1
|
Wang S, Wang P, Deng Y, Sha F, Zhao P, Cao J, Shen J, Sun Q, Shao JJ, Wang Y. Efficient mitigation of lithium dendrite by two-dimensional A-type molecular sieve membrane for lithium metal battery. J Colloid Interface Sci 2025; 678:251-259. [PMID: 39197368 DOI: 10.1016/j.jcis.2024.08.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
Uneven lithium deposition poses a primary challenge for lithium-ion batteries, as it often triggers the growth of lithium dendrites, thereby significantly compromising battery performance and potentially giving rise to safety concerns. Therefore, the high level of safety must be guaranteed to achieve the large-scale application of battery energy storage systems. Here, we present a novel separator design achieved by incorporating a two-dimensional A-type molecular sieve coating onto the polypropylene separator surface, which functions as an effective lithium ion redistribution layer. The results demonstrated that even after undergoing 1000 cycles, the cell equipped with a two-dimensional A-type molecular sieve-Polypropylene (2D-A-PP) separator still maintains an impressive capacity retention rate of 70 %. In contrast, cells equipped with Polypropylene (PP) separators exhibit capacity retention rates below 50 % after only 500 cycles. Additionally, the incorporation of a two-dimensional molecular sieve enhances the mechanical properties of the PP separator, thereby bolstering battery safety. This study proposes a novel concept for the design of lithium-ion battery separator materials, offering a fresh perspective on the development of separators with exceptional thermal stability, enhanced porosity, superior electrolyte affinity, and effective inhibition of lithium dendrite formation.
Collapse
Affiliation(s)
- Suyang Wang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Peng Wang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yingying Deng
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Fei Sha
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Ping Zhao
- Geological Brigade 105, Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 550018, China
| | - Jun Cao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; College of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jie Shen
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Qi Sun
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Jiao-Jing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Yuanyu Wang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, James Li YJ, Hung TF, Kannan Ramaraj S, Jose R, Yang CC. Unveiling high-power and high-safety lithium-ion battery separator based on interlayer of ZIF-67/cellulose nanofiber with electrospun poly(vinyl alcohol)/melamine nonwoven membranes. J Colloid Interface Sci 2024; 658:699-713. [PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
Collapse
Affiliation(s)
- Xiao-Wei Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC.
| | - Yi-Shiuan Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Bo-Rong Zhang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Li-Fan Hsu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Jeng-Ywan Shih
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Ying-Jeng James Li
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Tai-Feng Hung
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Rajan Jose
- Center for Advanced Intelligent Materials & Faculty of Industrial Sciences and Technology, University Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC; Department of Chemical and Materials Engineering, Chang Gung University, Kwei-shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
3
|
Yin M, Liu X, Li C, Liao D, Yang Y, Han S, Fan L, Zhao J, Yu H, Zeng Q, Wang D. An electrospun three-layer nanofibrous membrane-based in situ gel separator for efficient lithium-organic batteries. Chem Commun (Camb) 2024; 60:3198-3201. [PMID: 38415765 DOI: 10.1039/d4cc00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
An in situ gel separator based on an electrospun three-layer nanofibrous membrane (PSE11-Gel) is developed for high-performance lithium-organic batteries (LOBs). The highly efficient shuttle effect inhibition of organic cathode molecules or lithiated intermediates has been demonstrated for PSE11-Gel to realize high-capacity stable LOBs.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Xi Liu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, China
| | - Caiting Li
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Deyi Liao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Yichao Yang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Shaobo Han
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Longfei Fan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Jing Zhao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Hui Yu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China.
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, China
| | - Da Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China.
