1
|
Kahl KH, Krauss PE, Neu M, Maurer CJ, Schill-Reiner S, Roushan Z, Laukmanis E, Dobner C, Janzen T, Balagiannis N, Sommer B, Stüben G, Shiban E. Intraoperative radiotherapy after neurosurgical resection of brain metastases as institutional standard treatment- update of the oncological outcome form a single center cohort after 117 procedures. J Neurooncol 2024; 169:187-193. [PMID: 38963657 PMCID: PMC11269407 DOI: 10.1007/s11060-024-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE Stereotactic radiotherapy (SRT) is the predominant method for the irradiation of resection cavities after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50 kV x-rays is an alternative way to irradiate the resection cavity focally. We have already reported the outcome of our first 40 IORT patients treated until 2020. Since then, IORT has become the predominant cavity treatment in our center due to patients´ choice. METHODS We retrospectively analyzed the outcomes of all patients who underwent resection of BM and IORT between 2013 and August 2023 at Augsburg University Medical Center (UKA). RESULTS We identified 105 patients with 117 resected BM treated with 50 kV x-ray IORT. Median diameter of the resected metastases was 3.1 cm (range 1.3 - 7.0 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including three-monthly MRI of the brain. Mean FU was 14 months, with a median MRI FU for patients alive of nine months. Median overall survival (OS) of all treated patients was 18.2 months (estimated 1-year OS 57.7%). The observed local control (LC) rate of the resection cavity was 90.5% (estimated 1-year LC 84.2%). Distant brain control (DC) was 61.9% (estimated 1-year DC 47.9%). Only 16.2% of all patients needed WBI in the further course of disease. The observed radio necrosis rate was 2.6%. CONCLUSION After 117 procedures IORT still appears to be a safe and appealing way to perform cavity RT after neurosurgical resection of BM with low toxicity and excellent LC.
Collapse
Affiliation(s)
- Klaus-Henning Kahl
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany.
| | - Philipp E Krauss
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| | - Maria Neu
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Christoph J Maurer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Center Augsburg, Augsburg, Germany
| | - Sabine Schill-Reiner
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Zoha Roushan
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Eva Laukmanis
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Christian Dobner
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Tilman Janzen
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Nikolaos Balagiannis
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Björn Sommer
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| | - Georg Stüben
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Shireman JM, White Q, Ni Z, Mohanty C, Cai Y, Zhao L, Agrawal N, Gonugunta N, Wang X, Mccarthy L, Kasulabada V, Pattnaik A, Ahmed AU, Miller J, Kulwin C, Cohen-Gadol A, Payner T, Lin CT, Savage JJ, Lane B, Shiue K, Kamer A, Shah M, Iyer G, Watson G, Kendziorski C, Dey M. Genomic analysis of human brain metastases treated with stereotactic radiosurgery reveals unique signature based on treatment failure. iScience 2024; 27:109601. [PMID: 38623341 PMCID: PMC11016778 DOI: 10.1016/j.isci.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Stereotactic radiosurgery (SRS) has been shown to be efficacious for the treatment of limited brain metastasis (BM); however, the effects of SRS on human brain metastases have yet to be studied. We performed genomic analysis on resected brain metastases from patients whose resected lesion was previously treated with SRS. Our analyses demonstrated for the first time that patients possess a distinct genomic signature based on type of treatment failure including local failure, leptomeningeal spread, and radio-necrosis. Examination of the center and peripheral edge of the tumors treated with SRS indicated differential DNA damage distribution and an enrichment for tumor suppressor mutations and DNA damage repair pathways along the peripheral edge. Furthermore, the two clinical modalities used to deliver SRS, LINAC and GK, demonstrated differential effects on the tumor landscape even between controlled primary sites. Our study provides, in human, biological evidence of differential effects of SRS across BM's.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Quinn White
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Yujia Cai
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lei Zhao
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Namita Agrawal
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikita Gonugunta
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Xiaohu Wang
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Liam Mccarthy
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Varshitha Kasulabada
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Akshita Pattnaik
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - James Miller
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charles Kulwin
- Goodman Campbell Brain and Spine Neurological Surgery, Indianapolis, IN, USA
| | - Aaron Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy Payner
- Goodman Campbell Brain and Spine Neurological Surgery, Indianapolis, IN, USA
| | - Chih-Ta Lin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jesse J. Savage
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brandon Lane
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Shiue
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aaron Kamer
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mitesh Shah
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Gordon Watson
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
3
|
Ostapenko MY, Lukshin VA, Usachev DY, Golanov AV, Vetlova ER, Durgaryan AA, Kobyakov NG. [Comparative analysis of combined treatment methods for patients with single brain lesions]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:13-21. [PMID: 39169577 DOI: 10.17116/neiro20248804113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Primary brain metastases are common in oncology. Preoperative stereotactic radiosurgery followed by surgical resection is a perspective approach. OBJECTIVE To evaluate own experience of preoperative radiosurgery followed by surgical resection (RS+S) of metastasis regarding local control, leptomeningeal progression, surgical and radiation-induced complications; to compare treatment outcomes with surgical resection and subsequent radiotherapy (S+SRT). MATERIAL AND METHODS. A Retrospective study included 66 patients with solitary brain metastasis. Two groups of patients were distinguished: group 1 (n=34) - postoperative irradiation, group 2 (n=32) - preoperative irradiation. The median age was 49.5 years (range 36-75). RESULTS Local 3-, 6- and 12-month control among patients with postoperative irradiation was 88.2%, 79.4% and 42.9%, in the group of preoperative irradiation - 100%, 93.3% and 66.7%, respectively (p=0.021). Leptomeningeal progression developed in 11 patients (8 and 3 ones, respectively). The one-year survival rate was 73.5% and 84.4%, respectively (p=0.33). Long-term surgical and radiation-induced complications occurred in 12 (18.2%) patients. CONCLUSION Preoperative radiosurgery with subsequent resection provides higher local control and lower incidence of leptomeningeal progression in patients with single brain metastases.
