1
|
Tian X, Wei H, Zhao Y, Cao R, Zhang C, Song X, Wu D, Butterbach-Bahl K, Rees RM, Smith P, Ju X. The legacy effect of long-term nitrogen fertilization on nitrous oxide emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176532. [PMID: 39343394 DOI: 10.1016/j.scitotenv.2024.176532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The primary driver of increasing atmospheric concentrations of nitrous oxide (N2O) is the use of organic and synthetic fertilizer to increase agricultural crop production. Current global estimates are based on IPCC N2O emission factor (EF) calculations, although there are shortcomings as many of the N2O EFs are derived from measurements during the cropping season. These neglect the fallow season, and do not adequately account for double or even triple cropping systems or legacy effects on soil N2O emissions in the following year. In this study, we assessed the legacy effect of fertilization on soil N2O fluxes using data from a long-term double-cropping field experiment with summer maize and winter wheat in rotation, in which no nitrogen (N; NN) and balanced manure with synthetic N (MN) fertilized treatments were switched to allow an assessment of legacy effects. Based on high-frequency measurements of N2O and previous data, we calculated that the historical N fertilization, or legacy effect, explained 23 % of the annual flux of 0.81 kg N ha-1 yr-1 in the first season of observation. In the following three seasons, the legacy effect of the previous N fertilization regime decreased to a negligible level, with N2O emissions mainly driven by in-season fertilization. Our data show that, on average, the seasonal EF for N2O was about 0.11 % higher in response to the previous N fertilization. Our study indicates that the current N2O EF may severely underestimate emissions because studies ignore legacy effects on N2O emissions from zero N plots and only compare zero N with N fertilization treatments for a given season or year to derive seasonal or annual N2O EF.
Collapse
Affiliation(s)
- Xue Tian
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huanhuan Wei
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yibai Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Cao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chong Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaotong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Wu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany; Pioneer Center Land-CRAFT, Agroecology, Aarhus University, Aarhus C, Denmark
| | - Robert M Rees
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Chen R, Shen W, Chen Z, Guo J, Yang L, Fei G, Chen X, Wang L. Modulation of soil nitrous oxide emissions and nitrogen leaching by hillslope hydrological processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175637. [PMID: 39168321 DOI: 10.1016/j.scitotenv.2024.175637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Soil nitrous oxide (N2O) emissions and nitrogen (N) leaching are key pathways for soil N loss in hillslope ecosystem, with potential implications for global warming and water body eutrophication. While soil N loss in hillslope ecosystem has been extensively studied, there is limited understanding of the spatiotemporal distribution patterns and factors driving soil N2O emissions and N leaching from a hillslope hydrology perspective. This study investigated N concentrations in leachate and soil N2O fluxes and their responses to soil hydrological factors on a tea plantation (TP) hillslope and a bamboo forest (BF) hillslope. Four distinct precipitation patterns-spring rainfall (SR), plum rain (PR), summer flood rain (SF), and drought period (DR)-were identified based on precipitation intensity, duration, and cumulative precipitation. Results showed that, soil N2O flux and leachate N concentrations were 8.2 times and 18.0 times higher On TP hillslope compared to the BF hillslope. The greatest soil N2O fluxes occurred during the PR period, while the lowest were observed during the DR period. Precipitation increased soil water content (SWC) and water-filled pore space, stimulating soil N cycling for N2O production. Fertilization activities and precipitation led to peak N concentration in leachate during the SR period. Additionally, soil wetness index (SWI) shaped spatial patterns of SWC, resulting in distinct spatial patterns of N2O emissions and nitrate leaching. Locations with higher SWI exhibited greater soil N2O flux and higher nitrate concentrations in leachate. This study emphasizes the significant effect of soil hydrological processes on soil N2O emissions and N leaching in hillslope ecosystems, providing valuable insights for N management in these environments.
Collapse
Affiliation(s)
- Ruidong Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Wanqi Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Ziting Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu province 221116, China
| | - Long Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Guosong Fei
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu province 210029, China
| | - Xin Chen
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu province 210029, China
| | - Lachun Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China.
| |
Collapse
|
3
|
Ge X, Xie D, Mulder J, Duan L. Reevaluating the Drivers of Fertilizer-Induced N 2O Emission: Insights from Interpretable Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15672-15680. [PMID: 39163138 DOI: 10.1021/acs.est.4c04574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Direct nitrous oxide (N2O) emissions from fertilizer application are the largest anthropogenic source of global N2O, but the factors influencing these emissions remain debated. Here, we compile 1134 observations of fertilizer-induced N2O emission factor (EF) from 229 publications, covering various regions and crops globally. We then employ an interpretable machine learning model to investigate the driving factors of fertilizer-induced N2O emissions. Our results reveal that pH, soil organic carbon, precipitation, and temperature are the most influential factors, overweighing the impacts of management practices. Nitrogen application rate has a positive impact on the EF, but the effect diminishes as nitrogen application rate increases, which has been overestimated in previous studies. Soil pH has three-stage influence on EF: positive when 7.3 ≤ pH ≤ 8.7, significantly negative between 6.8 and 7.3, and insignificant at lower pH levels (4.7 ≤ pH ≤ 6.8). Moreover, we confirm the nonlinear contributions of temperature and precipitation to EF, which may cause an unexpected increase in N2O emission under climate change. Our research provides crucial insights for global N2O modeling and mitigation strategies.
Collapse
Affiliation(s)
- Xiaodong Ge
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Danni Xie
- School of Land Engineering, Chang'an University, Xi'an 710064, China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Li L, Lu C, Winiwarter W, Tian H, Canadell JG, Ito A, Jain AK, Kou-Giesbrecht S, Pan S, Pan N, Shi H, Sun Q, Vuichard N, Ye S, Zaehle S, Zhu Q. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector. GLOBAL CHANGE BIOLOGY 2024; 30:e17472. [PMID: 39158113 DOI: 10.1111/gcb.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process-based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low-ambition nitrogen regulation policies, EF would increase from 1.18%-1.22% in 2010 to 1.27%-1.34% by 2050, representing a relative increase of 4.4%-11.4% and exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%-0.35% (relative increase of 11.9%-17%). In contrast, high-ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying-wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio-economic assessments and policy-making efforts.