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
4
|
Wu J, Wu Y, Wang L, Ye H, Lu J, Li Y. Challenges and Advances in Rechargeable Batteries for Extreme-Condition Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308193. [PMID: 37847882 DOI: 10.1002/adma.202308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Rechargeable batteries are widely used as power sources for portable electronics, electric vehicles and smart grids. Their practical performances are, however, largely undermined under extreme conditions, such as in high-altitude drones, ocean exploration and polar expedition. These extreme environmental conditions not only bring new challenges for batteries but also incur unique battery failure mechanisms. To fill in the gap, it is of great importance to understand the battery failure mechanisms under different extreme conditions and figure out the key parameters that limit battery performances. In this review, the authors start by investigating the key challenges from the viewpoints of ionic/charge transfer, material/interface evolution and electrolyte degradation under different extreme conditions. This is followed by different engineering approaches through electrode materials design, electrolyte modification and battery component optimization to enhance practical battery performances. Finally, a short perspective is provided about the future development of rechargeable batteries under extreme conditions.
Collapse
Affiliation(s)
- Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yunling Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hualin Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanguang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Wu Y, Li H, Liu T, Xu M. Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305063. [PMID: 37474115 DOI: 10.1002/adma.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Rechargeable batteries are of great significance for alleviating the growing energy crisis by providing efficient and sustainable energy storage solutions. However, the multiple issues associated with the diverse components in a battery system as well as the interphase problems greatly hinder their applications. Proteins and their subunits, peptides, and amino acids, are versatile biomolecules. Functional groups in different amino acids endow these biomolecules with unique properties including self-assembly, ion-conducting, antioxidation, great affinity to exterior species, etc. Besides, protein and its subunit materials can not only work in solid forms but also in liquid forms when dissolved in solutions, making them more versatile to realize materials engineering via diverse approaches. In this review, it is aimed to offer a comprehensive understanding of the properties of proteins and their subunits, and research progress of using these versatile biomolecules to address the engineering issues of various rechargeable batteries, including alkali-ion batteries, lithium-sulfur batteries, metal-air batteries, and flow batteries. The state-of-the-art advances in electrode, electrolyte, separator, binder, catalyst, interphase modification, as well as recycling of rechargeable batteries are involved, and the impacts of biomolecules on electrochemical properties are particularly emphasized. Finally, perspectives on this interesting field are also provided.
Collapse
Affiliation(s)
- Yulun Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P.R. China
| | - Huangxu Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Tiancheng Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Wong H, Li Y, Wang J, Tang TW, Cai Y, Xu M, Li H, Kim TH, Luo Z. Two-dimensional materials for high density, safe and robust metal anodes batteries. NANO CONVERGENCE 2023; 10:37. [PMID: 37561270 PMCID: PMC10415249 DOI: 10.1186/s40580-023-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
With a high specific capacity and low electrochemical potentials, metal anode batteries that use lithium, sodium and zinc metal anodes, have gained great research interest in recent years, as a potential candidate for high-energy-density storage systems. However, the uncontainable dendrite growth during the repeated charging process, deteriorates the battery performance, reduces the battery life and more importantly, raises safety concerns. With their unique properties, two-dimensional (2D) materials, can be used to modify various components in metal batteries, eventually mitigating the dendrite growth, enhancing the cycling stability and rate capability, thus leading to safe and robust metal anodes. In this paper, we review the recent advances of 2D materials and summarize current research progress of using 2D materials in the applications of (i) anode design, (ii) separator engineering, and (iii) electrolyte modifications by guiding metal ion nucleation, increasing ion conductivity, homogenizing the electric field and ion flux, and enhancing the mechanical strength for safe metal anodes. The 2D material modifications provide the ultimate solution for obtaining dendrite-free metal anodes, realizes the high energy storage application, and indicates the importance of 2D materials development. Finally, in-depth understandings of subsequent metal growth are lacking due to research limitations, while more advanced characterizations are welcome for investigating the metal deposition mechanism. The more facile and simplified preparation of 2D materials possess great prospects in high energy density metal anode batteries, and thus fulfils the development of EVs.