Collapse
Affiliation(s)
| | - V A Lukshin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - D Yu Usachev
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E R Vetlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - N G Kobyakov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
4
|
Imber BS, Sehgal R, Saganty R, Reiner AS, Ilica AT, Miao E, Li BT, Riely GJ, Yu HA, Panageas KS, Young RJ, Pike LR, Moss NS. Intracranial Outcomes of De Novo Brain Metastases Treated With Osimertinib Alone in Patients With Newly Diagnosed EGFR-Mutant NSCLC. JTO Clin Res Rep 2023; 4:100607. [PMID: 38124791 PMCID: PMC10730363 DOI: 10.1016/j.jtocrr.2023.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Patients with EGFR-mutant NSCLC have a high incidence of brain metastases. The EGFR-directed tyrosine kinase inhibitor osimertinib has intracranial activity, making the role of local central nervous system (CNS)-directed therapies, such as radiation and surgery, less clear. Methods Patients with EGFR-mutant NSCLC and brain metastases who received osimertinib as initial therapy after brain metastasis diagnosis were included. Individual lesion responses were assessed using adapted RANO-BM criteria. CNS progression and local progression of brain metastasis from osimertinib start were analyzed using cumulative incidence treating death as a competing risk. Overall survival was estimated using Kaplan-Meier methodology. Results There were 36 patients who had a median interval from brain metastasis diagnosis to first-line osimertinib initiation of 25 days. In total, 136 previously untreated brain metastases were tracked from baseline. Overall, 105 lesions (77.2%) had complete response and 31 had partial response reflecting best objective response of 100%. Best response occurred at a median of 96 days (range: 28-1113 d) from baseline magnetic resonance imaging. This reflects a best objective response rate of 100%. Two-year overall survival was 80%. CNS progression rates at 1-, 2-, and 3-years post-osimertinib were 21%, 32%, and 41%, respectively. Lesion-level local failure was estimated to be 0.7% and 4.7% at 1- and 2-years post-osimertinib, respectively. No clinicodemographic factors including brain metastasis number were associated with post-osimertinib progression. Conclusions Intracranial response to osimertinib is excellent for patients with EGFR-mutant NSCLC with de novo, previously untreated brain metastases. Very low local failure rates support a strategy of upfront osimertinib alone in selected patients.
Collapse
Affiliation(s)
- Brandon S. Imber
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryka Sehgal
- Department of Neurosurgery and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel Saganty
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne S. Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A. Turan Ilica
- Division of Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Miao
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T. Li
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Gregory J. Riely
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Helena A. Yu
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Young
- Division of Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luke R.G. Pike
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Department of Neurosurgery and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Bander ED, El Ahmadieh TY, Chen J, Reiner AS, Brown S, Giantini-Larsen AM, Young RJ, Beal K, Imber BS, Pike LRG, Brennan CW, Tabar V, Panageas KS, Moss NS. Outcomes Following Early Postoperative Adjuvant Radiosurgery for Brain Metastases. JAMA Netw Open 2023; 6:e2340654. [PMID: 37906192 PMCID: PMC10618851 DOI: 10.1001/jamanetworkopen.2023.40654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Importance Adjuvant stereotactic radiosurgery (SRS) enhances the local control of resected brain metastases (BrM). However, the risks of local failure (LF) and potential for posttreatment adverse radiation effects (PTRE) after early postoperative adjuvant SRS have not yet been established. Objective To evaluate whether adjuvant SRS delivered within a median of 14 days after surgery is associated with improved LF without a concomitant increase in PTRE. Design, Setting, and Participants This prospective cohort study examines a clinical workflow (RapidRT) that was implemented from 2019 to 2022 to deliver SRS to surgical patients within a median of 14 days, ensuring all patients were treated within 30 days postoperatively. This prospective cohort