1
|
Kiani P, Hassanzadeh G, Jameie SB, Batouli SAH. Exploration of the white matter bundles connected to the pineal gland: A DTI study. Surg Radiol Anat 2024; 46:1571-1584. [PMID: 39102045 DOI: 10.1007/s00276-024-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are reports on the role of this area for brain function by hormone secretion, as well as few reports on its role in brain cognition. However, little knowledge is available on the PG, and in particular on the structural connectivity of this region with the other brain structures. METHODS Using diffusion-weighted images collected by a 3T MRI scanner, and using a sample of 61 (29 F) mentally and physically healthy young individuals in the age range of 20-30 years old, we tried to extract the white matter bundles connected to the PG. Based on prior knowledge, seven target bundles were suggested to be between the PG body and the PG roots, Pons, Periventricular region, thalamus, caudate, lentiform, suprachiasmatic nuclei, and the supercervical ganglia. RESULTS Nearly all the target bundles were successfully extracted, with the exception of the lentiform. Rate of identification of the tracts was different, with the bundle between the PG body and roots having the highest identification rate (97%); then it was with the Pons (70%), Periventricular region (57%), SCN (55%), left thalamus (52%), right thalamus (47%), left caudate (27%) and right caudate (22%). CONCLUSION This study is an attempt to expand our knowledge on the neuroanatomy of the PG, which might help for identifying further roles for it in brain functionality, and also be a help for the treatment of some disorders in the future.
Collapse
Affiliation(s)
- Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran.
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Janko M, Santaniello SD, Brockmann C, Wolf M, Grauhan NF, Schöffling VI, Dimova V, Ponto K, Hoffmann EM, Kleinekofort W, Othman AE, Brockmann MA, Kronfeld A. Comparison of T1-weighted landmark placement and ROI transfer onto diffusion-weighted EPI sequences for targeted tractography tasks in the optic nerve. Eur J Neurosci 2024; 60:4987-4999. [PMID: 39085986 DOI: 10.1111/ejn.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Diffusion-based tractography in the optic nerve requires sampling strategies assisted by anatomical landmark information (regions of interest [ROIs]). We aimed to investigate the feasibility of expert-placed, high-resolution T1-weighted ROI-data transfer onto lower spatial resolution diffusion-weighted images. Slab volumes from 20 volunteers were acquired and preprocessed including distortion bias correction and artifact reduction. Constrained spherical deconvolution was used to generate a directional diffusion information grid (fibre orientation distribution-model [FOD]). Three neuroradiologists marked landmarks on both diffusion imaging variants and structural datasets. Structural ROI information (volumetric interpolated breath-hold sequence [VIBE]) was respectively registered (linear with 6/12 degrees of freedom [DOF]) onto single-shot EPI (ss-EPI) and readout-segmented EPI (rs-EPI) volumes, respectively. All eight ROI/FOD-combinations were compared in a targeted tractography task of the optic nerve pathway. Inter-rater reliability for placed ROIs among experts was highest in VIBE images (lower confidence interval 0.84 to 0.97, mean 0.91) and lower in both ss-EPI (0.61 to 0.95, mean 0.79) and rs-EPI (0.59 to 0.86, mean 0.70). Tractography success rate based on streamline selection performance was highest in VIBE-drawn ROIs registered (6-DOF) onto rs-EPI FOD (70.0% over 5%-threshold, capped to failed ratio 39/16) followed by both 12-DOF-registered (67.5%; 41/16) and nonregistered VIBE (67.5%; 40/23). On ss-EPI FOD, VIBE-ROI-datasets obtained fewer streamlines overall with each at 55.0% above 5%-threshold and with lower capped to failed ratio (6-DOF: 35/36; 12-DOF: 34/34, nonregistered 33/36). The combination of VIBE-placed ROIs (highest inter-rater reliability) with 6-DOF registration onto rs-EPI targets (best streamline selection performance) is most suitable for white matter template generation required in group studies.
Collapse
Affiliation(s)
- Markus Janko
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sascha D Santaniello
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcel Wolf
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa I Schöffling
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Violeta Dimova
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Katharina Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Esther M Hoffmann
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Pojskić M, Bopp MHA, Saß B, Nimsky C. Single-Center Experience in Microsurgical Resection of Acoustic Neurinomas and the Benefit of Microscope-Based Augmented Reality. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:932. [PMID: 38929549 PMCID: PMC11487442 DOI: 10.3390/medicina60060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Microsurgical resection with intraoperative neuromonitoring is the gold standard for acoustic neurinomas (ANs) which are classified as T3 or T4 tumors according to the Hannover Classification. Microscope-based augmented reality (AR) can be beneficial in cerebellopontine angle and lateral skull base surgery, since these are small areas packed with anatomical structures and the use of this technology enables automatic 3D building of a model without the need for a surgeon to mentally perform this task of transferring 2D images seen on the microscope into imaginary 3D images, which then reduces the possibility of error and provides better orientation in the operative field. Materials and Methods: All patients who underwent surgery for resection of ANs in our department were included in this study. Clinical outcomes in terms of postoperative neurological deficits and complications were evaluated, as well as neuroradiological outcomes for tumor remnants and recurrence. Results: A total of 43 consecutive patients (25 female, median age 60.5 ± 16 years) who underwent resection of ANs via retrosigmoid osteoclastic craniotomy with the use of intraoperative neuromonitoring (22 right-sided, 14 giant tumors, 10 cystic, 7 with hydrocephalus) by a single surgeon were included in this study, with a median follow up of 41.2 ± 32.2 months. A total of 18 patients underwent subtotal resection, 1 patient partial resection and 24 patients gross total resection. A total of 27 patients underwent resection in sitting position and the rest in semi-sitting position. Out of 37 patients who had no facial nerve deficit prior to surgery, 19 patients were intact following surgery, 7 patients had House Brackmann (HB) Grade II paresis, 3 patients HB III, 7 patients HB IV and 1 patient HB V. Wound healing deficit with cerebrospinal fluid (CSF) leak occurred in 8 patients (18.6%). Operative time was 317.3 ± 99 min. One patient which had recurrence and one further patient with partial resection underwent radiotherapy following surgery. A total of 16 patients (37.2%) underwent resection using fiducial-based navigation and microscope-based AR, all in sitting position. Segmented objects of interest in AR were the sigmoid and transverse sinus, tumor outline, cranial nerves (CN) VII, VIII and V, petrous vein, cochlea and semicircular canals and brain stem. Operative time and clinical outcome did not differ between the AR and the non-AR group. However, use of AR improved orientation in the operative field for craniotomy planning and microsurgical resection by identification of important neurovascular structures. Conclusions: The single-center experience of resection of ANs showed a high rate of gross total (GTR) and subtotal resection (STR) with low recurrence. Use of AR improves intraoperative orientation and facilitates craniotomy planning and AN resection through early improved identification of important anatomical relations to structures of the inner auditory canal, venous sinuses, petrous vein, brain stem and the course of cranial nerves.