Collapse
Affiliation(s)
- Hoilun Wong
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yuyin Li
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jun Wang
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tsz Wing Tang
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yuting Cai
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mengyang Xu
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Lin P, Qi Y, Guo D, Wang X, Fang G, Chen X, Wang S. Bivalent Cobalt as Efficient Catalyst Intercalation Layer Improves Polysulfide Conversion in Lithium-Sulfur Batteries. CHEMSUSCHEM 2023; 16:e202202379. [PMID: 36872289 DOI: 10.1002/cssc.202202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Indexed: 06/10/2023]
Abstract
Herein, we investigated in detail the effect of metal valences in different cobalt-based organic framework compounds on the kinetics of sulfur reaction in lithium-sulfur batteries (LSBs). On this basis, two organic framework compounds of zeolite-imidazole-based cobalt organic framework compound (Co-ZIF) and tetrakis(4-benzoic acid) porphyrinato-CoIII chloride [Co-TBP(III)] with different valences were constructed as the functional intercalation separators of LSBs, and explored the effects of different valences on improving the reaction kinetics of polysulfides and inhibiting the shuttle effect. Experiments and theoretical calculations prove that CoII exhibits the best catalytic activity. This is mainly due to the fact that +2 valence shows a strong adsorption energy for polysulfides and a higher Fermi level compared with +3 valence, thus improving the efficiency of the rapid catalytic conversion of sulfur species. As expected, the discharge specific capacity of Co-ZIF as the catalytic layer of the LSBs reached 772.7 mAh g-1 at a high current density of 5 C. More importantly, the initial specific capacity is 839.6 mAh g-1 at high current 3 C, and after 720 cycles, the attenuation rate of per cycle is only 0.092 %, and the coulombic efficiency remains above 92 %.
Collapse
Affiliation(s)
- Peirong Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yuheng Qi
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, P. R. China
| | - Xueyu Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
8
|
Lu YH, Huang YC, Wang YZ, Ho KS. Studies on the Application of Polyimidobenzimidazole Based Nanofiber Material as the Separation Membrane of Lithium-Ion Battery. Polymers (Basel) 2023; 15:polym15081954. [PMID: 37112101 PMCID: PMC10140945 DOI: 10.3390/polym15081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4'-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6'-bis [2-(4-aminophenyl)benzimidazole] (BAPBI) were synthesized by means of a two-step method. Imidazole polyimide (BI-PI) was used to make a nanofiber membrane separator (NFMS) by electrospinning process, using its high porosity and continuous pore characteristics to reduce the ion diffusion resistance of the NFMS, enhancing the rapid charge and discharge performance. BI-PI has good thermal properties, with a Td5% of 527 °C and a dynamic mechanical analysis Tg of 395 °C. The tensile strength of the NFMS increased from 10.92MPa to 51.15MPa after being hot-pressed. BI-PI has good miscibility with LIB electrolyte, the porosity of the film is 73%, and the electrolyte absorption rate reaches 1454%. That explains the higher ion conductivity (2.02 mS cm-1) of NFMS than commercial one (0.105 mS cm-1). When applied to LIB, it is found that it has high cyclic stability and excellent rate performance at high current density (2 C). BI-PI (120 Ω) has a lower charge transfer resistance than the commercial separator Celgard H1612 (143 Ω).
Collapse
Affiliation(s)
- Yu-Hsiang Lu
- Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Rd., Douliu 64301, Taiwan
| | - Yu-Chang Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan
| | - Yen-Zen Wang
- Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Rd., Douliu 64301, Taiwan
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan
| |
Collapse
|
9
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
10
|
A tailored ceramic composite separator with electron-rich groups for high-performance lithium metal anode. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
|
12
|
Ding L, Li D, Du F, Zhang D, Zhang S, Wu T. Crafty preparation of lithium‐ion battery wet‐processed separator based on the synergistic effect of porous skeleton
nano‐Al
2
O
3
in‐situ blending and synchro‐draw. POLYM INT 2022. [DOI: 10.1002/pi.6447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Ding
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Dandan Li
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Fanghui Du
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Daoxin Zhang
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| | - Sihang Zhang
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| | - Tong Wu
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| |
Collapse
|
13
|
Ding L, Li D, Du F, Zhang D, Zhang S, Xu R, Wu T. Fabrication of Nano-Al 2O 3 in-Situ Coating Lithium-Ion Battery Separator Based on Synchronous Biaxial Stretching Mechanism of β-Crystal Polypropylene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Ding
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Dandan Li
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Fanghui Du
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Daoxin Zhang
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
14
|
Abstract
In electric vehicles and mobile electronic devices, batteries are one of the most critical components. They work by using electrochemical reactions that have been thoroughly investigated to identify their behavior and characteristics at each operating point. One of the fascinating aspects of batteries is their complicated behavior. The type of power cell reviewed in this study is a Lithium Iron Phosphate LiFePO4 (LFP). The goal of this study is to develop an intelligent model that can forecast the power cell State of Charge (SOC). The dataset used to create the model comprises all the operating points measured from an actual system during a capacity confirmation test. Regression approaches based on Deep Learning (DL), such as Long Short-Term Memory networks (LSTM), were evaluated under different model configurations and forecasting horizons.