was compared with a historical cohort (StanRT) of patients with BrM resected between 2013 and 2019 to assess the association of the RapidRT workflow with LF and PTRE. The 2 cohorts were combined to identify optimal SRS timing, with a median follow-up of 3.3 years for survivors. Exposure Timing of adjuvant SRS (14, 21, and 30 days postoperatively). Main Outcomes and Measures LF and PTRE, according to modified Response Assessment in Neuro-Oncology Brain Metastases criteria. Results There were 438 patients (265 [60.5%] female patients; 23 [5.3%] Asian, 27 [6.2%] Black, and 364 [83.1%] White patients) with a mean (SD) age of 62 (13) years; 377 were in the StanRT cohort and 61 in the RapidRT cohort. LF and PTRE rates at 1 year were not significantly different between RapidRT and StanRT cohorts. Timing of SRS was associated with radiographic PTRE. Patients receiving radiation within 14 days had the highest 1-year PTRE rate (18.08%; 95% CI, 8.31%-30.86%), and patients receiving radiation between 22 and 30 days had the lowest 1-year PTRE rate (4.10%; 95% CI, 1.52%-8.73%; P = .03). LF rates were highest for patients receiving radiation more than 30 days from surgery (10.65%; 95% CI, 6.90%-15.32%) but comparable for patients receiving radiation within 14 days, between 15 and 21 days, and between 22 and 30 days (≤14 days: 5.12%; 95% CI, 0.86%-15.60%; 15 to ≤21 days: 3.21%; 95% CI, 0.59%-9.99%; 22 to ≤30 days: 6.58%; 95% CI, 3.06%-11.94%; P = .20). Conclusions and Relevance In this cohort study of adjuvant SRS timing following surgical resection of BrM, the optimal timing for adjuvant SRS appears to be within 22 to 30 days following surgery. The findings of this study suggest that this timing allows for a balanced approach that minimizes the risks associated with LF and PTRE.
Collapse
Affiliation(s)
- Evan D. Bander
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Tarek Y. El Ahmadieh
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Loma Linda University Health, Loma Linda, California
| | - Justin Chen
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne S. Reiner
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Brown
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra M. Giantini-Larsen
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon S. Imber
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luke R. G. Pike
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cameron W. Brennan
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viviane Tabar
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine S. Panageas
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Giantini-Larsen A, Abou-Mrad Z, Goldberg JL, El Ahmadieh TY, Beal K, Young RJ, Rosenblum M, Moss NS. Postradiosurgery cystic degeneration in brain metastases causing delayed and potentially severe sequelae: systematic review and illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22462. [PMID: 36748750 PMCID: PMC10550559 DOI: 10.3171/case22462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cystic postradiation degeneration has previously been described in the literature as a rare but potentially severe complication after central nervous system (CNS) irradiation for vascular malformations. Limited cases have been reported in the setting of brain metastases. OBSERVATIONS Thirty-six total cases, including three reported here, of cystic postradiation degeneration are identified. Of 35 cases with complete clinical information, 34 (97.25%) of 35 were symptomatic from cystic changes at diagnosis. The average time between initial radiation dose and cyst development was 7.61 years (range 2-31 years). Although most patients were initially treated conservatively with medication, including steroids, 32 (88.9%) of 36 ultimately required surgical intervention. The most common interventions were craniotomy for cyst fenestration or resection (25 of 36; 69.4%) and Ommaya placement (8 of 36). After intervention, clinical improvement was seen in 10 (67%) of 15 cases, with persistent or worsening deficit or death seen in 5 (33%) of 15. Cysts were decompressed or obliterated on postoperative imaging in 20 (83.3%) of 24 cases, and recurrence was seen in 4 (16.7%) of 24. LESSONS Cystic degeneration is a rare and delayed sequela after radiation for brain metastases. This entity has the potential to cause significant and permanent neurological deficit if not properly recognized and addressed. Durable control can be achieved with a variety of surgical treatments, including cyst fenestration and Ommaya placement.