Collapse
Affiliation(s)
- Mirza Pojskić
- Department of Neurosurgery, University of Marburg, 35037 Marburg, Germany; (M.H.A.B.); (B.S.); (C.N.)
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, 35037 Marburg, Germany; (M.H.A.B.); (B.S.); (C.N.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35032 Marburg, Germany
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, 35037 Marburg, Germany; (M.H.A.B.); (B.S.); (C.N.)
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, 35037 Marburg, Germany; (M.H.A.B.); (B.S.); (C.N.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35032 Marburg, Germany
| |
Collapse
|
4
|
Abdullaeva U, Pape B, Hirvonen J. Diagnostic Accuracy of MRI in Detecting the Perineural Spread of Head and Neck Tumors: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:113. [PMID: 38201423 PMCID: PMC10795679 DOI: 10.3390/diagnostics14010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this study was to review the diagnostic accuracy of MRI in detecting perineural spreading (PNS) of head and neck tumors using histopathological or surgical evidence from the afflicted nerve as the reference standard. Previous studies in the English language published in the last 30 years were searched from PubMed and Embase databases. We included studies that used magnetic resonance imaging (MRI) (with and without contrast enhancement) to detect PNS, as well as the histological or surgical confirmation of PNS, and that reported the exact numbers of patients required for assessing diagnostic accuracy. The outcome measures were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Heterogeneity was assessed with the Higgins inconsistency test (I2). P-values smaller than 0.05 were considered statistically significant. A total of 11 retrospective studies were found, reporting 319 nerve samples from 245 patients. Meta-analytic estimates and their 95% confidence intervals were as follows: sensitivity 0.85 (0.70-0.95), specificity 0.85 (0.80-0.89), PPV 0.86 (0.70-0.94), and NPV 0.85 (0.71-0.93). We found statistically significant heterogeneity for sensitivity (I2 = 72%, p = 0.003) and PPV (I2 = 70%, p = 0.038), but not for NPV (I2 = 65%, p = 0.119) or specificity (I2 = 12%, p = 0.842). The most frequent MRI features of PNS were nerve enlargement and enhancement. Squamous cell carcinoma and adenoid cystic carcinoma were the most common tumor types, and the facial and trigeminal nerves were the most commonly affected nerves in PNS. Only a few studies provided examples of false MRI diagnoses. MRI demonstrated high diagnostic accuracy in depicting PNS of cranial nerves, yet this statement was based on scarce and heterogeneous evidence.
Collapse
Affiliation(s)
- Umida Abdullaeva
- Department of Radiology, Tashkent City Branch of the Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology, Tashkent 100054, Uzbekistan
| | - Bernd Pape
- Department of Biostatistics, University of Turku and Turku University Hospital, 20521 Turku, Finland;
- School of Technology and Innovations, University of Vaasa, 65101 Vaasa, Finland
| | - Jussi Hirvonen
- Department of Radiology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, 33100 Tampere, Finland;
| |
Collapse
|
5
|
Shapey J, Vos SB, Mancini L, Sanders B, Thornton JS, Tournier JD, Saeed SR, Kitchen N, Khalil S, Grover P, Bradford R, Dorent R, Sparks R, Vercauteren T, Yousry T, Bisdas S, Ourselin S. Diffusion MRI of the facial-vestibulocochlear nerve complex: a prospective clinical validation study. Eur Radiol 2023; 33:8067-8076. [PMID: 37328641 PMCID: PMC10598116 DOI: 10.1007/s00330-023-09736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/08/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Surgical planning of vestibular schwannoma surgery would benefit greatly from a robust method of delineating the facial-vestibulocochlear nerve complex with respect to the tumour. This study aimed to optimise a multi-shell readout-segmented diffusion-weighted imaging (rs-DWI) protocol and develop a novel post-processing pipeline to delineate the facial-vestibulocochlear complex within the skull base region, evaluating its accuracy intraoperatively using neuronavigation and tracked electrophysiological recordings. METHODS In a prospective study of five healthy volunteers and five patients who underwent vestibular schwannoma surgery, rs-DWI was performed and colour tissue maps (CTM) and probabilistic tractography of the cranial nerves were generated. In patients, the average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD-95) were calculated with reference to the neuroradiologist-approved facial nerve segmentation. The accuracy of patient results was assessed intraoperatively using neuronavigation and tracked electrophysiological recordings. RESULTS Using CTM alone, the facial-vestibulocochlear complex of healthy volunteer subjects was visualised on 9/10 sides. CTM were generated in all 5 patients with vestibular schwannoma enabling the facial nerve to be accurately identified preoperatively. The mean ASSD between the annotators' two segmentations was 1.11 mm (SD 0.40) and the mean HD-95 was 4.62 mm (SD 1.78). The median distance from the nerve segmentation to a positive stimulation point was 1.21 mm (IQR 0.81-3.27 mm) and 2.03 mm (IQR 0.99-3.84 mm) for the two annotators, respectively. CONCLUSIONS rs-DWI may be used to acquire dMRI data of the cranial nerves within the posterior fossa. CLINICAL RELEVANCE STATEMENT Readout-segmented diffusion-weighted imaging and colour tissue mapping provide 1-2 mm spatially accurate imaging of the facial-vestibulocochlear nerve complex, enabling accurate preoperative localisation of the facial nerve. This study evaluated the technique in 5 healthy volunteers and 5 patients with vestibular schwannoma. KEY POINTS • Readout-segmented diffusion-weighted imaging (rs-DWI) with colour tissue mapping (CTM) visualised the facial-vestibulocochlear nerve complex on 9/10 sides in 5 healthy volunteer subjects. • Using rs-DWI and CTM, the facial nerve was visualised in all 5 patients with vestibular schwannoma and within 1.21-2.03 mm of the nerve's true intraoperative location. • Reproducible results were obtained on different scanners.