Collapse
Affiliation(s)
- Linchao Li
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Chaoqun Lu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| | - Josep G Canadell
- CSIRO Environment, Canberra, Australian Capital Territory, Australia
| | - Akihiko Ito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Atul K Jain
- Department of Climate, Meteorology, and Atmospheric Sciences, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Sian Kou-Giesbrecht
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shufen Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Engineering and Environmental Studies Program, Boston College, Chestnut Hill, Massachusetts, USA
| | - Naiqing Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
| | - Hao Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing Sun
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CEA CNRS, UVSQ UPSACLAY, Gif sur Yvette, France
| | - Shuchao Ye
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Huang Y, Yu L, Zhang B, Wu C, Niu Z, Sun Z. Unraveling the drivers for interannual variabilities of N 2O fluxes from forests soils across climatic zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172322. [PMID: 38604370 DOI: 10.1016/j.scitotenv.2024.172322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Forest soils are an important source of nitrous oxide (N2O), however, field observations of N2O emission have often exhibited large variabilities when compared with managed agricultural lands. In the last decade, the number of forest N2O studies has increased more than tenfold, but only a few of them have looked into the interannual flux variabilities from the regional scale. Here, we have collected 30 long-term N2O monitoring studies (≥ 2 years) based on a global database, and extracted variabilities (VARFlux) as well as relative variabilities (VAR%, in proportions) of annual N2O fluxes. The relationship of mean annual precipitation (MAP), mean annual temperature (MAT), and nitrogen (N) deposition with flux variabilities was examined to explore the underlying mechanisms for N2O emission on a long-term scale. Our results show that mean VARFlux is 0.43 kg N ha-1 yr-1 and VAR% is 28.68%. Across climatic zones, the subtropical forests have the largest annual N2O fluxes, as well as the largest fluctuations among annual budgets, while the tropics were the smallest. We found that the regulating factors for VARFlux and VAR% are fundamentally different, i.e., MAT and N input determine the annual fluxes as well as VARFlux while MAP and other limiting soil parameters determine VAR%. The relative contributions of different seasons to flux variabilities were also explored, indicating that N2O fluxes of warm and cool seasons are more responsible for the fluctuations in annual fluxes of the (sub)tropical and temperate forests, respectively. Overall, despite the limitation in interpretations due to few long-term studies from literature, this work highlights that significant interannual variabilities are common phenomena for N2O emission from different climatic zones forest soils; by unraveling the divergent drivers for VARFlux and VAR%, we have provided the possibility of improving N2O simulation models for constraining the heterogeneity of N2O emission processes from climatic zones forest soils.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Longfei Yu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China..
| | - Bei Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chuanhao Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zetong Niu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhongcong Sun
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Shang Y, Yin Y, Ying H, Tian X, Cui Z. Updated loss factors and high-resolution spatial variations for reactive nitrogen losses from Chinese rice paddies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120752. [PMID: 38614004 DOI: 10.1016/j.jenvman.2024.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Anthropogenic reactive nitrogen (Nr) loss has been a critical environmental issue. However, due to the limitations of data availability and appropriate methods, the estimation of Nr loss from rice paddies and associated spatial patterns at a fine scale remain unclear. Here, we estimated the background Nr loss (BNL, i.e., Nr loss from soils without fertilization) and the loss factors (the percentage of Nr loss from synthetic fertilizer, LFs) for five loss pathways in rice paddies and identified the national 1 × 1 km spatial variations using data-driven models combined with multi-source data. Based on established machine learning models, an average of 23.4% (15.3-34.6%, 95% confidence interval) of the synthetic N fertilizer was lost to the environment, in the forms of NH3 (17.4%, 10.9-26.7%), N2O (0.5%, 0.3-0.8%), NO (0.2%, 0.1-0.4%), N leaching (3.1%, 0.8-5.7%), and runoff (2.3%, 0.6-4.5%). The total Nr loss from Chinese rice paddies was estimated to be 1.92 ± 0.52 Tg N yr-1 in 2021, in which synthetic fertilizer-induced Nr loss accounted for 69% and BNL accounted for the other 31%. The hotspots of Nr loss were concentrated in the middle and lower regions of the Yangtze River, an area with extensive rice cultivation. This study improved the estimation accuracy of Nr losses and identified the hotspots, which could provide updated insights for policymakers to set the priorities and strategies for Nr loss mitigation.
Collapse
Affiliation(s)
- Yiwei Shang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Agroecology, Aarhus University, 8830, Tjele, Denmark
| | - Yulong Yin
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Hao Ying
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Xingshuai Tian
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Ji P, Chen J, Chen R, Liu J, Yu C, Chen F. Nitrogen and phosphorus trends in lake sediments of China may diverge. Nat Commun 2024; 15:2644. [PMID: 38531852 PMCID: PMC10966067 DOI: 10.1038/s41467-024-46968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The brief history of monitoring nutrient levels in Chinese lake waters limits our understanding of the causes and the long-term trends of their eutrophication and constrains effective lake management. We therefore synthesize nutrient data from lakes in China to reveal the historical changes and project their future trends to 2100 using models. Here we show that the average concentrations of nitrogen and phosphorus in lake sediments have increased by 267% and 202%, respectively since 1850. In the model projections, 2030-2100, the nitrogen concentrations in the studied lakes in China may decrease, for example, by 87% in the southern districts and by 19% in the northern districts. However, the phosphorus concentrations will continue to increase by an average of 25% in the Eastern Plain, Yunnan-Guizhou Plateau, and Xinjiang. Based on this differentiation, we suggest that nitrogen and phosphorus management in Chinese lakes should be carried out at the district level to help develop rational and sustainable environmental management strategies.
Collapse
Affiliation(s)
- Panpan Ji
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianhui Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ruijin Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianbao Liu
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaoqing Yu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Fahu Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhan X, Zhang Q, Li M, Hou X, Shang Z, Liu Z, He Y. The shape of reactive nitrogen losses from intensive farmland in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170014. [PMID: 38232853 DOI: 10.1016/j.scitotenv.2024.170014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Reactive nitrogen (Nr) pollution has changed radically accompanied by severe intensive farming. This pollution further contributes to ecological degradation and climate warming. Despite this recognition, little is known about the spatial pattern of various Nr loss from croplands and corresponding environmental costs. Here, we identified the major pathway of Nr loss based on provincial estimates in 2008 and 2018, and validated by synchronous observation of ammonia volatilization, N runoff and N leaching using historical literature synthesis. We also evaluated environmental costs at provincial scale and detected the influence factors that dominating the pollution swapping among different Nr forms. Our results show that the total Nr loss was 6.28 ± 1.81 and 5.56 ± 2.30 Tg N yr-1 for Chinese croplands in 2008 and 2018. Ammonia volatilization, which accounted for more than half of the total Nr at the national scale, was proven to be the major Nr loss for two-thirds of the provinces and 80 % of the field observations. The contribution of runoff, which is dominant by precipitation, soil clay content and CEC, was gradually smaller than that of leaching from southeast to northwest. Ammonia and nitrous oxide contributed of 59.3 % ∼ 65.4 % of TNr but 80.9 % ∼ 81.5 % of total environmental damage caused by Nr in China. The use of nitrification inhibitors and straw return indicated pollution swapping among various Nr forms. This study emphasizes that the future practices to reduce total Nr loss need to account for local environmental conditions and have pollution swapping in sights.
Collapse
Affiliation(s)
- Xiaoying Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Li
- College of forestry, Northwest A&F University, Yangling 712100, China
| | - Xikang Hou
- Laboratory of Aquatic Ecological Conservation and Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ziyin Shang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Liu
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Yaping He
- China Institute of Geo-Environment Monitoring, Beijing 100037, China
| |
Collapse
|
9
|
Obi-Njoku O, Boh MY, Smith W, Grant B, Flemming C, Price GW, Hernandez-Ramirez G, Burton D, Whalen JK, Clark OG. A comparison of Tier 1, 2, and 3 methods for quantifying nitrous oxide emissions from soils amended with biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169639. [PMID: 38181952 DOI: 10.1016/j.scitotenv.2023.169639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Municipal biosolids are a nitrogen (N)-rich agricultural fertilizer which may emit nitrous oxide (N2O) after rainfall events. Due to sparse empirical data, there is a lack of biosolids-specific N2O emission factors to determine how land-applied biosolids contribute to the national greenhouse gas inventory. This study estimated N2O emissions from biosolids-amended land in Canada using Tier 1, Tier 2 (Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Field data was from replicated plots at 8 site-years between 2017 and 2019 in the provinces of Quebec, Nova Scotia and Alberta, Canada, representing three distinct ecozones. Municipal biosolids were the major N source for the crop, applied as mesophilic anaerobically digested biosolids, composted biosolids, or alkaline-stabilized biosolids alone or combined with an equal amount of urea-N fertilizer to meet the crop N requirements. Fluxes of N2O were measured during the growing season with manual chambers and compared to N2O emissions estimated using the IPCC methods. In all site-years, the mean emission of N2O in the growing season was greater with digested biosolids than other biosolids sources or urea fertilizer alone. The emissions of N2O in the growing season were similar with composted or alkaline-stabilized biosolids, and no greater than the unfertilized control. The best estimates of N2O emissions, relative to measured values, were with the Tier 3 > adapted Tier 2 with biosolids-specific correction factors > standard Tier 2 = Tier 1 methods of the IPCC, according to the root mean square error statistic. The Tier 3 IPCC method was the best estimator of N2O emissions in the Canadian ecozones evaluated in this study. These results will be used to improve methods for estimating N2O emissions from agricultural soils amended with biosolids and to generate more accurate GHG inventories.