Collapse
Affiliation(s)
- Alexandra Giantini-Larsen
- Departments of Neurological Surgery
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Zaki Abou-Mrad
- Departments of Neurological Surgery
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jacob L. Goldberg
- Departments of Neurological Surgery
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Tarek Y. El Ahmadieh
- Departments of Neurological Surgery
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Department of Neurosurgery, Loma Linda University, Loma Linda, California
| | - Kathryn Beal
- Radiation Oncology
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Robert J. Young
- Radiology, and
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Marc Rosenblum
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Departments of Neurological Surgery
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York; and
| |
Collapse
|
7
|
Diehl CD, Pigorsch SU, Gempt J, Krieg SM, Reitz S, Waltenberger M, Barz M, Meyer HS, Wagner A, Wilkens J, Wiestler B, Zimmer C, Meyer B, Combs SE. Low-Energy X-Ray Intraoperative Radiation Therapy (Lex-IORT) for Resected Brain Metastases: A Single-Institution Experience. Cancers (Basel) 2022; 15:cancers15010014. [PMID: 36612015 PMCID: PMC9817795 DOI: 10.3390/cancers15010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resection followed by local radiation therapy (RT) is the standard of care for symptomatic brain metastases. However, the optimal technique, fractionation scheme and dose are still being debated. Lately, low-energy X-ray intraoperative RT (lex-IORT) has been of increasing interest. METHOD Eighteen consecutive patients undergoing BM resection followed by immediate lex-IORT with 16-30 Gy applied to the spherical applicator were retrospectively analyzed. Demographic, RT-specific, radiographic and clinical data were reviewed to evaluate the effectiveness and safety of IORT for BM. Descriptive statistics and Kaplan-Meyer analysis were applied. RESULTS The mean follow-up time was 10.8 months (range, 0-39 months). The estimated local control (LC), distant brain control (DBC) and overall survival (OS) at 12 months post IORT were 92.9% (95%-CI 79.3-100%), 71.4% (95%-CI 50.2-92.6%) and 58.0% (95%-CI 34.1-81.9%), respectively. Two patients developed radiation necrosis (11.1%) and wound infection (CTCAE grade III); both had additional adjuvant treatment after IORT. For five patients (27.8%), the time to the start or continuation of systemic treatment was ≤15 days and hence shorter than wound healing and adjuvant RT would have required. CONCLUSION In accordance with previous series, this study demonstrates the effectiveness and safety of IORT in the management of brain metastases despite the small cohort and the retrospective characteristic of this analysis.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Steffi U. Pigorsch
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Silvia Reitz
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Waltenberger
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Hanno S. Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Arthur Wagner
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Jan Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| |
Collapse
|
8
|
Yaghi NK, Han SJ. Reply to letter to the editor: Does early adjuvant brain metastasis SRS increase mortality? Neurooncol Pract 2022; 9:561. [PMID: 36388413 PMCID: PMC9665051 DOI: 10.1093/nop/npac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Nasser K Yaghi
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Seunggu Jude Han
- Department of Neurological Surgery, Stanford Medicine, Palo Alto, CA, USA
| |
Collapse
|
9
|
Moss NS. Does early adjuvant brain metastasis SRS increase mortality? Neurooncol Pract 2022; 9:559-560. [PMID: 36388420 PMCID: PMC9665053 DOI: 10.1093/nop/npac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Affiliation(s)
- Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Lehrer EJ, Kowalchuk RO, Ruiz-Garcia H, Merrell KW, Brown PD, Palmer JD, Burri SH, Sheehan JP, Quninoes-Hinojosa A, Trifiletti DM. Preoperative stereotactic radiosurgery in the management of brain metastases and gliomas. Front Surg 2022; 9:972727. [PMID: 36353610 PMCID: PMC9637863 DOI: 10.3389/fsurg.2022.972727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roman O. Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Kenneth W. Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stuart H. Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, NC, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States,Correspondence: Daniel M. Trifiletti
| |
Collapse
|
11
|
Prasad K, Dauer LT, Chu BP, Aramburu‐Nunez D, Cohen G, Beal K, Imber BS, Moss NS. Patient‐specific radiological protection precautions following Cs collagen embedded Cs‐131 implantation in the brain. J Appl Clin Med Phys 2022; 23:e13776. [PMID: 36109179 PMCID: PMC9588267 DOI: 10.1002/acm2.13776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Cesium‐131 brachytherapy is an adjunct for brain tumor treatment, offering potential clinical and radiation protection advantages over other isotopes including iodine‐125. We present evidence‐based radiation safety recommendations from an initial experience with Cs‐131 brachytherapy in the resection cavities of recurrent, previously irradiated brain metastases. Methods Twenty‐two recurrent brain metastases in 18 patients were resected and treated with permanent Cs‐131 brachytherapy implantation using commercially procured seed‐impregnated collagen tiles (GammaTile, GT Medical Technologies). Exposure to intraoperative staff was monitored with NVLAP‐accredited ring dosimeters. For patient release considerations, NCRP guidelines were used to develop an algorithm for modeling lifetime exposure to family and ancillary staff caring for patients based on measured dose rates. Results A median of 16 Cs‐131 seeds were implanted (range 6–46) with median cumulative strength of 58.72U (20.64‐150.42). Resulting dose rates were 1.19 mSv/h (0.28–3.3) on contact, 0.08 mSv/h (0.01–0.35) at 30 cm, and 0.01 mSv/h (0.001–0.03) at 100 cm from the patient. Modeled total caregiver exposure was 0.91 mSv (0.16–3.26), and occupational exposure was 0.06 mSv (0.02–0.23) accounting for patient self‐shielding via skull and soft tissue attenuation. Real‐time dose rate measurements were grouped into brackets to provide close contact precautions for caregivers ranging from 1–3 weeks for adults and longer for pregnant women and children, including cases with multiple implantations. Conclusions Radiological protection precautions were developed based on patient‐specific emissions and accounted for multiple implantations of Cs‐131, to maintain exposure to staff and the public in accordance with relevant regulatory dose constraints.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Lawrence T. Dauer