Collapse
Affiliation(s)
- Jonathan Shapey
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
- Department of Neurosurgery, King's College Hospital, London, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| | - Laura Mancini
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Brett Sanders
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - John S Thornton
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Shakeel R Saeed
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- The Ear Institute, University College London, London, UK
- The Royal National Throat, Nose and Ear Hospital, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Sherif Khalil
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- The Royal National Throat, Nose and Ear Hospital, London, UK
| | - Patrick Grover
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Robert Bradford
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Reuben Dorent
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Sanchez SM, Tsuchiyagaito A, Kuplicki R, Park H, Postolski I, Rohan M, Paulus MP, Guinjoan SM. Repetitive Negative Thinking-Specific and -Nonspecific White Matter Tracts Engaged by Historical Psychosurgical Targets for Depression. Biol Psychiatry 2023; 94:661-671. [PMID: 36965550 PMCID: PMC10517085 DOI: 10.1016/j.biopsych.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.
Collapse
Affiliation(s)
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | | | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas, Dallas, Texas
| | - Ivan Postolski
- Institute for Research in Computational Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma University Health Sciences Center, Tulsa, Oklahoma.
| |
Collapse
|
7
|
Carrozzi A, Gramegna LL, Sighinolfi G, Zoli M, Mazzatenta D, Testa C, Lodi R, Tonon C, Manners DN. Methods of diffusion MRI tractography for localization of the anterior optic pathway: A systematic review of validated methods. Neuroimage Clin 2023; 39:103494. [PMID: 37651845 PMCID: PMC10477810 DOI: 10.1016/j.nicl.2023.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
The anterior optic pathway (AOP) is a system of three structures (optic nerves, optic chiasma, and optic tracts) that convey visual stimuli from the retina to the lateral geniculate nuclei. A successful reconstruction of the AOP using tractography could be helpful in several clinical scenarios, from presurgical planning and neuronavigation of sellar and parasellar surgery to monitoring the stage of fiber degeneration both in acute (e.g., traumatic optic neuropathy) or chronic conditions that affect AOP structures (e.g., amblyopia, glaucoma, demyelinating disorders or genetic optic nerve atrophies). However, its peculiar anatomy and course, as well as its surroundings, pose a serious challenge to obtaining successful tractographic reconstructions. Several AOP tractography strategies have been adopted but no standard procedure has been agreed upon. We performed a systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 guidelines in order to find the combinations of acquisition and reconstruction parameters that have been performed previously and have provided the highest rate of successful reconstruction of the AOP, in order to promote their routine implementation in clinical practice. For this purpose, we reviewed data regarding how the process of anatomical validation of the tractographies was performed. The Cochrane Handbook for Systematic Reviews of Interventions was used to assess the risk of bias and thus the study quality We identified thirty-nine studies that met our inclusion criteria, and only five were considered at low risk of bias and achieved over 80% of successful reconstructions. We found a high degree of heterogeneity in the acquisition and analysis parameters used to perform AOP tractography and different combinations of them can achieve satisfactory levels of anterior optic tractographic reconstruction both in real-life research and clinical scenarios. One thousand s/mm2 was the most frequently used b value, while both deterministic and probabilistic tractography algorithms performed morphological reconstruction of the tract satisfactorily, although probabilistic algorithms estimated a more realistic percentage of crossing fibers (45.6%) in healthy subjects. A wide heterogeneity was also found regarding the method used to assess the anatomical fidelity of the AOP reconstructions. Three main strategies can be found: direct visual direct visual assessment of the tractography superimposed to a conventional MR image, surgical evaluation, and computational methods. Because the latter is less dependent on a priori knowledge of the anatomy by the operator, computational methods of validation of the anatomy should be considered whenever possible.
Collapse
Affiliation(s)
- Alessandro Carrozzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.
| | - Giovanni Sighinolfi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Pituitary Unit, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Pituitary Unit, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - David Neil Manners
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department for Life Quality Studies (QUVI), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Hsieh KCJ, Addae-Mensah K, Alrohaibani Y, Goad A, Learned K. Perineural Spread of Tumor in the Skull Base and Head and Neck. Oral Maxillofac Surg Clin North Am 2023:S1042-3699(23)00006-7. [PMID: 37005170 DOI: 10.1016/j.coms.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Perineural tumor spread (PNS) is a well-recognized entity in head and neck cancers and represents a mode of metastasis along nerves. The trigeminal and facial nerves are most affected by PNS, and their connections are reviewed. MRI is the most sensitive modality for detecting PNS, and their anatomy and interconnections are reviewed. MRI is the most sensitive modality for detecting PNS, and imaging features of PNS and important imaging checkpoints are reviewed. Optimal imaging protocol and techniques are summarized as well as other entities that can mimic PNS.