Collapse
Affiliation(s)
- Okenna Obi-Njoku
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Michael Yongha Boh
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ward Smith
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Brian Grant
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Corey Flemming
- Pollutant Inventories and Reporting Division, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, QC, K1A 0H3, Canada
| | - G W Price
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - Guillermo Hernandez-Ramirez
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - David Burton
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - O Grant Clark
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
10
|
Liang M, Zhou Z, Ren P, Xiao H, Xu-Ri, Hu Z, Piao S, Tian H, Tong Q, Zhou F, Wei J, Yuan W. Four decades of full-scale nitrous oxide emission inventory in China. Natl Sci Rev 2024; 11:nwad285. [PMID: 38487250 PMCID: PMC10939392 DOI: 10.1093/nsr/nwad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024] Open
Abstract
China is among the top nitrous oxide (N2O)-emitting countries, but existing national inventories do not provide full-scale emissions including both natural and anthropogenic sources. We conducted a four-decade (1980-2020) of comprehensive quantification of Chinese N2O inventory using empirical emission factor method for anthropogenic sources and two up-to-date process-based models for natural sources. Total N2O emissions peaked at 2287.4 (1774.8-2799.9) Gg N2O yr-1 in 2018, and agriculture-developed regions, like the East, Northeast, and Central, were the top N2O-emitting regions. Agricultural N2O emissions have started to decrease after 2016 due to the decline of nitrogen fertilization applications, while, industrial and energetic sources have been dramatically increasing after 2005. N2O emissions from agriculture, industry, energy, and waste represented 49.3%, 26.4%, 17.5%, and 6.7% of the anthropogenic emissions in 2020, respectively, which revealed that it is imperative to prioritize N2O emission mitigation in agriculture, industry, and energy. Natural N2O sources, dominated by forests, have been steadily growing from 317.3 (290.3-344.1) Gg N2O yr-1 in 1980 to 376.2 (335.5-407.2) Gg N2O yr-1 in 2020. Our study produces a Full-scale Annual N2O dataset in China (FAN2020), providing emergent counting to refine the current national N2O inventories.
Collapse
Affiliation(s)
- Minqi Liang
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Zheyan Zhou
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Peiyang Ren
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Han Xiao
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Xu-Ri
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongmin Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Qing Tong
- Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
| | - Feng Zhou
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jing Wei
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
11
|
Feng R, Li Z, Qi Z. China's anthropogenic N 2O emissions with analysis of economic costs and social benefits from reductions in 2022. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120234. [PMID: 38308993 DOI: 10.1016/j.jenvman.2024.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
We assess China's overall anthropogenic N2O emissions via the official guidebook published by Chinese government. Results show that China's overall anthropogenic N2O emissions in 2022 were around 1593.1 (1508.7-1680.7) GgN, about 47.0 %, 27.0 %, 13.4 %, 4.9 %, and 7.7 % of which were caused by agriculture, industry, energy utilization, wastewater, and indirect sources, respectively. Maximum reduction rate for N2O emissions from agriculture, industry, energy utilization, wastewater, and indirect sources can achieve 69 %, 99 %, 79 %, 86 %, and 48 %, respectively, in 2022. However, given current global scenarios with a rapidly changing population and geopolitical and energy tension, the emission reduction may not be fully fulfilled. Without compromising yields, China's theoretical minimum anthropogenic N2O emissions would be 600.6 (568.8-633.6) GgN. In terms of the economic costs for reducing one kg of N2O-N emissions, the price ranged from €12.9 to €81.1 for agriculture, from €0.08 to €0.16 for industry, and from €104.8 to €1571.5 for energy utilization. We acknowledge the emission reduction rates may not be completely realistic for large-scale application in China. The social benefits gained from reducing one kg of N2O-N emissions in China was about €5.2, indicating anthropogenic N2O emissions caused a loss 0.03 % of China's GDP, but only justifying reduction in industrial N2O emissions from the economic perspective. We perceive that the present monetized values will be trustworthy for at least three to five years, but later the numerical monetized values need to be considered in inflation and other currency-dependent conditions.
Collapse
Affiliation(s)
- Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Zhenhua Li
- Xiacheng District Study-Aid Science & Technology Studio, Hangzhou, 310004, China
| | - Zhuangzhou Qi
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Peralta Ogorek LL, Jiménez JDLC, Visser EJW, Takahashi H, Nakazono M, Shabala S, Pedersen O. Outer apoplastic barriers in roots: prospects for abiotic stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37814289 DOI: 10.1071/fp23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Floods and droughts are becoming more frequent as a result of climate change and it is imperative to find ways to enhance the resilience of staple crops to abiotic stresses. This is crucial to sustain food production during unfavourable conditions. Here, we analyse the current knowledge about suberised and lignified outer apoplastic barriers, focusing on the functional roles of the barrier to radial O2 loss formed as a response to soil flooding and we discuss whether this trait also provides resilience to multiple abiotic stresses. The barrier is composed of suberin and lignin depositions in the exodermal and/or sclerenchyma cell walls. In addition to the important role during soil flooding, the barrier can also restrict radial water loss, prevent phytotoxin intrusion, salt intrusion and the main components of the barrier can impede invasion of pathogens in the root. However, more research is needed to fully unravel the induction pathway of the outer apoplastic barriers and to address potential trade-offs such as reduced nutrient or water uptake. Nevertheless, we suggest that the outer apoplastic barriers might act as a jack of all trades providing tolerance to multiple abiotic and/or biotic stressors.
Collapse
Affiliation(s)
- Lucas León Peralta Ogorek
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; and School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Juan de la Cruz Jiménez
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen 6525 AJ, Netherlands
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; and School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; and School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
13
|
Liao J, Huang Y, Li Z, Niu S. Data-driven modeling on the global annual soil nitrous oxide emissions: Spatial pattern and attributes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166472. [PMID: 37625728 DOI: 10.1016/j.scitotenv.2023.166472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Previous assessments generated divergent estimates of global terrestrial soil nitrous oxide (N2O) emission and its spatial distributions, which did not match the observed data well. The objectives of this study were to generate a global map of terrestrial soil N2O emissions based on field observations (n = 5549) and quantify the contribution of different variables for predicting the global variation of N2O emissions. We provided spatially explicit maps of annual soil N2O emission rates across forest, grassland and cropland using the random forest approach. The global mean soil N2O emission rate in our data-driven model was 0.059 ± 0.006 g N m-2 year-1, which was lower than the estimates from previous model ensembles. Soil N2O emissions were higher in the northern than southern hemisphere. The average annual soil N2O emission rate of cropland (0.094 ± 0.009 g N m-2 year-1) was higher than that of forest (0.039 ± 0.004 g N m-2 year-1) and grassland (0.045 ± 0.007 g N m-2 year-1). In addition, we found that soil nitrogen substrates dominated the changes in soil N2O emissions and the relative importance of nitrate, ammonium, and fertilizer in predicting soil N2O emissions was greater than that of mean annual temperature and precipitation. Our data-driven model results implied that previous process-based model may overestimate the global soil N2O emission rates due to limited validation data and incomplete assumptions on related-mechanisms. This study highlights the importance of global field observations in N2O emission estimation, which can provide an independent dataset to constrain previous process-based models for better prediction.