Collapse
|
15
|
Cheon J, Park SH, Kim Y, Yim T. Aluminum oxide and ethylene bis(diphenylphosphine)‐incorporated poly(imide) separators for lithium‐ion batteries. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaemun Cheon
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| | - Sang Heon Park
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Youngkwon Kim
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Taeeun Yim
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| |
Collapse
|
16
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al 2O 3 Coating Online Construction during the β-iPP Cavitation Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6714-6728. [PMID: 35089698 DOI: 10.1021/acsami.1c22080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-Al2O3 coating online construction during the β-iPP cavitation process. The middle layer composed of nano-Al2O3, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-Al2O3 coating hold optimized dimensional stability below the meltdown temperature. Crystal structure measurement and pore structure diagnosis disclose that nano-Al2O3 thins coarse fibrils and makes the porous structure uniform. De-bonding of nano-Al2O3/β-iPP interfaces retains nano-Al2O3 not only on the top surface of the separator but also on the pore intine to realize nano-Al2O3 coating online construction, consequently strengthening tensile capacity, dimensional stability to heating, and electrolyte affinity. Electrochemical tests further disclose that nano-Al2O3 coating stabilizes solid electrolyte interphase germination and heightens lithium-ion migration numbers, confining cell resistances and granting optimal high-rate performance and cycling ability. The proposed approach features simple technics, environment-friendly, continuous fabrication, and coating online construction, which can offer new ideas for the mass fabricating of the high-end separator.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
17
|
Wu L, Zhao Y, Dai Y, Gao S, Liao B, Pang H. CoS2@montmorillonite as an efficient separator coating for high-performance lithium-sulfur batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shuttle effect and sluggish redox kinetic of polysulfides still hinder the large-scale application of lithium-sulfur (Li-S) batteries. Herein, we adopt a CoS2-intercalated/coated-montmorillonite (CoS2@montmorillonite) composite to work as an efficient...
Collapse
|
18
|
Separator impregnated with polyvinyl alcohol to simultaneously improve electrochemical performances and compression resistance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective. ENERGIES 2021. [DOI: 10.3390/en14144223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. This article firstly delves into future developments in electric vehicles from a technology perspective, and the perspective of changing end-user demands. After these end-user needs are defined, their translation into future battery requirements is described. A detailed review of expected material developments follows, to address these dynamic and changing needs. Developments on anodes, cathodes, electrolyte and cell level will be discussed. Finally, a special section will discuss the safety aspects with these increasing end-user demands and how to overcome these issues.
Collapse
|
20
|
Tan L, Sun Y, Wei C, Tao Y, Tian Y, An Y, Zhang Y, Xiong S, Feng J. Design of Robust, Lithiophilic, and Flexible Inorganic-Polymer Protective Layer by Separator Engineering Enables Dendrite-Free Lithium Metal Batteries with LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007717. [PMID: 33690967 DOI: 10.1002/smll.202007717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
As a promising candidate for the high energy density cells, the practical application of lithium-metal batteries (LMBs) is still extremely hindered by the uncontrolled growth of lithium (Li) dendrites. Herein, a facile strategy is developed that enables dendrite-free Li deposition by coating highly-lithiophilic amorphous SiO microparticles combined with high-binding polyacrylate acid (SiO@PAA) on polyethylene separators. A lithiated SiO and PAA (lithiated-SiO/PAA) protective layer with synergistic flexible and robust features is formed on the Li metal anode via the in situ reaction to offer outstanding interfacial stability during long-term cycles. By suppressing the formation of dead Li and random Li deposition, reducing the side reaction, and buffering the volume changes during the lithium deposition and dissolution, such a protective layer realizes a dendrite-free morphology of Li metal anode. Furthermore, sufficient ionic conductivity, uniform lithium-ion flux, and interface adaptability is guaranteed by the lithiated-SiO and Li polyacrylate acid. As a result, Li metal anodes display significantly enhanced cycling stability and coulombic efficiency in Li||Li and Cu||Li cells. When the composite separator is applied in a full cell with a carbonate-based electrolyte and LiNi0.8 Mn0.1 Co0.1 O2 cathode, it exhibits three times longer lifespan than control cell at current density of 5 C.