Collapse
|
9
|
Guinjoan SM. Personalized Definition of Surgical Targets in Major Depression and Obsessive-Compulsive Disorder: A Potential Role for Low-Intensity Focused Ultrasound? PERSONALIZED MEDICINE IN PSYCHIATRY 2023; 37-38:100100. [PMID: 36969502 PMCID: PMC10034711 DOI: 10.1016/j.pmip.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Major Depressive Disorder (MDD) and Obsessive-Compulsive Disorder (OCD) are common and potentially incapacitating conditions. Even when recognized and adequately treated, in over a third of patients with these conditions the response to first-line pharmacological and psychotherapeutic measures is not satisfactory. After more assertive measures including pharmacological augmentation (and in the case of depression, transcranial magnetic stimulation, electroconvulsive therapy, or treatment with ketamine or esketamine), a significant number of individuals remain severely symptomatic. In these persons, different ablation and deep-brain stimulation (DBS) psychosurgical techniques have been employed. However, apart from the cost and potential morbidity associated with surgery, on average only about half of patients show adequate response, which limits the widespread application of these potentially life-saving interventions. Possible reasons are considered for the wide variation in outcomes across different series of patients with MDD or OCD exposed to ablative or DBS psychosurgery, including interindividual anatomical and etiological variability. Low-intensity focused ultrasound (LIFU) is an emerging technique that holds promise in its ability to achieve anatomically circumscribed, noninvasive, and reversible neuromodulation of deep brain structures. A possible role for LIFU in the personalized presurgical definition of neuromodulation targets in the individual patient is discussed, including a proposed roadmap for clinical trials addressed at testing whether this technique can help to improve psychosurgical outcomes.
Collapse
Affiliation(s)
- Salvador M Guinjoan
- Laureate Institute for Brain Research and Department of Psychiatry, Oklahoma University Health Sciences Center at Tulsa
| |
Collapse
|
10
|
Zhylka A, Leemans A, Pluim JPW, De Luca A. Anatomically informed multi-level fiber tractography for targeted virtual dissection. MAGMA (NEW YORK, N.Y.) 2023; 36:79-93. [PMID: 35904612 PMCID: PMC9992235 DOI: 10.1007/s10334-022-01033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Diffusion-weighted MRI can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways, such as the corticospinal tract (CST). However, accurate reconstruction of the full extent of the CST remains challenging with existing tractography methods. We suggest a novel tractography algorithm exploiting unused fiber orientations to produce more complete and reliable results. METHODS Our novel approach, referred to as multi-level fiber tractography (MLFT), reconstructs fiber pathways by progressively considering previously unused fiber orientations at multiple levels of tract propagation. Anatomical priors are used to minimize the number of false-positive pathways. The MLFT method was evaluated on synthetic data and in vivo data by reconstructing the CST while compared to conventional tractography approaches. RESULTS The radial extent of MLFT reconstructions is comparable to that of probabilistic reconstruction: [Formula: see text] for the left and [Formula: see text] for the right hemisphere according to Wilcoxon test, while achieving significantly higher topography preservation compared to probabilistic tractography: [Formula: see text]. DISCUSSION MLFT provides a novel way to reconstruct fiber pathways by adding the capability of including branching pathways in fiber tractography. Thanks to its robustness, feasible reconstruction extent and topography preservation, our approach may assist in clinical practice as well as in virtual dissection studies.
Collapse
Affiliation(s)
- Andrey Zhylka
- Biomedical Engineering, Eindhoven University of Technology, Rondom 70, 5612 AP, Eindhoven, The Netherlands.
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josien P W Pluim
- Biomedical Engineering, Eindhoven University of Technology, Rondom 70, 5612 AP, Eindhoven, The Netherlands
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Dauleac C, Frindel C, Pélissou-Guyotat I, Nicolas C, Yeh FC, Fernandez-Miranda J, Cotton F, Jacquesson T. Full cervical cord tractography: A new method for clinical use. Front Neuroanat 2022; 16:993464. [PMID: 36237419 PMCID: PMC9550930 DOI: 10.3389/fnana.2022.993464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Despite recent improvements in diffusion-weighted imaging, spinal cord tractography is not used in routine clinical practice because of difficulties in reconstructing tractograms, with a pertinent tri-dimensional-rendering, in a long post-processing time. We propose a new full tractography approach to the cervical spinal cord without extensive manual filtering or multiple regions of interest seeding that could help neurosurgeons manage various spinal cord disorders. Four healthy volunteers and two patients with either cervical intramedullary tumors or spinal cord injuries were included. Diffusion-weighted images of the cervical spinal cord were acquired using a Philips 3 Tesla machine, 32 diffusion directions, 1,000 s/mm2b-value, 2 × 2 × 2 mm voxel size, reduced field-of-view (ZOOM), with two opposing phase-encoding directions. Distortion corrections were then achieved using the FSL software package, and tracking of the full cervical spinal cord was performed using the DSI Studio software (quantitative anisotropy-based deterministic algorithm). A unique region of avoidance was used to exclude everything that is not of the nervous system. Fiber tracking parameters used adaptative fractional anisotropy from 0.015 to 0.045, fiber length from 10 to 1,000 mm, and angular threshold of 90°. In all participants, a full cervical cord tractography was performed from the medulla to the C7 spine level. On a ventral view, the junction between the medulla and spinal cord was identified with its pyramidal bulging, and by an invagination corresponding to the median ventral sulcus. On a dorsal view, the fourth ventricle—superior, middle, and inferior cerebellar peduncles—was seen, as well as its floor and the obex; and gracile and cuneate tracts were recognized on each side of the dorsal median sulcus. In the case of the intramedullary tumor or spinal cord injury, the spinal tracts were seen to be displaced, and this helped to adjust the neurosurgical strategy. This new full tractography approach simplifies the tractography pipeline and provides a reliable 3D-rendering of the spinal cord that could help to adjust the neurosurgical strategy.