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Bae P. Chu
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - David Aramburu‐Nunez
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Gilad Cohen
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center Memorial Sloan Kettering Cancer Center New York New York USA
| | - Brandon S. Imber
- Department of Radiation Oncology and Brain Metastasis Center Memorial Sloan Kettering Cancer Center New York New York USA
| | - Nelson S. Moss
- Department of Neurological Surgery and Brain Metastasis Center Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
12
|
Evin C, Eude Y, Jacob J, Jenny C, Bourdais R, Mathon B, Valery CA, Clausse E, Simon JM, Maingon P, Feuvret L. Hypofractionated postoperative stereotactic radiotherapy for large resected brain metastases. Cancer Radiother 2022; 27:87-95. [PMID: 36075831 DOI: 10.1016/j.canrad.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the present retrospective study was to report outcomes after hypofractionated stereotactic radiotherapy (HSRT) for resected brain metastases (BM). PATIENTS AND METHODS We reviewed results of patients with resected BM treated with postoperative HSRT (3×7.7Gy to the prescription isodose 70%) between May 2013 and June 2020. Local control (LC), distant brain control (DBC), overall survival (OS), leptomeningeal disease relapse (LMDR), and radiation necrosis (RN) occurrence were reported. RESULTS Twenty-two patients with 23 brain cavities were included. Karnofsky Performance status (KPS) was≥70 in 77.3%. Median preoperative diameter was 37mm [21.0-75.0] and median planning target volume (PTV) was 23 cm3 [9.9-61.6]. Median time from surgery to SRT was 69 days [7-101] and 48% of patients had a local relapse on pre-SRT imaging. Median follow-up was 17.5 months [1.6-95.9]. One and two-year LC rates were 60.9 and 52.2% respectively. One and 2-year DBC rates were 45.5 and 40.9%. Median OS was 16.5 months. Four patients (18.2%) presented LMDR during follow-up. RN occurred in 6 patients (27.2%). Three factors were associated with OS: ECOG-PS (P=0.009), KPS (P=0.04), and cystic metastasis before surgery (P=0.037). Several factors were related to RN occurrence: PTV diameter and volume, Normal brain V21, V21 and V24 isodoses volumes. CONCLUSION HSRT is the most widely used scheme for larger brain cavities after surgery. The optimal dose and scheme remain to be defined as well as the optimal delay between postoperative SRT and surgery. Dose escalation may be necessary, especially in case of subtotal resection.
Collapse
Affiliation(s)
- C Evin
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - Y Eude
- Service d'ophtalmologie, Hôtel-Dieu, centre hospitalier universitaire de Nantes, 1, place Alexis-Ricordeau, 44000 Nantes France
| | - J Jacob
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C Jenny
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - R Bourdais
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - B Mathon
- Service de neurochirurgie, groupe Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C A Valery
- Service de neurochirurgie, groupe Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - E Clausse
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - J M Simon
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - P Maingon
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - L Feuvret
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
13
|
Moss NS, Tosi U, Santomasso BD, Beal K, Modi S. Multifocal and pathologically-confirmed brain metastasis complete response to trastuzumab deruxtecan. CNS Oncol 2022; 11:CNS90. [PMID: 35674041 PMCID: PMC9280405 DOI: 10.2217/cns-2022-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Antibody-drug conjugates have transformed the treatment of HER2+ breast and other cancers. Unfortunately, the CNS remains a sanctuary site for many such patients in part due to poor macromolecule penetration across the blood-brain tumor barrier. Trastuzumab deruxtecan (T-DXd), a high-payload antibody-drug conjugate, was recently found to improve progression-free survival in HER2+ breast cancer patients versus prior-generation trastuzumab emtansine, prompting us to evaluate CNS activity in a woman with brain-only metastatic disease. T-DXd achieved complete response despite heavy pretreatment. Three persistent, previously-irradiated lesions were biopsy-proven to represent treatment effect. Subsequent recurrence occurred upon treatment holiday; partial response was observed with rechallenge. This case suggests T-DXd is active in HER2+ breast cancer brain metastases and supports further prospective evaluation.
Collapse
Affiliation(s)
- Nelson S Moss
- Department of Neurological Surgery & Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umberto Tosi
- Department of Neurological Surgery & Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn Beal
- Department of Radiation Oncology & Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Moss NS, Beal K, Tabar V. Brain Metastasis-A Distinct Oncologic Disease Best Served by an Integrated Multidisciplinary Team Approach. JAMA Oncol 2022; 8:1252-1254. [PMID: 35862025 PMCID: PMC9984120 DOI: 10.1001/jamaoncol.2022.1928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Viewpoint discusses the identification and treatment of brain metastasis as a distinct disease and its management with a multidisciplinary approach to improve patient outcomes.