Collapse
Affiliation(s)
- Liwen Tan
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yue Sun
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Chuanliang Wei
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yuan Tao
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yuan Tian
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yongling An
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yuchan Zhang
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Shenglin Xiong
- School of Chemistry, Shandong University, Jinan, 250061, P. R. China
| | - Jinkui Feng
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
21
|
Zhao Q, Hao Z, Tang J, Xu X, Liu J, Jin Y, Zhang Q, Wang H. Cation-Selective Separators for Addressing the Lithium-Sulfur Battery Challenges. CHEMSUSCHEM 2021; 14:792-807. [PMID: 33258550 DOI: 10.1002/cssc.202002152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Indexed: 05/18/2023]
Abstract
Lithium-sulfur batteries (LSBs) have become one of the most promising candidates for next-generation energy storage systems owing to their high theoretical energy density, environmental friendliness, and cost effectiveness. However, real-word applications are seriously restricted by an undesirable shuttle effect and Li dendrite formation. In essence, uncontrollable anion transport is a key factor that causes both polysulfide shuttling and dendrite formation, which creates the possibility of simultaneously addressing the two critical issues in LSBs. An effective strategy to control anion transport is the construction of cation-selective separators. Significant progress has been achieved in the inhibition of the shuttle effect, whereas addressing the problem of Li dendrite formation by utilizing a cation-selective separator is still under way. From this viewpoint, this Review analyzes critical issues with regard to the shuttle effect and Li dendrite formation caused by uncontrollable anion transport, based on which roles and advantages of cation-selective separators toward high-performance LSBs are presented. According to the separator-construction principle, the latest advances and progress in cation-selective separators in inhibiting the shuttle effect and Li dendrite formation are reviewed in detail. Finally, some challenges and prospects are proposed for the future development of cation-selective separators. This Review is anticipated to provide a new perspective for simultaneously addressing the two critical issues in LSBs.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Zhendong Hao
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jiadong Tang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xiaolong Xu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingbing Liu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yuhong Jin
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
22
|
A Review of Functional Separators for Lithium Metal Battery Applications. MATERIALS 2020; 13:ma13204625. [PMID: 33081328 PMCID: PMC7603034 DOI: 10.3390/ma13204625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Lithium metal batteries are considered “rough diamonds” in electrochemical energy storage systems. Li-metal anodes have the versatile advantages of high theoretical capacity, low density, and low reaction potential, making them feasible candidates for next-generation battery applications. However, unsolved problems, such as dendritic growths, high reactivity of Li-metal, low Coulombic efficiency, and safety hazards, still exist and hamper the improvement of cell performance and reliability. The use of functional separators is one of the technologies that can contribute to solving these problems. Recently, functional separators have been actively studied and developed. In this paper, we summarize trends in the research on separators and predict future prospects.