Collapse
Affiliation(s)
- Jiaqiang Liao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaolei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Zou M, Deng Y, Du T, Kang S. Agricultural transformation towards delivering deep carbon cuts in China's arid inland areas. ENVIRONMENT INTERNATIONAL 2023; 180:108245. [PMID: 37806156 DOI: 10.1016/j.envint.2023.108245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Since agriculture is a main source of global greenhouse gas (GHG) emissions, reducing agricultural GHG emissions is crucial for achieving global climate goals. Nevertheless, there has been a lack of thorough and systematic assessment of the spatiotemporal distribution of agricultural GHG emissions at the county level, considering many factors such as crop and livestock products, different processes and gases, and the impact of carbon fixation. Furthermore, the potential of comprehensive technical strategies to reduce GHG emissions remains uncertain. Considering the unique attributes of agricultural development in arid areas of northwest China, this study aimed to explore long-term changes in agricultural net GHG emissions by county, product group, process, and gas and quantify the future reduction potential based on the Agricultural System-induced GreenHouse Gases INVentory (ASGHG-INV) econometric model. The results showed increasing trends in carbon emissions (CE), carbon sequestration (CS), carbon footprint (CF), crop carbon footprint per unit area (CFCF), and crop carbon footprint per unit product (CPCF) in various regions from 1991 to 2019, while there was a decreasing trend in livestock carbon footprint per unit product (LPCF). Focus on reducing GHG emissions in the crop-sector should be in Shihezi, Alaer, and Liangzhou; those of the livestock-sector should be in Xinyuan, Yecheng, Liangzhou, and Gaotai. Scenario analysis indicated that agricultural transformation could substantially reduce GHG emissions in all regions. Reducing the loss of reactive nitrogen was shown to be the most effective single strategy for reducing crop emissions. A comprehensive scheme further integrating the optimization of nitrogen fertilizer management, increasing water-saving, manure application, and straw returning measures, and using biochar and inhibitors can decrease CE, CF, CFCF, and CPCF by 22.62-43.45%, 40.55-111.60%, 41.38-111.78%, and 43.33-111.32%, respectively, increase CS by 9.07-39.97%. Optimizing forage composition was the most influential strategy for reducing livestock GHG emissions. The integrated strategy of further using forage additives, breeding low-emission varieties, and optimizing fecal management can reduce CF and LPCF by 37.32-76.42% and 40.51-78.70%, respectively. This study's results can be a reference for developing more effective GHG emissions reduction and green transformation pathways for global dryland agriculture.
Collapse
Affiliation(s)
- Minzhong Zou
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Yaoyang Deng
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Taisheng Du
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Shaozhong Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
15
|
Adalibieke W, Cui X, Cai H, You L, Zhou F. Global crop-specific nitrogen fertilization dataset in 1961-2020. Sci Data 2023; 10:617. [PMID: 37696817 PMCID: PMC10495426 DOI: 10.1038/s41597-023-02526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Nitrogen (N) is an important nutrient for crop growth. However, the overuse of N fertilizers has led to a series of devastating global environmental issues. Recent studies show that multiple datasets have been created for agricultural N fertilizer application with varied temporal or spatial resolutions, nevertheless, how to synchronize and use these datasets becomes problematic due to the inconsistent temporal coverages, spatial resolutions, and crop-specific allocations. Here we reconstructed a comprehensive dataset for crop-specific N fertilization at 5-arc-min resolution (~10 km by 10 km) during 1961-2020, including N application rate, types, and placements. The N fertilization data was segmented by 21 crop groups, 13 fertilizer types, and 2 fertilization placements. Comparison analysis showed that our dataset is aligned with previous estimates. Our spatiotemporal N fertilization dataset could be used for the land surface models to quantify the effects of agricultural N fertilization practices on food security, climate change, and environmental sustainability.
Collapse
Affiliation(s)
- Wulahati Adalibieke
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoqing Cui
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hongwei Cai
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Liangzhi You
- International Food Policy Research Institute (IFPRI), Washington, DC20005, USA
| | - Feng Zhou
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Vishwakarma S, Zhang X, Dobermann A, Heffer P, Zhou F. Global nitrogen deposition inputs to cropland at national scale from 1961 to 2020. Sci Data 2023; 10:488. [PMID: 37495587 PMCID: PMC10372001 DOI: 10.1038/s41597-023-02385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Nitrogen (N) deposition is a significant nutrient input to cropland and consequently important for the evaluation of N budgets and N use efficiency (NUE) at different scales and over time. However, the spatiotemporal coverage of N deposition measurements is limited globally, whereas modeled N deposition values carry uncertainties. Here, we reviewed existing methods and related data sources for quantifying N deposition inputs to crop production on a national scale. We utilized different data sources to estimate N deposition input to crop production at national scale and compared our estimates with 14 N budget datasets, as well as measured N deposition data from observation networks in 9 countries. We created four datasets of N deposition inputs on cropland during 1961-2020 for 236 countries. These products showed good agreement for the majority of countries and can be used in the modeling and assessment of NUE at national and global scales. One of the datasets is recommended for general use in regional to global N budget and NUE estimates.
Collapse
Affiliation(s)
- Srishti Vishwakarma
- University of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD, USA
- Currently located at Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
| | - Xin Zhang
- University of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD, USA.
| | | | | | - Feng Zhou
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Gao H, Liu Q, Yan C, Wu Q, Gong D, He W, Liu H, Wang J, Mei X. Mitigation of greenhouse gas emissions and improved yield by plastic mulching in rice production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:162984. [PMID: 36963692 DOI: 10.1016/j.scitotenv.2023.162984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
Soil mulching technologies are effective practices which alleviate non-point source pollution and carbon emissions, while ensuring grain production security and increasing water productivity. However, the lack of comprehensive understanding of the impacts of mulching technologies on rice fields has hindered progress in global implementation due to the varying environments and application conditions under which they are implemented. This study conducted a meta-analysis based on 2412 groups of field experiment data from 313 studies to evaluate the effects of soil mulching methods on rice production, greenhouse gas (GHG) emissions and water use efficiency. The results show that plastic mulching, straw mulching and no mulching (PM, SM and NM) have reduced CH4 emissions (68.8 %, 61.4 % and 57.2 %), increased N2O emissions (84.8 %, 89.1 % and 96.6 %), reduced global warming potentials (50.7 %, 47.5 % and 46.8 %) and improved water use efficiency (50.2 %, 40.9 % and 34.0 %) compared with continuous flooding irrigation. However, PM increased rice yield (1.6 %), while SM and NM decreased yield (4.3 % and 9.2 %). Furthermore, analysis using random forest models revealed that rice yield, GHG emissions and WUE response to soil mulching were related to climate, soil properties, fertilizer and rice varieties. Our findings can guide the implementation of plastic mulching technology in priority areas, contribute to agricultural carbon neutrality and support the development of practical guidelines for farmers.