Collapse
Affiliation(s)
- Nelson S. Moss
- Memorial Sloan Kettering Cancer Center, Department of Neurosurgery and Brain Metastasis Center, New York, New York, USA
| | - Kathryn Beal
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology and Brain Metastasis Center, New York, New York, USA
| | - Viviane Tabar
- Memorial Sloan Kettering Cancer Center, Department of Neurosurgery and Brain Metastasis Center, New York, New York, USA
| |
Collapse
|
15
|
Tsai C, Nguyen B, Luthra A, Chou JF, Feder L, Tang LH, Strong VE, Molena D, Jones DR, Coit DG, Ilson DH, Ku GY, Cowzer D, Cadley J, Capanu M, Schultz N, Beal K, Moss NS, Janjigian YY, Maron SB. Outcomes and Molecular Features of Brain Metastasis in Gastroesophageal Adenocarcinoma. JAMA Netw Open 2022; 5:e2228083. [PMID: 36001319 PMCID: PMC9403772 DOI: 10.1001/jamanetworkopen.2022.28083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Brain metastasis (BrM) in gastroesophageal adenocarcinoma (GEA) is a rare and poorly understood phenomenon associated with poor prognosis. OBJECTIVES To examine the clinical and genomic features of patients with BrM from GEA and evaluate factors associated with survival. DESIGN, SETTING, AND PARTICIPANTS In this single-institution retrospective cohort study, 68 patients with BrM from GEA diagnosed between January 1, 2008, and December 31, 2020, were identified via review of billing codes and imaging reports from the electronic medical record with follow-up through November 3, 2021. Genomic data were derived from the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets clinical sequencing platform. EXPOSURES Treatment with BrM resection and/or radiotherapy. MAIN OUTCOMES AND MEASURES Overall survival after BrM diagnosis. RESULTS Sixty-eight patients (median age at diagnosis, 57.4 years [IQR, 49.8-66.4 years]; 59 [86.8%] male; 55 [85.9%] White) participated in the study. A total of 57 (83.8%) had primary tumors in the distal esophagus or gastroesophageal junction. Median time from initial diagnosis to BrM diagnosis was 16.9 months (IQR, 8.5-27.7 months). Median survival from BrM diagnosis was 8.7 months (95% CI, 5.5-11.5 months). Overall survival was 35% (95% CI, 25%-48%) at 1 year and 24% (95% CI, 16%-37%) at 2 years. In a multivariable analysis, an Eastern Cooperative Oncology Group performance status of 2 or greater (hazard ratio [HR], 4.66; 95% CI, 1.47-14.70; P = .009) and lack of surgical or radiotherapeutic intervention (HR, 7.71; 95% CI, 2.01-29.60; P = .003) were associated with increased risk of all-cause mortality, whereas 3 or more extracranial sites of disease (HR, 1.85; 95% CI, 0.64-5.29; P = .25) and 4 or more BrMs (HR, 2.15; 95% CI, 0.93-4.98; P = .07) were not statistically significant. A total of 31 patients (45.6%) had ERBB2 (formerly HER2 or HER2/neu)-positive tumors, and alterations in ERBB2 were enriched in BrM relative to primary tumors (8 [47.1%] vs 7 [20.6%], P = .05), as were alterations in PTPRT (7 [41.2%] vs 4 [11.8%], P = .03). CONCLUSIONS AND RELEVANCE This study suggests that that a notable proportion of patients with BrM from GEA achieve survival exceeding 1 and 2 years from BrM diagnosis, a more favorable prognosis than previously reported. Good performance status and treatment with combination surgery and radiotherapy were associated with the best outcomes. ERBB2 positivity and amplification as well as PTPRT alterations were enriched in BrM tissue compared with primary tumors; therefore, further study should be pursued to identify whether these variables represent genomic risk factors for BrM development.
Collapse
Affiliation(s)
- Charlton Tsai
- Department of Medicine, New York Presbyterian/Weill Cornell Medicine, New York, New York
| | - Bastien Nguyen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anisha Luthra
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F. Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Feder
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura H. Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vivian E. Strong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Molena
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David R. Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel G. Coit
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David H. Ilson
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey Y. Ku
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren Cowzer
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Cadley
- Department of Digital Informatics and Technology Solutions, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y. Janjigian
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven B. Maron
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
16
|
Imber BS, Young RJ, Beal K, Reiner AS, Giantini-Larsen AM, Yang JT, Aramburu-Nunez D, Cohen GN, Brennan C, Tabar V, Moss NS. Salvage resection plus cesium-131 brachytherapy durably controls post-SRS recurrent brain metastases. J Neurooncol 2022; 159:609-618. [PMID: 35896906 PMCID: PMC9328626 DOI: 10.1007/s11060-022-04101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/16/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Salvage of recurrent previously irradiated brain metastases (rBrM) is a significant challenge. Resection without adjuvant re-irradiation is associated with a high local failure rate, while reirradiation only partially reduces failure but is associated with greater radiation necrosis risk. Salvage resection plus Cs131 brachytherapy may offer dosimetric and biologic advantages including improved local control versus observation, with reduced normal brain dose versus re-irradiation, however data are limited. METHODS A prospective registry of consecutive patients with post-stereotactic radiosurgery (SRS) rBrM undergoing resection plus implantation of collagen-matrix embedded Cs131 seeds (GammaTile, GT Medical Technologies) prescribed to 60 Gy at 5 mm from the cavity was analyzed. RESULTS Twenty patients underwent 24 operations with Cs131 implantation in 25 tumor cavities. Median maximum preoperative diameter was 3.0 cm (range 1.1-6.3). Gross- or near-total resection was achieved in 80% of lesions. A median of 16 Cs131 seeds (range 6-30), with a median air-kerma strength of 3.5 U/seed were implanted. There was one postoperative wound dehiscence. With median follow-up of 1.6 years for survivors, two tumors recurred (one in-field, one marginal) resulting in 8.4% 1-year progression incidence (95%CI = 0.0-19.9). Radiographic seed settling was identified in 7/25 cavities (28%) 1.9-11.7 months post-implantation, with 1 case of distant migration (4%), without clinical sequelae. There were 8 cases of radiation necrosis, of which 4 were symptomatic. CONCLUSIONS With > 1.5 years of follow-up, intraoperative brachytherapy with commercially available Cs131 implants was associated with favorable local control and toxicity profiles. Weak correlation between preoperative tumor geometry and implanted tiles highlights a need to optimize planning criteria.