Collapse
|
23
|
Liu Y, Chow CM, Phillips KR, Wang M, Voskian S, Hatton TA. Electrochemically mediated gating membrane with dynamically controllable gas transport. SCIENCE ADVANCES 2020; 6:eabc1741. [PMID: 33067231 PMCID: PMC7567586 DOI: 10.1126/sciadv.abc1741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The regulation of mass transfer across membranes is central to a wide spectrum of applications. Despite numerous examples of stimuli-responsive membranes for liquid-phase species, this goal remains elusive for gaseous molecules. We describe a previously unexplored gas gating mechanism driven by reversible electrochemical metal deposition/dissolution on a conductive membrane, which can continuously modulate the interfacial gas permeability over two orders of magnitude with high efficiency and short response time. The gating mechanism involves neither moving parts nor dead volume and can therefore enable various engineering processes. An electrochemically mediated carbon dioxide concentrator demonstrates proof of concept by integrating the gating membranes with redox-active sorbents, where gating effectively prevented the cross-talk between feed and product gas streams for high-efficiency, directional carbon dioxide pumping. We anticipate our concept of dynamically regulating transport at gas-liquid interfaces to broadly inspire systems in fields of gas separation, miniaturized devices, multiphase reactors, and beyond.
Collapse
Affiliation(s)
- Yayuan Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chun-Man Chow
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine R Phillips
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Miao Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahag Voskian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Yue H, Zhu Q, Dong S, Zhou Y, Yang Y, Cheng L, Qian M, Liang L, Wei W, Wang H. Nanopile Interlocking Separator Coating toward Uniform Li Deposition of the Li Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43543-43552. [PMID: 32880437 DOI: 10.1021/acsami.0c08776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Uncontrollable growth of lithium (Li) dendrite has severely hindered the development of Li metal anodes, while separator modification is regarded as a simple and effective way to mitigate the growth of Li dendrite. However, the "drop-dregs" phenomenon of coating layer desquamated from polyolefin separator due to their different Young's modulus would induce a nonuniform Li ionic flux, finally resulting in deteriorative electrochemical performance and even thermal runaway of the battery. Herein, we introduce a novel nanopile mechanical interlocking strategy to create delamination-free separator modification, which could stably generate a homogeneous Li ionic flux to guide long-term uniform Li deposition. Both experimental and simulation results demonstrate a strong bonding strength between the coating layer and membrane matrix based on this physical interlocking mechanism. Consequently, with a nearly dendrite-free Li deposition and a largely reduced interface impedance, 1000 h stable cycling of Li/Li half cells enrolled this modified separator is successfully achieved. Also, a significant improvement in Li/LiFePO4 full cells in long-term cycling stability to 500 cycles further indicates its promising practical potential. Moreover, this presented approach without any binding agents or surface activation procedures could be facilely scaled up, providing an applicable and durable separator modification solution toward stable Li metal anodes.
Collapse
Affiliation(s)
- Honglei Yue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Qiaonan Zhu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Shuai Dong
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yan Zhou
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yan Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Liwei Cheng
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Mengmeng Qian
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
25
|
Wang J, Yi S, Liu J, Sun S, Liu Y, Yang D, Xi K, Gao G, Abdelkader A, Yan W, Ding S, Kumar RV. Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries. ACS NANO 2020; 14:9819-9831. [PMID: 32634303 DOI: 10.1021/acsnano.0c02241] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Practical applications of lithium-sulfur batteries are simultaneously hindered by two serious problems occurring separately in both electrodes, namely, the shuttle effects of lithium polysulfides and the uncontrollable growth of lithium dendrites. Herein, to explore a facile integrated approach to tackle both problems as well as guarantee the efficient charge transfer, we used two-dimension hexagonal VS2 flakes as the building blocks to assemble nanotowers on the separators, forming a symmetrical double-side-modified polypropylene separator without blocking the membrane pores. Benefiting from the "sulfiphilic" and "lithiophilic" properties, high interfacial electronic conductivity, and the unique hexagonal tower-form nanostructure, the D-HVS@PP separator not only guarantees the effective suppression of the lithium polysulfide shuttle and the rapid ion/electron transfer but also realizes uniform and stable lithium nucleation and growth during cycling. Hence, just at the expense of an 11% increase in the separator weight (0.14 mg cm-2), the D-HVS@PP separator delivers an over 16 times higher initial areal capacity (8.3 mAh cm-2) than a conventional PP separator (0.5 mAh cm-2) under high sulfur-loading conditions (9.24 mg cm-2). Even when used under a low electrolyte/sulfur ratio of 4 mL g-1 and a practically relevant N/P ratio of 1.7, the D-HVS@PP separator still enabled stable cycling with a high cell-level gravimetric energy density. The potentials in broader applications (Li-S pouch battery and Li-LiFePO4 battery) and the promising commercial prospect (large-scale production and recyclability) of the developed separator are also demonstrated.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
- Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an 710049, China
| | - Shanshan Yi
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianwei Liu
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shiyi Sun
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunpeng Liu
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Xi
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
- Department of Materials Science and Metallurgy, University of Cambridge,, Cambridge, CB3 0FS, United Kingdom
| | - Guoxin Gao
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
- Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an 710049, China
| | - Amr Abdelkader
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, United Kingdom
| | - Wei Yan
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
- Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an 710049, China
| | - Shujiang Ding
- Department of Environmental Science and Engineering, Department of Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
- Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an 710049, China
| | - Ramachandran Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge,, Cambridge, CB3 0FS, United Kingdom
| |
Collapse
|
26
|
Improved Adhesion of Nafion™-Coated Separator to Water-Processable LiNi0.5Mn1.5O4 Electrodes. BATTERIES-BASEL 2020. [DOI: 10.3390/batteries6020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adhesion between electrode and separator is a key feature in cell assembly. Nafion™-coated separators for water-processed LiNi0.5Mn1.5O4 (LNMO) electrodes are here proposed as an alternative to the polyolefin separators. Specifically, polyolefin separators are modified with Nafion™ solutions and their adhesion to high-potential LNMO electrodes is investigated. The physicochemical properties of the Nafion™-coated separator and its electrochemical performance in Li/LNMO cells are discussed and compared to those obtained with polyolefin Celgard® (Charlotte, NC, USA) PP2075 separator. Improved adhesion and cycling stability, which could be further enhanced by a mild lamination process, were demonstrated with a thin layer of Nafion™ (0.1 mg cm−2).
Collapse
|
27
|
Khalifa H, El-Safty SA, Reda A, Shenashen MA, Eid AI. Anisotropic alignments of hierarchical Li 2SiO 3/TiO 2 @nano-C anode//LiMnPO 4@nano-C cathode architectures for full-cell lithium-ion battery. Natl Sci Rev 2020; 7:863-880. [PMID: 34692109 PMCID: PMC8289010 DOI: 10.1093/nsr/nwaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg-1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.
Collapse
Affiliation(s)
- Hesham Khalifa
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Abdullah Reda
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Mohamed A Shenashen
- Department of Petrochemical, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Alaa I Eid
- Composite Lab, Advanced Materials Division, Central Metallurgical R&D Institute, Helwan 11421, Egypt
| |
Collapse
|
28
|
Yan J, Zhao Y, Wang X, Xia S, Zhang Y, Han Y, Yu J, Ding B. Polymer Template Synthesis of Soft, Light, and Robust Oxide Ceramic Films. iScience 2019; 15:185-195. [PMID: 31077943 PMCID: PMC6514271 DOI: 10.1016/j.isci.2019.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
Oxide ceramic materials underpin a wide variety of technologies. However, the inherent fragility of these materials limits their use in emerging fields like wearable electronics and soft energy storage devices. Here, we develop a sol-gel electrospinning technique followed by calcination to create a range of oxide ceramic nanofiber films that exhibit significant softness without fragility after various deformations. This approach causes the ceramic crystals to fuse together at a low temperature during their growth within the polymer nanofiber templates. All the synthesized ceramic films, from SiO2 to BaTiO3, Li0.33La0.56TiO3, and Li7La3Zr2O12, have silk-like softness of <31 mN, low density of <0.36 g/cm3 and robust fire resistance to 1,000°C. Fabricated separators based on these films display large electrolyte uptakes of >900% and high thermal insulation performance, enhancing the rate capability and safety of lithium batteries. The reported method allows scalable synthesis of soft oxide ceramic films with properties appealing for applications. A scalable method is developed for the fabrication of soft oxide ceramic films A wide variety of soft, light, and robust oxide ceramic films are fabricated A detailed soft deformation mechanism of the ceramic films is illustrated The soft ceramic films exhibit appealing properties for applications
Collapse
Affiliation(s)
- Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Yun Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuhui Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuanyuan Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuhui Han
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
29
|
Wang S, Zhang D, Shao Z, Liu S. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydr Polym 2019; 214:328-336. [PMID: 30926004 DOI: 10.1016/j.carbpol.2019.03.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
The latent security issue has become the foremost anxiety for lithium-ion batteries (LIBs) wide-ranging of commercialized applications. Hence, the performance of a separator such as chemical durability, electrical insulator, and thermal stability must be superior. Herein, we exhibit a sandwich-structured composite membrane with enhanced thermal resistance and electrolyte affinity, which was prepared by layer-by-layer electrospinning deposition. After 50 cycles, the battery with a 3 wt.% halloysite nanotube electrospinning separator retained 91.80% of its initial discharge capacity, that was a drastic improvement over the commercial polypropylene separator with the numeric of 79.98%. This predominant composite membrane was prepared via an eco-friendly technics and can be thought of an assuring, expectant separator towards high performance lithium-ion batteries.