Collapse
Affiliation(s)
- Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Qiu Wu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, PR China.
| | - Daozhi Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Hongjin Liu
- Agriculture and Animal Husbandry Ecology and Resource Protection Center of Inner Mongolia, Hohhot 010010, PR China
| | - Jinling Wang
- Development Center of Agriculture, Animal Husbandry and Science and Technology of Jalaid, Inner Mongolia 137600, PR China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
18
|
Jiménez JDLC, Pedersen O. Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits. RICE (NEW YORK, N.Y.) 2023; 16:24. [PMID: 37160782 PMCID: PMC10169991 DOI: 10.1186/s12284-023-00638-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO2, CH4 and N2O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O2 loss in basal parts of the roots will increase O2 diffusion to the root apex where molecular O2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O2 in these zones promotes CH4 oxidation into CO2 by methanotrophs and nitrification (conversion of NH4+ into NO3-), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O2 loss will have restricted diffusional entry of CH4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
19
|
Ji P, Chen J, Zhou A, Chen R, Ding G, Wang H, Chen S, Chen F. Anthropogenic atmospheric deposition caused the nutrient and toxic metal enrichment of the enclosed lakes in North China. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130972. [PMID: 36860080 DOI: 10.1016/j.jhazmat.2023.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic emissions have resulted in increases in the atmospheric fluxes of both nutrient and toxic elements. However, the long-term geochemical impacts on lake sediments of deposition activities have not been clearly clarified. We selected two small enclosed lakes in northern China-Gonghai, strongly influenced by anthropogenic activities, and Yueliang lake, relatively weakly influenced by anthropogenic activities-to reconstruct historical trends of atmospheric deposition on the geochemistry of the recent sediments. The results showed an abrupt rise in the nutrient levels in Gonghai and the enrichment of toxic metal elements from 1950 (the Anthropocene) onwards. While, at Yueliang lake, the rise on TN was from 1990 onwards. These consequences are attributable to the aggravation of anthropogenic atmospheric deposition in N, P and toxic metals, from fertilizer consumption, mining and coal combustion. The intensity of anthropogenic deposition is considerable, which leave a significant stratigraphic signal of the Anthropocene in lake sediments.
Collapse
Affiliation(s)
- Panpan Ji
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianhui Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Aifeng Zhou
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruijin Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Ding
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haipeng Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengqian Chen
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fahu Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Tian X, Cong J, Wang H, Zheng H, Wang Z, Chu Y, Wang Y, Xue Y, Yin Y, Cui Z. Cropland nitrous oxide emissions exceed the emissions of RCP 2.6: A global spatial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159738. [PMID: 36334657 DOI: 10.1016/j.scitotenv.2022.159738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), as a potent greenhouse gas, must be limited to prevent the global temperature increasing by >2 °C. Cropland is the largest source of anthropogenic N2O emissions; however, earlier estimates for emissions and their exceedances still remain uncertainties. Here, we used a spatially explicit model to estimate cropland N2O emission in 2014 by refined grid-level crop-specific EFs and considered the background emission. We also sought to determine where N2O emissions exceed the "boundary" through analysis of spatial data from representative concentration pathway (RCP) 2.6. The global cropland N2O emission was 2.92 ± 0.59 Tg N yr-1, which far exceeds the 0.82 Tg N yr-1 boundary, over 90 % of cropland areas exceeded the boundary. Western Europe, Southeastern China, Pakistan, and the Ganges Plain exceeded the boundary by >2 kg N ha-1 yr-1. The boundary exceedances showed a positive linear response with respect to total cropland emission and a quadratic response to GDP per capita at the country level. Our study highlights the necessity of accurate estimations of spatial variations in cropland N2O emissions and evaluation of exceedances, to facilitate the development of more effective mitigation measures in different regions.
Collapse
Affiliation(s)
- Xingshuai Tian
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jiahui Cong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Hongye Wang
- Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, China
| | - Huifang Zheng
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zihan Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yiyan Chu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yingcheng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yanfang Xue
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Yulong Yin
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Freitas T, Bartelega L, Santos C, Dutra MP, Sarkis LF, Guimarães RJ, Dominghetti AW, Zito PC, Fernandes TJ, Guelfi D. Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization. PLANTS (BASEL, SWITZERLAND) 2022; 11:3323. [PMID: 36501362 PMCID: PMC9741429 DOI: 10.3390/plants11233323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
The aim of this study was to quantify NH3-N losses from conventional, stabilized, slow-release, and controlled-release N fertilizers in a coffee field. The N fertilizers analyzed were prilled urea, prilled urea dissolved in water, ammonium sulfate (AS), ammonium nitrate (AN), urea + Cu + B, urea + adhesive + CaCO3, and urea + NBPT (all with three split applications), as well as blended N fertilizer, urea + elastic resin, urea-formaldehyde, and urea + polyurethane (all applied only once). NH3-N losses (mean of two crop seasons) were statistically higher for urea + adhesive + CaCO3 (27.9% of applied N) in comparison with the other treatments. Loss from prilled urea (23.7%) was less than from urea + adhesive + CaCO3. Losses from urea + NBPT (14.5%) and urea + Cu + B (13.5%) were similar and lower than those from prilled urea. Urea dissolved in water (4.2%) had even lower losses than those treatments, and the lowest losses were observed for AS (0.6%) and AN (0.5%). For the single application fertilizers, higher losses occurred for urea + elastic resin (5.8%), blended N fertilizer (5.5%), and urea + polyurethane (5.2%); and urea-formaldehyde had a lower loss (0.5%). Except for urea + adhesive + CaCO3, all N-fertilizer technologies reduced NH3-N losses compared to prilled urea.
Collapse
Affiliation(s)
- Tainah Freitas
- Department of Agriculture, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Lucas Bartelega
- Department of Soil Science, Federal University of Lavras, Lavras 37203-202, Brazil
| | - César Santos
- Department of Soil Science, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Mateus Portes Dutra
- Department of Soil Science, Federal University of Lavras, Lavras 37203-202, Brazil
| | | | | | | | | | | | - Douglas Guelfi
- Department of Soil Science, Federal University of Lavras, Lavras 37203-202, Brazil
| |
Collapse
|
22
|
Maier R, Hörtnagl L, Buchmann N. Greenhouse gas fluxes (CO 2, N 2O and CH 4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157541. [PMID: 35882341 DOI: 10.1016/j.scitotenv.2022.157541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Agriculture contributes considerably to the increase of global greenhouse gas (GHG) emissions. Hence, magnitude and drivers of temporal variations in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in croplands are urgently needed to develop sustainable, climate-smart agricultural practices. However, our knowledge of GHG fluxes from croplands is still very limited. The eddy covariance technique was used to quantify GHG budgets and N2O emission factors (EF) for pea and maize in Switzerland. The random forest technique was applied for gap-filling N2O and CH4 fluxes as well as to determine the relevance of environmental, vegetation vs. management drivers of the GHG fluxes during two cropping seasons. Environmental (i.e., net radiation, soil water content, soil temperature) and vegetation drivers (i.e., vegetation height) were more important drivers for GHG fluxes at field scale than time since management for the two crop species. Both crops acted as GHG sinks between sowing and harvest, clearly dominated by net CO2 fluxes, while CH4 emissions were negligible. However, considerable N2O emissions occurred in both crop fields early in the season when crops were still establishing. N2O fluxes in both crops were small later in the season when vegetation was tall, despite high soil water contents and temperatures. Results clearly show a strong and highly dynamic microbial-plant competition for N driving N2O fluxes at the field scale. The total loss was 1.4 kg N2O-N ha-1 over 55 days for pea and 4.8 kg N2O-N ha-1 over 127 days for maize. EFs of N2O were 1.5 % (pea) and 4.4 % (maize) during the cropping seasons, clearly exceeding the IPCC Tier 1 EF for N2O. Thus, sustainable, climate-smart agriculture needs to consider crop phenology and better adapt N supply to crop N demand for growth, particularly during the early cropping season when competition for N between establishing crops and soil microorganisms modulates N2O losses.