Collapse
Affiliation(s)
- Corentin Dauleac
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
- *Correspondence: Corentin Dauleac
| | - Carole Frindel
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
| | - Isabelle Pélissou-Guyotat
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Célia Nicolas
- Hospices Civils de Lyon, Centre Hospitalier de Lyon Sud, Service de Radiologie, Lyon, France
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Juan Fernandez-Miranda
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - François Cotton
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier de Lyon Sud, Service de Radiologie, Lyon, France
| | - Timothée Jacquesson
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
| |
Collapse
|
12
|
Decroocq M, Des Ligneris M, Poquillon T, Vincent M, Aubert M, Jacquesson T, Frindel C. Automation of Cranial Nerve Tractography by Filtering Tractograms for Skull Base Surgery. FRONTIERS IN NEUROIMAGING 2022; 1:838483. [PMID: 37555173 PMCID: PMC10406276 DOI: 10.3389/fnimg.2022.838483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 08/10/2023]
Abstract
Fiber tractography enables the in vivo reconstruction of white matter fibers in 3 dimensions using data collected by diffusion tensor imaging, thereby helping to understand functional neuroanatomy. In a pre-operative context, it provides essential information on the trajectory of fiber bundles of medical interest, such as cranial nerves. However, the optimization of tractography parameters is a time-consuming process and requires expert neuroanatomical knowledge, making the use of tractography difficult in clinical routine. Tractogram filtering is a method used to isolate the most relevant fibers. In this work, we propose to use filtering as a post-processing of tractography to avoid the manual optimization of tracking parameters and therefore making a step forward automation of tractography. To question the feasibility of automated tractography of cranial nerves, we perform an analysis of main cranial nerves on a series of patients with skull base tumors. A quantitative evaluation of the filtering performance of two state-of-the-art and a new entropy-based methods is carried out on the basis of reference tractograms produced by experts. Our approach proves to be more stable in the selection of the optimal filtering threshold and turns out to be interesting in terms of computational time complexity.
Collapse
Affiliation(s)
- Méghane Decroocq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Morgane Des Ligneris
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Titouan Poquillon
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Maxime Vincent
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Manon Aubert
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Timothée Jacquesson
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
- Skull Base Multi-Disciplinary Unit, Neurological Hospital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Carole Frindel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| |
Collapse
|
13
|
Bal J, Bruneau M, Berhouma M, Cornelius JF, Cavallo LM, Daniel RT, Froelich S, Jouanneau E, Meling TR, Messerer M, Roche PH, Schroeder HWS, Tatagiba M, Zazpe I, Paraskevopoulos D. Management of non-vestibular schwannomas in adult patients: a systematic review and consensus statement on behalf of the EANS skull base section. Part I: oculomotor and other rare non-vestibular schwannomas (I, II, III, IV, VI). Acta Neurochir (Wien) 2022; 164:285-297. [PMID: 34755208 DOI: 10.1007/s00701-021-05048-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Non-vestibular schwannomas are relatively rare, with trigeminal and jugular foramen schwannomas being the most common. This is a heterogeneous group which requires detailed investigation and careful consideration to management strategy. The optimal management for these tumours remains unclear, and there are several controversies. The aim of this paper is to provide insight into the main principles defining management and surgical strategy, in order to formulate a series of recommendations. METHODS A task force was created by the EANS skull base section along with its members and other renowned experts in the field to generate recommendations for the surgical management of these tumours on a European perspective. To achieve this, the task force performed an extensive systematic review in this field and had discussions within the group. This article is the first of a three-part series describing non-vestibular schwannomas (I, II, III, IV, VI). RESULTS A summary of literature evidence was proposed after discussion within the EANS skull base section. The constituted task force dealt with the practice patterns that exist with respect to pre-operative radiological investigations, ophthalmological assessments, optimal surgical and radiotherapy strategies and follow-up management. CONCLUSION This article represents the consensually derived opinion of the task force with respect to the treatment of non-vestibular schwannomas. For each of these tumours, the management of these patients is complex, and for those which are symptomatic tumours, the paradigm is shifting towards the compromise between function preservation and progression-free survival.
Collapse
Affiliation(s)
- Jarnail Bal
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK
| | - Michael Bruneau
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Moncef Berhouma
- Neuro-Oncologic and Vascular Department, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Luigi M Cavallo
- Department of Neurosurgery, University Hospital of Naples Federico II, Napoli, Italy
| | - Roy T Daniel
- Department of Neurosurgery, Lausanne University Hospital and University of Lausanne, 42 rue du Bugnon, 1011, Lausanne, Switzerland
| | | | - Emmanuel Jouanneau
- Skull Base and Pituitary Neurosurgical Department, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | | | - Mahmoud Messerer
- Department of Neurosurgery, Lausanne University Hospital and University of Lausanne, 42 rue du Bugnon, 1011, Lausanne, Switzerland
| | - Pierre-Hugues Roche
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Idoya Zazpe
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Dimitrios Paraskevopoulos
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK.