Collapse
Affiliation(s)
- Shuo Wang
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dalun Zhang
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ziqiang Shao
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Siyuan Liu
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Pan Y, Hao J, Zhu X, Zhou Y, Chou SL. Ion selective separators based on graphene oxide for stabilizing lithium organic batteries. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00374b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thin bicomponent layer with GO and Super P enhances electroactive cathode material utilization for stable lithium organic batteries.
Collapse
Affiliation(s)
- Yuede Pan
- Laboratory of Bioinspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Junran Hao
- Laboratory of Bioinspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xuanbo Zhu
- Laboratory of Bioinspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yahong Zhou
- Laboratory of Bioinspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shu-Lei Chou
- Institute for Superconducting and Electronic Materials
- University of Wollongong
- New South Wales
- Australia
| |
Collapse
|
32
|
Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev 2017; 117:10403-10473. [DOI: 10.1021/acs.chemrev.7b00115] [Citation(s) in RCA: 3219] [Impact Index Per Article: 459.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xin-Bing Cheng
- Beijing Key Laboratory of
Green Chemical Reaction Engineering and Technology, Department of
Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rui Zhang
- Beijing Key Laboratory of
Green Chemical Reaction Engineering and Technology, Department of
Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chen-Zi Zhao
- Beijing Key Laboratory of
Green Chemical Reaction Engineering and Technology, Department of
Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of
Green Chemical Reaction Engineering and Technology, Department of
Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Li L, Yu M, Jia C, Liu J, Lv Y, Liu Y, Zhou Y, Liu C, Shao Z. Cellulosic Biomass-Reinforced Polyvinylidene Fluoride Separators with Enhanced Dielectric Properties and Thermal Tolerance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20885-20894. [PMID: 28560863 DOI: 10.1021/acsami.7b04948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Safety issues are critical barriers to large-scale energy storage applications of lithium-ion batteries (LIBs). Using an ameliorated, thermally stable, shutdown separator is an effective method to overcome the safety issues. Herein, we demonstrate a novel, cellulosic biomass-material-blended polyvinylidene fluoride separator that was prepared using a simple nonsolvent-induced phase separation technique. This process formed a microporous composite separator with reduced crystallinity, uniform pore size distribution, superior thermal tolerance, and enhanced electrolyte wettability and dielectric and mechanical properties. In addition, the separator has a superior capacity retention and a better rate capability compared to the commercialized microporous polypropylene membrane. This fascinating membrane was fabricated via a relatively eco-friendly and cost-effective method and is an alternative, promising separator for high-power LIBs.
Collapse
Affiliation(s)
- Lei Li
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Miao Yu
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Chao Jia
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Jianxin Liu
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Yanyan Lv
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Yanhua Liu
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Yi Zhou
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Chuanting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| | - Ziqiang Shao
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Beijing Engineering Research Centre of Cellulose and Its Derivatives , Beijing 100081, China
| |
Collapse
|