342004 PMCID: PMC8247965 DOI: 10.1111/ene.14693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recent studies suggest a relationship between the APOE ε4 allele and cognitive outcome in patients treated for malignant brain tumors. Still, longitudinal investigations that include a pretreatment cognitive assessment are lacking and APOE's effects in patients with benign tumors are understudied. This study investigated presurgical cognitive performance and postsurgical change in ε4-carrying and non-carrying patients with glioma and meningioma. METHODS Neuropsychological test scores (CNS Vital Signs battery [seven measures], Digit Span Forward/Backward, Letter Fluency test) were obtained as part of a prospective study in which patients with meningioma and glioma underwent cognitive assessment 1 day before (T0, n = 505) and 3 (T3, n = 418) and 12 months after (T12, n = 167) surgery. APOE isoforms were identified retrospectively. ε4 carriers and non-carriers were compared with regard to pretreatment cognitive performance on the group and individual level. Changes in performances over time were compared with longitudinal mixed model analysis in the total sample and the subgroup receiving adjuvant treatment. RESULTS Carriers and non-carriers did not differ with regard to pretreatment performance. No significant main effect of ε4 carrier status or interaction between time (T0-T12) and carrier status was found on any of the tests in the whole sample nor in the sample receiving adjuvant treatment. CONCLUSIONS This study found no evidence of increased vulnerability for pretreatment cognitive dysfunction or cognitive decline within 1 year after surgery in APOE ε4-carrying meningioma and glioma patients. Investigations that include larger samples at longer-term follow-up are recommended to investigate potential late treatment effects.
Collapse
Affiliation(s)
- Elke Butterbrod
- Department of Cognitive NeuropsychologyTilburg UniversityTilburgThe Netherlands
| | - Margriet Sitskoorn
- Department of Cognitive NeuropsychologyTilburg UniversityTilburgThe Netherlands
| | - Marjan Bakker
- Department of Methodology and StatisticsTilburg UniversityTilburgThe Netherlands
| | - Bernadette Jakobs
- Department of Laboratory MedicineElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| | - Ruth Fleischeuer
- Clinical Pathology LaboratoryElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| | - Janine Roijers
- Department of Laboratory MedicineElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| | - Geert‐Jan Rutten
- Department of NeurosurgeryElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| | - Karin Gehring
- Department of Cognitive NeuropsychologyTilburg UniversityTilburgThe Netherlands
- Department of NeurosurgeryElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| |
Collapse
|
15
|
Geng H, Tsang M, Subbaraj L, Cleveland J, Chen L, Lu M, Sharma J, Vigneron DB, Kurhanewicz J, LaFontaine M, Luks T, Barshop BA, Gangoiti J, Villanueva-Meyer JE, Rubenstein JL. Tumor Metabolism and Neurocognition in CNS Lymphoma. Neuro Oncol 2021; 23:1668-1679. [PMID: 33625503 DOI: 10.1093/neuonc/noab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The mechanistic basis for neurocognitive deficits in CNS lymphoma and other brain tumors is incompletely understood. We tested the hypothesis that tumor metabolism impairs neurotransmitter pathways and neurocognitive function. METHODS We performed serial cerebrospinal fluid (CSF) metabolomic analyses using liquid chromatography-electrospray tandem mass spectrometry to evaluate changes in the tumor microenvironment in 14 patients with recurrent CNS lymphoma, focusing on 18 metabolites involved in neurotransmission and bioenergetics. These were paired with serial mini-mental state examinations (MMSE) and MRI studies for tumor volumetric analyses. Patients were analyzed in the setting of the phase I trial of lenalidomide/rituximab. Associations were assessed by Pearson and Spearman correlation coefficient. Generalized estimating equation (gee) models were also established, adjusting for within-subject repeated measures. RESULTS Of 18 metabolites, elevated CSF lactate correlated most strongly with lower MMSE score (p<8E-8, rho=-0.67). High lactate was associated with lower GABA, higher glutamate/GABA ratio and dopamine. Conversely, high succinate correlated with higher MMSE score. Serial analysis demonstrated a reproducible, time-dependent, reciprocal correlation between changes in lactate and GABA concentrations. While high lactate and low GABA correlated with tumor contrast enhancing volume, they correlated more significantly with lower MMSE scores than tumor volumes. CONCLUSIONS We provide evidence that lactate production and Warburg metabolism may impact neurotransmitter dysregulation and neurocognition in CNS lymphomas. We identify novel metabolomic biomarkers that may be applied in future studies of neurocognition in CNS lymphomas. Elucidation of mechanistic interactions between lymphoma metabolism, neurotransmitter imbalance and neurocognition may promote interventions that preserve cognitive function.