| |
Collapse
|
14
|
Bal J, Bruneau M, Berhouma M, Cornelius JF, Cavallo LM, Daniel RT, Froelich S, Jouanneau E, Meling TR, Messerer M, Roche PH, Schroeder HWS, Tatagiba M, Zazpe I, Paraskevopoulos D. Management of non-vestibular schwannomas in adult patients: a systematic review and consensus statement on behalf of the EANS skull base section Part II: Trigeminal and facial nerve schwannomas (CN V, VII). Acta Neurochir (Wien) 2022; 164:299-319. [PMID: 35079891 DOI: 10.1007/s00701-021-05092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-vestibular schwannomas are relatively rare, with trigeminal and jugular foramen schwannomas being the most common. This is a heterogenous group which requires detailed investigation and careful consideration to management strategy. The optimal management for these tumours remains unclear and there are several controversies. The aim of this paper is to provide insight into the main principles defining management and surgical strategy, in order to formulate a series of recommendations. METHODS A task force was created by the EANS skull base section committee along with its members and other renowned experts in the field to generate recommendations for the surgical management of these tumours on a European perspective. To achieve this, the task force performed an extensive systematic review in this field and had discussions within the group. This article is the second of a three-part series describing non-vestibular schwannomas (V, VII). RESULTS A summary of literature evidence was proposed after discussion within the EANS skull base section. The constituted task force dealt with the practice patterns that exist with respect to pre-operative radiological investigations, ophthalmological assessments, optimal surgical and radiotherapy strategies, and follow-up management. CONCLUSION This article represents the consensually derived opinion of the task force with respect to the treatment of trigeminal and facial schwannoma. The aim of treatment is maximal safe resection with preservation of function. Careful thought is required to select the appropriate surgical approach. Most middle fossa trigeminal schwannoma tumours can be safely accessed by a subtemporal extradural middle fossa approach. The treatment of facial nerve schwannoma remains controversial.
Collapse
Affiliation(s)
- Jarnail Bal
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK
| | - Michael Bruneau
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Moncef Berhouma
- Neuro-Oncologic and Vascular Department, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Luigi M Cavallo
- Department of Neurosurgery, University Hospital of Naples Federico II, Napoli, Italy
| | - Roy T Daniel
- Department of Neurosurgery, Lausanne University Hospital and University of Lausanne, 42 rue du Bugnon, 1011, Lausanne, Switzerland
| | | | - Emmanuel Jouanneau
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Torstein R Meling
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | - Mahmoud Messerer
- Department of Neurosurgery, Lausanne University Hospital and University of Lausanne, 42 rue du Bugnon, 1011, Lausanne, Switzerland
| | | | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Idoya Zazpe
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Dimitrios Paraskevopoulos
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK.
| |
Collapse
|
15
|
New and Advanced Magnetic Resonance Imaging Diagnostic Imaging Techniques in the Evaluation of Cranial Nerves and the Skull Base. Neuroimaging Clin N Am 2021; 31:665-684. [PMID: 34689938 DOI: 10.1016/j.nic.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The skull base and cranial nerves are technically challenging to evaluate using magnetic resonance (MR) imaging, owing to a combination of anatomic complexity and artifacts. However, improvements in hardware, software and sequence development seek to address these challenges. This section will discuss cranial nerve imaging, with particular attention to the techniques, applications and limitations of MR neurography, diffusion tensor imaging and tractography. Advanced MR imaging techniques for skull base pathology will also be discussed, including diffusion-weighted imaging, perfusion and permeability imaging, with a particular focus on practical applications.
Collapse
|
16
|
He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum Brain Mapp 2021; 42:3887-3904. [PMID: 33978265 PMCID: PMC8288095 DOI: 10.1002/hbm.25472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.
Collapse
Affiliation(s)
- Jianzhong He
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of TechnologyHangzhouChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Guoqiang Xie
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangChina
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Pituitary Tumor Surgery, Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of TechnologyHangzhouChina
| | - Dhiego C. A. Bastos
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Psychiatry, Neurology and Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
17
|
Rutland JW, Delman BN, Feldman RE, Tsankova N, Lin HM, Padormo F, Shrivastava RK, Balchandani P. Utility of 7 Tesla MRI for Preoperative Planning of Endoscopic Endonasal Surgery for Pituitary Adenomas. J Neurol Surg B Skull Base 2021; 82:303-312. [PMID: 34026406 PMCID: PMC8133814 DOI: 10.1055/s-0039-3400222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022] Open
Abstract
Objective There is increasing interest in investigating the utility of 7 Tesla (7 T) magnetic resonance imaging (MRI) for imaging of skull base tumors. The present study quantifies visualization of tumor features and adjacent skull base anatomy in a homogenous cohort of pituitary adenoma patients. Methods Eighteen pituitary adenoma patients were scanned at 7 T in this prospective study. All patients had reference standard-of-care clinical imaging at either 3 T (7/18, 39%) or 1.5 T (11/18, 61%). Visualization of tumor features and conspicuity of arteries and cranial nerves (CNs) was rated by an expert neuroradiologist on 7 T and clinical field strength MRI. Overall image quality and severity of image artifacts were also characterized and compared. Results Ability to visualize tumor features did not differ between 7 T and lower field MRI. Cranial nerves III, IV, and VI were better detected at 7 T compared with clinical field strength scans. Cranial nerves III, IV, and VI were also better detected at 7 T compared with only 1.5 T, and CN III was better visualized at 7 T compared with 3 T MRI. The ophthalmic arteries and posterior communicating arteries (PCOM) were better detected at 7 T compared with clinical field strength imaging. The 7 T also provided better visualization of the ophthalmic arteries compared with 1.5 T scans. Conclusion This study demonstrates that 7 T MRI is feasible at the skull base and identifies various CNs and branches of the internal carotid artery that were better visualized at 7 T. The 7 T MRI may offer important preoperative information that can help to guide resection of pituitary adenoma and reduce operative morbidity.