Collapse
Affiliation(s)
- Regine Maier
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland.
| | - Lukas Hörtnagl
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
23
|
Sha Y, Chi D, Chen T, Wang S, Zhao Q, Li Y, Sun Y, Chen J, Lærke PE. Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156067. [PMID: 35605853 DOI: 10.1016/j.scitotenv.2022.156067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Clinoptilolite zeolite (Z) has been widely used for reducing nutrient loss and improving crop productivity. However, the impacts of zeolite addition on CH4 and N2O emissions in rice fields under various irrigation regimes are still unclear. Therefore, a three-year field experiment using a split-plot design evaluated the effects of zeolite addition and irrigation regimes on greenhouse gas (GHG) emissions, grain yield, water productivity and net ecosystem economic profit (NEEP) in a paddy field. The field experiment included two irrigation regimes (CF: continuous flooding irrigation; AWD: alternate wetting and drying irrigation) as the main plots, and three zeolite additions (0, 5 and 10 t ha-1) as the subplots. The results indicated that AWD regime decreased seasonal cumulative CH4 emissions by 54%-71% while increasing seasonal cumulative N2O emissions by 14%-353% across the three years, compared with CF regime. Consequently, the yield-scaled global warming potential under AWD regime decreased by 10%-60% while grain yield, water productivity and NEEP improving by 4.9%-7.9%, 19%-27% and 12%-14%, respectively, related to CF regime. Furthermore, 5 t ha-1 zeolite addition mitigated seasonal cumulative CH4 emissions by an average of 36%, but did not significantly affect N2O emissions compared with non-zeolite treatment. In addition, zeolite addition at 5 and 10 t ha-1 significantly increased grain yield, water productivity and NEEP by 11%-21%, 13%-20% and 13%-24%, respectively, related to non-zeolite treatment across the three years. Therefore, zeolite addition at 5 t ha-1 coupled with AWD regime could be an eco-economic strategy to mitigate GHG emissions and water use while producing optimal grain yield with high NEEP in rice fields.
Collapse
Affiliation(s)
- Yan Sha
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhao
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinghao Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Poul Erik Lærke
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| |
Collapse
|
24
|
Menegat S, Ledo A, Tirado R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci Rep 2022; 12:14490. [PMID: 36008570 PMCID: PMC9411506 DOI: 10.1038/s41598-022-18773-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
The global agri-food system relies on synthetic nitrogen (N) fertilisation to increase crop yields, yet the use of synthetic N fertiliser is unsustainable. In this study we estimate global greenhouse (GHG) emissions due to synthetic N fertiliser manufacture, transportation, and field use in agricultural systems. By developing the largest field-level dataset available on N2O soil emissions we estimate national, regional and global N2O direct emission factors (EFs), while we retrieve from the literature the EFs for indirect N2O soil emissions, and for N fertiliser manufacturing and transportation. We find that the synthetic N fertiliser supply chain was responsible for estimated emissions of 1.13 GtCO2e in 2018, representing 10.6% of agricultural emissions and 2.1% of global GHG emissions. Synthetic N fertiliser production accounted for 38.8% of total synthetic N fertiliser-associated emissions, while field emissions accounted for 58.6% and transportation accounted for the remaining 2.6%. The top four emitters together, China, India, USA and EU28 accounted for 62% of the total. Historical trends reveal the great disparity in total and per capita N use in regional food production. Reducing overall production and use of synthetic N fertilisers offers large mitigation potential and in many cases realisable potential to reduce emissions.
Collapse
Affiliation(s)
- Stefano Menegat
- Department of Economics and Statistics, University of Turin, Turin, Italy.
| | | | - Reyes Tirado
- Greenpeace Research Laboratories, University of Exeter, Exeter, UK
| |
Collapse
|
25
|
Harris E, Yu L, Wang YP, Mohn J, Henne S, Bai E, Barthel M, Bauters M, Boeckx P, Dorich C, Farrell M, Krummel PB, Loh ZM, Reichstein M, Six J, Steinbacher M, Wells NS, Bahn M, Rayner P. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nat Commun 2022; 13:4310. [PMID: 35879348 PMCID: PMC9314393 DOI: 10.1038/s41467-022-32001-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Anthropogenic nitrogen inputs cause major negative environmental impacts, including emissions of the important greenhouse gas N2O. Despite their importance, shifts in terrestrial N loss pathways driven by global change are highly uncertain. Here we present a coupled soil-atmosphere isotope model (IsoTONE) to quantify terrestrial N losses and N2O emission factors from 1850-2020. We find that N inputs from atmospheric deposition caused 51% of anthropogenic N2O emissions from soils in 2020. The mean effective global emission factor for N2O was 4.3 ± 0.3% in 2020 (weighted by N inputs), much higher than the surface area-weighted mean (1.1 ± 0.1%). Climate change and spatial redistribution of fertilisation N inputs have driven an increase in global emission factor over the past century, which accounts for 18% of the anthropogenic soil flux in 2020. Predicted increases in fertilisation in emerging economies will accelerate N2O-driven climate warming in coming decades, unless targeted mitigation measures are introduced.
Collapse
Affiliation(s)
- E Harris
- Swiss Data Science Centre, ETH Zurich, 8092, Zurich, Switzerland.
- Functional Ecology Research Group, Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - L Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Duebendorf, Switzerland
| | - Y-P Wang
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, 3195, Australia
| | - J Mohn
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Duebendorf, Switzerland
| | - S Henne
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Duebendorf, Switzerland
| | - E Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - M Barthel
- Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - M Bauters
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - P Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - C Dorich
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, 80523, CO, USA
| | - M Farrell
- CSIRO Agriculture and Food, Locked bag 2, Glen Osmond, SA, 5064, Australia
| | - P B Krummel
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, 3195, Australia
| | - Z M Loh
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, 3195, Australia
| | - M Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - J Six
- Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - M Steinbacher
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Duebendorf, Switzerland
| | - N S Wells
- Centre for Coastal Biogeochemistry, Southern Cross University, Lismore, NSW, 2480, Australia
- Department of Soil and Physical Sciences, Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - M Bahn
- Functional Ecology Research Group, Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
| | - P Rayner
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
- Melbourne Climate Futures Climate and Energy College, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
26
|
Bo Y, Jägermeyr J, Yin Z, Jiang Y, Xu J, Liang H, Zhou F. Global benefits of non-continuous flooding to reduce greenhouse gases and irrigation water use without rice yield penalty. GLOBAL CHANGE BIOLOGY 2022; 28:3636-3650. [PMID: 35170831 DOI: 10.1111/gcb.16132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Non-continuous flooding is an effective practice for reducing greenhouse gas (GHG) emissions and irrigation water use (IRR) in rice fields. However, advancing global implementation is hampered by the lack of comprehensive understanding of GHGs and IRR reduction benefits without compromising rice yield. Here, we present the largest observational data set for such effects as of yet. By using Random Forest regression models based on 636 field trials at 105 globally georeferenced sites, we identified the key drivers of effects of non-continuous flooding practices and mapped maximum GHGs or IRR reduction benefits under optimal non-continuous flooding strategies. The results show that variation in effects of non-continuous flooding practices are primarily explained by the UnFlooded days Ratio (UFR, that is the ratio of the number of days without standing water in the field to total days of the growing period). Non-continuous flooding practices could be feasible to be adopted in 76% of global rice harvested areas. This would reduce the global warming potential (GWP) of CH4 and N2 O combined from rice production by 47% or the total GWP by 7% and alleviate IRR by 25%, while maintaining yield levels. The identified UFR targets far exceed currently observed levels particularly in South and Southeast Asia, suggesting large opportunities for climate mitigation and water use conservation, associated with the rigorous implementation of non-continuous flooding practices in global rice cultivation.