Collapse
Affiliation(s)
- Huimin Geng
- Laboratory Medicine, University of California, San Francisco (UCSF).,Helen Diller Family Comprehensive Cancer Center, UCSF
| | - Mazie Tsang
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | | | | | - Lingjing Chen
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | - Ming Lu
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | | | - Daniel B Vigneron
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Radiology and Biomedical Imaging
| | - John Kurhanewicz
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Radiology and Biomedical Imaging
| | | | | | - Bruce A Barshop
- Genetics and Pediatrics, University of California, San Diego
| | - Jon Gangoiti
- Genetics and Pediatrics, University of California, San Diego
| | | | - James L Rubenstein
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Hematology/Oncology, UCSF
| |
Collapse
|
16
|
Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile. Mod Pathol 2021; 34:264-279. [PMID: 33051600 PMCID: PMC9361192 DOI: 10.1038/s41379-020-00659-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2-46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0-7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation.
Collapse
|
17
|
Padula CB, Hansen A, Hughes RL, McNerney MW. Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment. Brain Sci 2021; 11:62. [PMID: 33419001 PMCID: PMC7825287 DOI: 10.3390/brainsci11010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Alcohol use disorder (AUD) is associated with poor medical, psychological, and psychosocial outcomes and approximately 60% of individuals with AUD relapse six months after treatment. Craving is a core aspect of AUD and associated with high risk of relapse. One promising avenue to improve outcomes may be in understanding the relationship between COMT genotype, craving, and treatment outcomes. (2) Methods: To this end, we assessed craving, recent drinking history, and impulsivity in 70 individuals with AUD undergoing a standard course of treatment at a regional Veteran Affairs (VA) medical center. Saliva samples were collected to determine COMT genotype. In this prospective observational study, participants were followed for six months to determine who went on to relapse after treatment. (3) Results: Results revealed a significant interaction between craving and catechol-O-methyltransferse (COMT) genotype in predicting relapse. Post hoc exploratory analyses indicated that Met/Met homozygotes reported the highest levels of craving, and craving was associated with recent drinking history. Among Val/Val homozygotes, who had higher rates of relapse, craving was associated with impulsivity. (4) Conclusions: These associations highlight that specific profiles of psychological and biological factors may be important in understanding which individuals are at highest risk of relapse following treatment. Future studies that build on these findings are warranted.
Collapse
Affiliation(s)
- Claudia B. Padula
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Annika Hansen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rachel L. Hughes
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| | - M. Windy McNerney
- VA Palo Alto Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94304, USA; (R.L.H.); (M.W.M.)
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
18
|
Wei Y, Zhou K, Wang C, Du X, Xiao Q, Chen C. Adsorption of miR-218 by lncRNA HOTAIR regulates PDE7A and affects glioma cell proliferation, invasion, and apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2973-2983. [PMID: 33425098 PMCID: PMC7791379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate the role of targeted adsorption of miR-218 by long-chain non-coding RNAHOTAIR to regulate PDE7A on glioma cell proliferation, invasion, and apoptosis. METHODS The expressions of lncRNA HOTAIR, miR-218, and PDE7A in glioma tissues and normal parcancer tissues, NHA and glioma cell lines were determined, and correlations among the three genes were analyzed. The subcellular localization of lncRNA HOTAIR was determined by fluorescent in situ hybridization. Dual-luciferase reporter assay was used to validate the targeted relationship between lncRNA HOTAIR/miR-218/PDE7A. Glioma cells were grouped to receive intervention of lncRNA HOTAIR or miR-218. MTT, transwell, and flow cytometry were performed to determine the proliferation, invasion, and apoptosis of cells. RESULTS Compared with the normal tissues and cells, the expression of lncRNA HOTAIR was increased while miR-218 was suppressed in glioma tissues samples and cells (all P<0.05). Inhibition of lncRNA HOTAIR expression, was able to induce apoptosis and suppress the proliferation and invasion of cells (all P<0.05). LncRNA HOTAIR is mainly localized in the cytoplasm, and is able to adsorb miR-218 as ceRNA. The effect of knockdown of HOTAIR on glioma cells could be partially rescued by miR-218 inhibitor. The expression of PDE7A was enhanced in glioma tissues and cells compared to normal tissues and cells (all P<0.05), which positively correlated with the expression of HOTAIR (r=0.546, P<0.05) and negatively correlated with the expression of miR-218 (r=0.363, P<0.05). The targeted relationship between miR-218 and PDE7A was validated: Overexpression of miR-218 was able to suppress the proliferation and invasion of glioma cells and restrain apoptosis compared to the miR-NC group (all P<0.05). The effect of miR-218 on glioma cells could be partially rescued by PDE7A. CONCLUSION lncRNA HOTAIR can adsorb miR-218 to regulate expression of PDE7A and promote the malignant biologic behavior of glioma cells.