Collapse
Affiliation(s)
- John W. Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Bradley N. Delman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rebecca E. Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Nadejda Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Mount Sinai Hospital, New York, New York, United States
| | - Francesco Padormo
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Raj K. Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
18
|
Giammattei L, di Russo P, Starnoni D, Passeri T, Bruneau M, Meling TR, Berhouma M, Cossu G, Cornelius JF, Paraskevopoulos D, Zazpe I, Jouanneau E, Cavallo LM, Benes V, Seifert V, Tatagiba M, Schroeder HWS, Goto T, Ohata K, Al-Mefty O, Fukushima T, Messerer M, Daniel RT, Froelich S. Petroclival meningiomas: update of current treatment and consensus by the EANS skull base section. Acta Neurochir (Wien) 2021; 163:1639-1663. [PMID: 33740134 DOI: 10.1007/s00701-021-04798-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The optimal management of petroclival meningiomas (PCMs) continues to be debated along with several controversies that persist. METHODS A task force was created by the EANS skull base section along with its members and other renowned experts in the field to generate recommendations for the management of these tumors. To achieve this, the task force reviewed in detail the literature in this field and had formal discussions within the group. RESULTS The constituted task force dealt with the existing definitions and classifications, pre-operative radiological investigations, management of small and asymptomatic PCMs, radiosurgery, optimal surgical strategies, multimodal treatment, decision-making, and patient's counselling. CONCLUSION This article represents the consensually derived opinion of the task force with respect to the management of PCMs.
Collapse
Affiliation(s)
- Lorenzo Giammattei
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France.
| | - P di Russo
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France
| | - D Starnoni
- Department of Neurosurgery and Gamma Knife Center, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - T Passeri
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France
| | - M Bruneau
- Department of Neurosurgery, Erasme Hospital, Brussels, Belgium
| | - T R Meling
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | - M Berhouma
- Department of Neurosurgery, Hopital Neurologique Pierre Wertheimer, Lyon, France
| | - G Cossu
- Department of Neurosurgery and Gamma Knife Center, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - D Paraskevopoulos
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK
| | - I Zazpe
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - E Jouanneau
- Department of Neurosurgery, Hopital Neurologique Pierre Wertheimer, Lyon, France
| | - L M Cavallo
- Department of Neurosurgery, University Hospital of Naples Federico II, Napoli, NA, Italy
| | - V Benes
- Department of Neurosurgery, First Medical Faculty, Military University Hospital and Charles University, Prague, Czech Republic
| | - V Seifert
- Department of Neurosurgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - M Tatagiba
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - H W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - T Goto
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - K Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - O Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - T Fukushima
- Department of Neurosurgery, Carolina Neuroscience Institute, Raleigh, NC, USA
| | - M Messerer
- Department of Neurosurgery and Gamma Knife Center, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R T Daniel
- Department of Neurosurgery and Gamma Knife Center, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S Froelich
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France
| |
Collapse
|
19
|
Ius T, Tel A, Minniti G, Somma T, Solari D, Longhi M, De Bonis P, Scerrati A, Caccese M, Barresi V, Fiorentino A, Gorgoglione L, Lombardi G, Robiony M. Advances in Multidisciplinary Management of Skull Base Meningiomas. Cancers (Basel) 2021; 13:2664. [PMID: 34071391 PMCID: PMC8198762 DOI: 10.3390/cancers13112664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
The surgical management of Skull Base Meningiomas (SBMs) has radically changed over the last two decades. Extensive surgery for patients with SBMs represents the mainstream treatment; however, it is often challenging due to narrow surgical corridors and proximity to critical neurovascular structures. Novel surgical technologies, including three-dimensional (3D) preoperative imaging, neuromonitoring, and surgical instruments, have gradually facilitated the surgical resectability of SBMs, reducing postoperative morbidity. Total removal is not always feasible considering a risky tumor location and invasion of surrounding structures and brain parenchyma. In recent years, the use of primary or adjuvant stereotactic radiosurgery (SRS) has progressively increased due to its safety and efficacy in the control of grade I and II meningiomas, especially for small to moderate size lesions. Patients with WHO grade SBMs receiving subtotal surgery can be monitored over time with surveillance imaging. Postoperative management remains highly controversial for grade II meningiomas, and depends on the presence of residual disease, with optional upfront adjuvant radiation therapy or close surveillance imaging in cases with total resection. Adjuvant radiation is strongly recommended in patients with grade III tumors. Although the currently available chemotherapy or targeted therapies available have a low efficacy, the molecular profiling of SBMs has shown genetic alterations that could be potentially targeted with novel tailored treatments. This multidisciplinary review provides an update on the advances in surgical technology, postoperative management and molecular profile of SBMs.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Alessandro Tel
- Maxillofacial Surgery Department, Department of Medicine, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (A.T.); (M.R.)
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy; (T.S.); (D.S.)
| | - Domenico Solari
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy; (T.S.); (D.S.)
| | - Michele Longhi
- Unit of Radiosurgery and Stereotactic Neurosurgery, Department of Neurosciences, Azienda Ospedaliera Universitaria Integrata (AOUI), 37128 Verona, Italy;
| | - Pasquale De Bonis
- Department of Neurosurgery, Sant’ Anna University Hospital, 44124 Ferrara, Italy; (P.D.B.); (A.S.)
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy
| | - Alba Scerrati
- Department of Neurosurgery, Sant’ Anna University Hospital, 44124 Ferrara, Italy; (P.D.B.); (A.S.)