Collapse
Affiliation(s)
- Yan Bo
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jonas Jägermeyr
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Center for Climate Systems Research, Columbia University, New York, New York, USA
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Zun Yin
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA
- NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, China
| | - Junzeng Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Hao Liang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Feng Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Mendoza Beltran A, Jepsen K, Rufí-Salís M, Ventura S, Madrid Lopez C, Villalba G. Mapping direct N 2O emissions from peri-urban agriculture: The case of the Metropolitan Area of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153514. [PMID: 35101482 DOI: 10.1016/j.scitotenv.2022.153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Geographically explicit datasets reflecting local management of crops are needed to help improve direct nitrous oxide (N2O) emission inventories. Yet, the lack of geographically explicit datasets of relevant factors influencing the emissions make it difficult to estimate them in such way. Particularly, for local peri-urban agriculture, spatially explicit datasets of crop type, fertilizer use, irrigation, and emission factors (EFs) are hard to find, yet necessary for evaluating and promoting urban self-sufficiency, resilience, and circularity. We spatially distribute these factors for the peri-urban agriculture in the Metropolitan Area of Barcelona (AMB) and create N2O emissions maps using crop-specific EFs as well as Tier 1 IPCC EFs for comparison. Further, the role of the soil types is qualitatively assessed. When compared to Tier 1 IPCC EFs, we find 15% more emissions (i.e. 7718 kg N2O-N year-1) than those estimated with the crop-specific EFs (i.e. 6533 kg N2O-N year-1) for the entire AMB. Emissions for most rainfed crop areas like cereals (e.g. oat and barley) and non-citric fruits (e.g. cherries and peaches), which cover 24% and 13% of AMB's peri-urban agricultural area respectively, are higher with Tier 1 EF. Conversely, crop-specific EFs estimate higher emissions for irrigated horticultural crops (e.g. tomato, artichoke) which cover 33% of AMB's peri-urban agricultural area and make up 70% of the total N2O emissions (4588 kg N2O-N year-1 using crop-specific EFs). Mapping the emissions helps evaluate spatial variability of key factors such as fertilizer use and irrigation of crops but carry uncertainties due to downscaling regional data to represent urban level data gaps. It also highlighted core emitting areas. Further the usefulness of the outputs on mitigation, sustainability and circularity studies are briefly discussed.
Collapse
Affiliation(s)
- Angelica Mendoza Beltran
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kelzy Jepsen
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Martí Rufí-Salís
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sergi Ventura
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cristina Madrid Lopez
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Gara Villalba
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (CEX2019-000940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
28
|
Smerald A, Fuchs K, Kraus D, Butterbach-Bahl K, Scheer C. Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.736394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial increases in cereal yields are necessary if a growing global demand for food is to be met without further conversion of natural to agricultural land. However, since in many regions yields are limited by soil nutrient availability, this will increase the requirement for fertilizer inputs, specifically of nitrogen (N). Here we focus on maize cultivation, and investigate the trade-off between yield increases and environmentally harmful N-losses in the form of nitrous oxide (N2O) emissions and nitrate (NO3-) leaching. We model the evolution of N-losses as yield gaps—the difference between actual and potential yields—are closed. To do this we use the process-based, biogeochemical model LandscapeDNDC to perform global simulations on a 0.5° grid, and evaluate the response of yields and environmental N-losses to changes in N-inputs. Our simulations find current production (circa 2015) of 954 Tg (5.1 Mg/ha), direct and indirect N2O emissions of 416 Gg-N (2.2 kg-N/ha or 0.44 kg-N/Mg) and NO3- leaching of 5.9 Tg-N (31.5 kg-N/ha or 6.2 kg-N/Mg). We demonstrate that, under an “optimal” strategy for closing yield gaps, maize yields could be increased by 20–25% with concomitant stable or even slightly decreased yield-scaled N-losses. However, further yield increases would come at an ever accelerating cost in environmentally harmful N losses. This acceleration occurs when yields exceed ~70–80% of their potential.
Collapse
|
29
|
Cui X, Shang Z, Xia L, Xu R, Adalibieke W, Zhan X, Smith P, Zhou F. Deceleration of Cropland-N 2O Emissions in China and Future Mitigation Potentials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4665-4675. [PMID: 35254824 DOI: 10.1021/acs.est.1c07276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agricultural soils are the largest anthropogenic emission source of nitrous oxide (N2O). National agricultural policies have been implemented to increase crop yield and reduce nitrogen (N) losses to the environment. However, it is difficult to effectively quantify crop-specific and regional N2O mitigation priorities driven by policies, due to lack of long-term, high-resolution crop-specific activity data, and oversimplified models. Here, we quantify the spatiotemporal changes and key drivers of crop-specific cropland-N2O emissions from China between 1980 and 2017, and future N2O mitigation potentials, using a linear mixed-effect model and survey-based data set of agricultural management measures. Cropland-N2O emissions from China tripled from 102.5 to 315.0 Gg N yr-1 between 1980 and 2017, and decelerated since 1998 mainly driven by country-wide deceleration and decrease in N rate and the changes in sowing structure. About 63% of N2O emissions could be reduced in 2050, primarily in the North China Plain and Northeast China Plain; 83% of which is from the production of maize (33%), vegetables (27%), and fruits (23%). The deceleration of N2O emissions highlights that policy interventions and agronomy practices (i.e., optimizing N rate and sowing structure) are potential pathways for further ambitious N2O mitigation in China and other developing countries.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ziyin Shang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100871, PR China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Rongting Xu
- Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, United States
| | - Wulahati Adalibieke
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaoying Zhan
- Agricultural Clean Watershed Research Group, Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing 100081, PR China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, U.K
| | - Feng Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
30
|
Lin Q, Wang S, Li Y, Riaz L, Yu F, Yang Q, Han S, Ma J. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152406. [PMID: 34921878 DOI: 10.1016/j.scitotenv.2021.152406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The mechanism and extent of changes in greenhouse gas (GHG) emissions from seasonal river-floodplain wetlands subjected to land-type conversion are unknown. We monitored GHG fluxes and characterized soil microbial communities in four types of wetland (Riverside lower-beach wetland (RLW), Riverside higher-beach wetland (RHW), Cultivated wetland (CW), Mesophytic wetland (MW)) in the Yellow River flood land. Results revealed that land reclamation activities altered the distribution patterns of carbon (C) and nitrogen (N) in soil, as well as the structure and activities of microbial communities, leading to changes in the GHG emissions. Cumulative CO2 and N2O emissions were highest in CW, which were 2.10-10.71 times and 3.19-8.61 times greater than the other three wetlands, respectively, whereas cumulative CH4 emissions were highest in RLW (1850.192 mg·m-2). CW exhibited the highest 100-years-scale Global Warming Potential (GWP100-CO2-eq) (81.175 t CO2-eq·ha-1), which was 9.93, 3.12, and 2.11 times greater than RLW, RHW, and MW. Moreover, reclaiming riverside wetland as farmland will increase CO2 and N2O emission fluxes by 54.546-72.684 t·ha-1 and 2.615-2.988 kg·ha-1, respectively. 16S rRNA high throughput sequencing revealed that bacterial community composition changed significantly overtime and seasons. GHG fluxes showed a significant positive linear correlation with bacterial OTUs (y = 0.71x-319.4, R2 = 0.304) and Shannon index (y = 228.62x-796.6, R2 = 0.336). Structure equation models indicated that soil C, N and moisture content were the primary factors influencing bacterial community evolution, which had an impact on GHG fluxes. Actinomycetes were significantly affected by total carbon (TC) content, dissolved organic carbon (DOC), and C/N, while ammonia oxidizing and nitrifying bacteria were greatly influenced by NO3--N rather than TN and NH4+-N content. Opportunities exist to reduce GHG emissions and mitigate climate change by maintaining the original state of riverside wetland or restoring cultivated land to wetland in the Yellow River floodplain wetland.