Collapse
Affiliation(s)
- Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jonathan T Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Aramburu-Nunez
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gil'ad N Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron Brennan
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Brachytherapy for central nervous system tumors. J Neurooncol 2022; 158:393-403. [PMID: 35546384 DOI: 10.1007/s11060-022-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Radiation is a mainstay of treatment for central nervous system (CNS) tumors. Brachytherapy involves the placement of a localized/interstitial radiation source into a tumor or resection bed and has distinct advantages that can make it an attractive form of radiation when used in the appropriate setting. However, the data supporting use of brachytherapy is clouded by variability in radiation sources, techniques, delivered doses, and trial designs. The goal of this manuscript is to identify consistent themes, review the highest-level evidence and potential indications for brachytherapy in CNS tumors, as well as highlight avenues for future work. Improved understanding of the underlying biology, indications, complications, and evolving industry-academic collaborations, place brachytherapy on the brink of a resurgence.
Collapse
|
18
|
Cifarelli CP, Jacobson GM. Intraoperative Radiotherapy in Brain Malignancies: Indications and Outcomes in Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:768168. [PMID: 34858846 PMCID: PMC8631760 DOI: 10.3389/fonc.2021.768168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the continued controversy over defining an optimal delivery mechanism, the critical role of adjuvant radiation in the management of surgically resected primary and metastatic brain tumors remains one of the universally accepted standards in neuro-oncology. Local disease control still ranks as a significant predictor of survival in both high-grade glioma and treated intracranial metastases with radiation treatment being essential in maximizing tumor control. As with the emergence and eventual acceptance of cranial stereotactic radiosurgery (SRS) following an era dominated by traditional radiotherapy, evidence to support the use of intraoperative radiotherapy (IORT) in brain tumors requiring surgical intervention continues to accumulate. While the clinical trial strategies in treating glioblastoma with IORT involve delivery of a boost of cavitary radiation prior to the planned standard external beam radiation, the use of IORT in metastatic disease offers the potential for dose escalation to the level needed for definitive adjuvant radiation, eliminating the need for additional episodes of care while providing local control equal or superior to that achieved with SRS in a single fraction. In this review, we explore the contemporary clinical data on IORT in the treatment of brain tumors along with a discussion of the unique dosimetric and radiobiological factors inherent in IORT that could account for favorable outcome data beyond those seen in other techniques.
Collapse
Affiliation(s)
- Christopher P Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States.,Department of Radiation Oncology, West Virginia University, Morgantown, WV, United States
| | - Geraldine M Jacobson
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
19
|
Wilcox JA, Brown S, Reiner AS, Young RJ, Chen J, Bale TA, Rosenblum MK, Newman WC, Brennan CW, Tabar V, Beal K, Panageas KS, Moss NS. Salvage resection of recurrent previously irradiated brain metastases: tumor control and radiation necrosis dependency on adjuvant re-irradiation. J Neurooncol 2021; 155:277-286. [PMID: 34655373 DOI: 10.1007/s11060-021-03872-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE The efficacy of salvage resection (SR) of recurrent brain metastases (rBrM) following stereotactic radiosurgery (SRS) is undefined. We sought to describe local recurrence (LR) and radiation necrosis (RN) rates in patients undergoing SR, with or without adjuvant post-salvage radiation therapy (PSRT). METHODS A retrospective cohort study evaluated patients undergoing SR of post-SRS rBrM between 3/2003-2/2020 at an NCI-designated cancer center. Cases with histologically-viable malignancy were stratified by receipt of adjuvant PSRT within 60 days of SR. Clinical outcomes were described using cumulative incidences in the clustered competing-risks setting, competing risks regression, and Kaplan-Meier methodology. RESULTS One-hundred fifty-five rBrM in 135 patients were evaluated. The overall rate of LR was 40.2% (95% CI 34.3-47.2%) at 12 months. Thirty-nine (25.2%) rBrM treated with SR + PSRT trended towards lower 12-month LR versus SR alone [28.8% (95% CI 17.0-48.8%) versus 43.9% (95% CI 36.2-53.4%), p = .07 by multivariate analysis]. SR as re-operation (p = .03) and subtotal resection (p = .01) were independently associated with higher rates of LR. On univariate analysis, tumor size (p = .48), primary malignancy (p = .35), and PSRT technique (p = .43) bore no influence on LR. SR + PSRT was associated with an increased risk of radiographic RN at 12 months versus SR alone [13.4% (95% CI 5.5-32.7%) versus 3.5% (95% CI 1.5-8.0%), p = .02], though the percentage with symptomatic RN remained low (5.1% versus 0.9%, respectively). Median overall survival from SR was 13.4 months (95% CI 10.5-17.7). CONCLUSION In this largest-known series evaluating SR outcomes in histopathologically-confirmed rBrM, we identify a significant LR risk that may be reduced with adjuvant PSRT and with minimal symptomatic RN. Prospective analysis is warranted.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Chen
- Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William C Newman
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Cameron W Brennan
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Tonse R, Tom MC, Mehta MP, Ahluwalia MS, Kotecha R. Integration of Systemic Therapy and Stereotactic Radiosurgery for Brain Metastases. Cancers (Basel) 2021; 13:cancers13153682. [PMID: 34359583 PMCID: PMC8345095 DOI: 10.3390/cancers13153682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the multi-modal treatment of brain metastasis (BM), the role of systemic therapy has undergone a recent revolution. Due to the development of multiple agents with modest central nervous system penetration of the blood-brain barrier, targeted therapies and immune checkpoint inhibitors are increasingly being utilized alone or in combination with radiation therapy. However, the adoption of sequential or concurrent strategies varies considerably, and treatment strategies employed in clinical practice have rapidly outpaced evidence development. Therefore, this review critically analyzes the data regarding combinatorial approaches for a variety of systemic therapeutics with stereotactic radiosurgery and provides an overview of ongoing clinical trials. Abstract Brain metastasis (BM) represents a common complication of cancer, and in the modern era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection. However, the increased availability of molecular-based therapies with central nervous system (CNS) penetration now permits the individualized selection of tailored systemic therapies to be used alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with demonstrated CNS activity has further revolutionized the management of BM patients. The rapid introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth in the published literature about the optimal timing, sequencing, and combination of these systemic therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles on the management paradigm for BM patients and critically analyzes the current landscape of SRS, with a specific focus on integration with systemic therapy. We also discuss emerging treatment strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including pseudo-progression and radiation necrosis.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
| | - Martin C. Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Manmeet S. Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (R.T.); (M.C.T.); (M.P.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
- Correspondence: ; Tel.: +1-(786)-596-2000
| |
Collapse
|
21
|
Newman WC, Goldberg J, Guadix SW, Brown S, Reiner AS, Panageas K, Beal K, Brennan CW, Tabar V, Young RJ, Moss NS. The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes. J Neurooncol 2021; 153:507-518. [PMID: 34146223 DOI: 10.1007/s11060-021-03790-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Radiation therapy is a cornerstone of brain metastasis (BrM) management but carries the risk of radiation necrosis (RN), which can require resection for palliation or diagnosis. We sought to determine the relationship between extent of resection (EOR) of pathologically-confirmed RN and postoperative radiographic and symptomatic outcomes. METHODS A single-center retrospective review was performed at an NCI-designated Comprehensive Cancer Center to identify all surgically-resected, previously-irradiated necrotic BrM without admixed recurrent malignancy from 2003 to 2018. Clinical, pathologic and radiographic parameters were collected. Volumetric analysis determined EOR and longitudinally evaluated perilesional T2-FLAIR signal preoperatively, postoperatively, and at 3-, 6-, 12-, and 24-months postoperatively when available. Rates of time to 50% T2-FLAIR reduction was calculated using cumulative incidence in the competing risks setting with last follow-up and death as competing events. The Spearman method was used to calculate correlation coefficients, and continuous variables for T2-FLAIR signal change, including EOR, were compared across groups. RESULTS Forty-six patients were included. Most underwent prior stereotactic radiosurgery with or without whole-brain irradiation (N = 42, 91%). Twenty-seven operations resulted in gross-total resection (59%; GTR). For the full cohort, T2-FLAIR edema decreased by a mean of 78% by 6 months postoperatively that was durable to last follow-up (p < 0.05). EOR correlated with edema reduction at last follow-up, with significantly greater T2-FLAIR reduction with GTR versus subtotal resection (p < 0.05). Among surviving patients, a significant proportion were able to decrease their steroid use: steroid-dependency decreased from 54% preoperatively to 15% at 12 months postoperatively (p = 0.001). CONCLUSIONS RN resection conferred both durable T2-FLAIR reduction, which correlated with EOR; and reduced steroid dependency.
Collapse
Affiliation(s)
- William C Newman
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA, USA
| | - Jacob Goldberg
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Sergio W Guadix
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Viviane Tabar
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|