Collapse
Affiliation(s)
- Yigong Wei
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| | - Kun Zhou
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| | - Cheng Wang
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| | - Xiaolin Du
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| | - Qing Xiao
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| | - Changyi Chen
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital) Guiyang, Guizhou Province, China
| |
Collapse
|
19
|
Impaired neurocognitive function in glioma patients: from pathophysiology to novel intervention strategies. Curr Opin Neurol 2020; 33:716-722. [PMID: 33009006 DOI: 10.1097/wco.0000000000000865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review succinctly summarizes the recent literature regarding etiological contributors to impaired neurocognitive function (NCF) in adult patients with glioma. A brief overview of intervention and prevention strategies is also provided. RECENT FINDINGS A majority of patients with glioma exhibit NCF deficits, most frequently in memory and executive functioning. Impairments are often disabling and associated with reduced quality of life and survival. Cause is multifactorial and includes the tumour itself, treatments received and associated comorbidities. Although modern techniques such as brain mapping, dosing modifications and prophylactic medication aim to improve the NCF outcomes following neurosurgical resection and radiation therapy, a sizeable proportion of patients continue to evidence treatment-related NCF declines related to adverse effects to both local and distributed cerebral networks. Numerous patient and tumour characteristics, including genetic markers and sociodemographic factors, influence the pattern and severity of NCF impairment. Some rehabilitative and pharmacologic approaches show promise in mitigating NCF impairment in this population, though benefits are somewhat modest and larger scale intervention studies are needed. SUMMARY Research regarding NCF in patients with glioma has dramatically proliferated, providing insights into the mechanisms underlying impaired NCF and pointing to potential interventions, though further work is needed.
Collapse
|
20
|
Expression of Dopamine-Related Genes in Four Human Brain Regions. Brain Sci 2020; 10:brainsci10080567. [PMID: 32824878 PMCID: PMC7465182 DOI: 10.3390/brainsci10080567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
A better understanding of dopaminergic gene expression will inform future treatment options for many different neurologic and psychiatric conditions. Here, we utilized the National Institutes of Health’s Genotype-Tissue Expression project (GTEx) dataset to investigate genotype by expression associations in seven dopamine pathway genes (ANKK1, DBH, DRD1, DRD2, DRD3, DRD5, and SLC6A3) in and across four human brain tissues (prefrontal cortex, nucleus accumbens, substantia nigra, and hippocampus). We found that age alters expression of DRD1 in the nucleus accumbens and prefrontal cortex, DRD3 in the nucleus accumbens, and DRD5 in the hippocampus and prefrontal cortex. Sex was associated with expression of DRD5 in substantia nigra and hippocampus, and SLC6A3 in substantia nigra. We found that three linkage disequilibrium blocks of SNPs, all located in DRD2, were associated with alterations in expression across all four tissues. These demographic characteristic associations and these variants should be further investigated for use in screening, diagnosis, and future treatment of neurological and psychiatric conditions.
Collapse
|
21
|
Johnson LA. APOE and metabolic dysfunction in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:131-151. [PMID: 32739002 DOI: 10.1016/bs.irn.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|