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy;
| | - Alba Fiorentino
- Radiation Oncology Department, Advance Radiation Therapy, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, Italy;
| | - Leonardo Gorgoglione
- Department of Neurosurgery, Hospital “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Massimo Robiony
- Maxillofacial Surgery Department, Department of Medicine, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (A.T.); (M.R.)
| |
Collapse
|
20
|
Abstract
Magnetic resonance (MR) imaging is a crucial tool for evaluation of the skull base, enabling characterization of complex anatomy by utilizing multiple image contrasts. Recent technical MR advances have greatly enhanced radiologists' capability to diagnose skull base pathology and help direct management. In this paper, we will summarize cutting-edge clinical and emerging research MR techniques for the skull base, including high-resolution, phase-contrast, diffusion, perfusion, vascular, zero echo-time, elastography, spectroscopy, chemical exchange saturation transfer, PET/MR, ultra-high-field, and 3D visualization. For each imaging technique, we provide a high-level summary of underlying technical principles accompanied by relevant literature review and clinical imaging examples.
Collapse
Affiliation(s)
- Claudia F Kirsch
- Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY
| | - Mai-Lan Ho
- Associate Professor of Radiology, Director of Research, Department of Radiology, Director, Advanced Neuroimaging Core, Chair, Asian Pacific American Network, Secretary, Association for Staff and Faculty Women, Nationwide Children's Hospital and The Ohio State University, Columbus, OH; Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY.
| |
Collapse
|
21
|
Starnoni D, Giammattei L, Cossu G, Link MJ, Roche PH, Chacko AG, Ohata K, Samii M, Suri A, Bruneau M, Cornelius JF, Cavallo L, Meling TR, Froelich S, Tatagiba M, Sufianov A, Paraskevopoulos D, Zazpe I, Berhouma M, Jouanneau E, Verheul JB, Tuleasca C, George M, Levivier M, Messerer M, Daniel RT. Surgical management for large vestibular schwannomas: a systematic review, meta-analysis, and consensus statement on behalf of the EANS skull base section. Acta Neurochir (Wien) 2020; 162:2595-2617. [PMID: 32728903 PMCID: PMC7550309 DOI: 10.1007/s00701-020-04491-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The optimal management of large vestibular schwannomas continues to be debated. We constituted a task force comprising the members of the EANS skull base committee along with international experts to derive recommendations for the management of this problem from a European perspective. MATERIAL AND METHODS A systematic review of MEDLINE database, in compliance with the PRISMA guidelines, was performed. A subgroup analysis screening all surgical series published within the last 20 years (January 2000 to March 2020) was performed. Weighted summary rates for tumor resection, oncological control, and facial nerve preservation were determined using meta-analysis models. This data along with contemporary practice patterns were discussed within the task force to generate consensual recommendations regarding preoperative evaluations, optimal surgical strategy, and follow-up management. RESULTS Tumor classification grades should be systematically used in the perioperative management of patients, with large vestibular schwannomas (VS) defined as > 30 mm in the largest extrameatal diameter. Grading scales for pre- and postoperative hearing (AAO-HNS or GR) and facial nerve function (HB) are to be used for reporting functional outcome. There is a lack of consensus to support the superiority of any surgical strategy with respect to extent of resection and use of adjuvant radiosurgery. Intraoperative neuromonitoring needs to be routinely used to preserve neural function. Recommendations for postoperative clinico-radiological evaluations have been elucidated based on the surgical strategy employed. CONCLUSION The main goal of management of large vestibular schwannomas should focus on maintaining/improving quality of life (QoL), making every attempt at facial/cochlear nerve functional preservation while ensuring optimal oncological control, thereby allowing to meet patient expectations. Despite the fact that this analysis yielded only a few Class B evidences and mostly expert opinions, it will guide practitioners to manage these patients and form the basis for future clinical trials.
Collapse
Affiliation(s)
- Daniele Starnoni
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | | | - Giulia Cossu
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Michael J Link
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Pierre-Hugues Roche
- Department of Neurosurgery, CHU North Hospital, Aix-Marseille University, Marseille, France
| | - Ari G Chacko
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kenji Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Majid Samii
- Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Michael Bruneau
- Department of Neurosurgery, Erasme Hospital, Brussels, Belgium
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Luigi Cavallo
- Department of Neurosurgery, University Hospital of Naples Federico II, Naples, NA, Italy
| | - Torstein R Meling
- Department of Neurosurgery, University Hospital of Geneva, Geneva, Switzerland
| | | | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russian Federation; Department of Neurosurgery, The State Education Institution of Higher Professional Training, The First Sechenov Moscow State Medical University under Ministry of Health, Tyumen, Russian Federation
| | - Dimitrios Paraskevopoulos
- Department of Neurosurgery, Barts Health NHS Trust, St. Bartholomew's and The Royal London Hospital, London, UK
| | - Idoya Zazpe
- Servicio de Neurocirugía, Complejo Hospitalario de Navarra, Pamplona, Spain
- Servicio de Cirugía Torácica, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Moncef Berhouma
- Department of Neurosurgery, Hopital Neurologique Pierre Wertheimer, Lyon, France
| | - Emmanuel Jouanneau
- Department of Neurosurgery, Hopital Neurologique Pierre Wertheimer, Lyon, France
| | - Jeroen B Verheul
- Department of Neurosurgery and Gamma knife Centre, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Constantin Tuleasca
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Lausanne, Switzerland
| | - Mercy George
- ENT Service, Centre Hospitalier Universitaire Vaudois (CHUV); Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Levivier
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Mahmoud Messerer
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Roy Thomas Daniel
- Department of Neurosurgery Service and Gamma Knife Center, University hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|