Collapse
Affiliation(s)
- Qingwei Lin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, 453007, PR China
| | - Shishi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China
| | - Yingchen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, 453007, PR China
| | - Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, 453007, PR China.
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, 453007, PR China
| | - Shijie Han
- School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Jianmin Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan Province, PR China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, 453007, PR China.
| |
Collapse
|
31
|
Yu H, Zhang G, Xia L, Huang Q, Ma J, Zhu C, Shan J, Jiang Q, Zhu J, Smith P, Yan X, Xu H. Elevated CO 2 does not necessarily enhance greenhouse gas emissions from rice paddies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152363. [PMID: 34915007 DOI: 10.1016/j.scitotenv.2021.152363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric carbon dioxide (eCO2) greatly impacts greenhouse gas (GHG) emissions of CH4 and N2O from rice fields. Although eCO2 generally stimulates GHG emissions in the short term (<5 years) experiments, the responses to long-term (≥10 years) eCO2 remain poorly known. Here we show, through a series of experiments and meta-analysis, that the eCO2 does not necessarily increase CH4 and N2O emissions from rice paddies. In an experiment of free-air CO2 enrichment for 13-15 years, CH4 and N2O emissions were decreased by 11-54% and 33-54%, respectively. The decline of CH4 emissions was related to the reduction of CH4 production and enhancement of CH4 oxidation via raising soil Eh and soil-water interface [O2] under eCO2. Moreover, the eCO2 significantly decreased NH4+-N content, suggesting a reduction of soil nitrification and thereby N2O emissions. A meta-analysis showed that CH4 and N2O emissions were stimulated under short-term eCO2 while reduced under long-term eCO2. The eCO2-induced increase in yield and biomass and the ratio of mcrA genes/pmoA genes declined with eCO2 duration, indicating an eCO2-stimulation of methanogenesis lower than that of methanotrophy over time by fewer increased substrates. Upscaling the results of meta-analysis, the eCO2-induced global paddy CH4 and N2O emissions shifted from an increase (+0.17 Pg CO2-eq year-1) in the short term into a decrease (-0.11 Pg CO2-eq year-1) in the long term. Our findings suggest that the effect of eCO2 on GHG emissions changes over time, and this should be considered in future climate change research.
Collapse
Affiliation(s)
- Haiyang Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Qiong Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qian Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
32
|
Ma R, Yu K, Xiao S, Liu S, Ciais P, Zou J. Data-driven estimates of fertilizer-induced soil NH 3 , NO and N 2 O emissions from croplands in China and their climate change impacts. GLOBAL CHANGE BIOLOGY 2022; 28:1008-1022. [PMID: 34738298 DOI: 10.1111/gcb.15975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Gaseous reactive nitrogen (Nr) emissions from agricultural soils to the atmosphere constitute an integral part of global N cycle, directly or indirectly causing climate change impacts. The extensive use of N fertilizer in crop production will compromise our efforts to reduce agricultural Nr emissions in China. A national inventory of fertilizer N-induced gaseous Nr emissions from croplands in China remains to be developed to reveal its role in shaping climate change. Here we present a data-driven estimate of fertilizer N-induced soil Nr emissions based on regional and crop-specific emission factors (EFs) compiled from 379 manipulative studies. In China, agricultural soil Nr emissions from the use of synthetic N fertilizer and manure in 2018 are estimated to be 3.81 and 0.73 Tg N yr-1 , with a combined contribution of 23%, 20% and 15% to the global agricultural emission total of ammonia (NH3 ), nitrous oxide (N2 O) and nitric oxide (NO), respectively. Over the past three decades, NH3 volatilization from croplands has experienced a shift from a rapid increase to a decline trend, whereas N2 O and NO emissions always maintain a strong growth momentum due to a robust and continuous rise of EFs. Regionally, croplands in Central south (1.51 Tg N yr-1 ) and East (0.99 Tg N yr-1 ) of China exhibit as hotspots of soil Nr emissions. In terms of crop-specific emissions, rice, maize and vegetable show as three leading Nr emitters, together accounting for 61% of synthetic N fertilizer-induced Nr emissions from croplands. The global warming effect derived from cropland N2 O emissions in China was found to dominate over the local cooling effects of NH3 and NO emissions. Our established regional and crop-specific EFs for gaseous Nr forms provide a new benchmark for constraining the IPCC Tier 1 default EF values. The spatio-temporal insight into soil Nr emission data from N fertilizer application in our estimate is expected to advance our efforts towards more accurate global or regional cropland Nr emission inventories and effective mitigation strategies.
Collapse
Affiliation(s)
- Ruoya Ma
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Yin Y, Wang Z, Tian X, Wang Y, Cong J, Cui Z. Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. GLOBAL CHANGE BIOLOGY 2022; 28:480-492. [PMID: 34473894 DOI: 10.1111/gcb.15860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/04/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Robust global simulation of soil background N2 O emissions (BNEs) is a challenge due to the lack of a comprehensive system for quantification of the variations in their magnitude and location. We mapped global BNEs based on 1353 field observations from globally distributed sites and high-resolution climate and soil data. We then calculated global and national total BNE budgets and compared them to the IPCC-estimated values. The average BNE was 1.10, 0.92, and 0.84 kg N ha-1 year-1 with variations from 0.18 to 3.47 (5th-95th percentile, hereafter), 0.20 to 3.44, and -1.16 to 3.70 kg N ha-1 year-1 for cropland, forestland, and grassland, respectively. Soil pH, soil N mineralization, atmospheric N deposition, soil volumetric water content, and soil temperature were the principle significant drivers of BNEs. The total BNEs of three land use types was lower than IPCC-estimated total BNEs by 0.83 Tg (1012 g) N year-1 , ranging from -47% to 94% across countries. The estimated BNE with cropland values were slightly higher than the IPCC estimates by 0.11 Tg N year-1 , and forestland and grassland lower than the IPCC estimates by 0.4 and 0.54 Tg N year-1 , respectively. Our study underlined the necessity for detailed estimation of the spatial distribution of BNEs to improve the estimates of global N2 O emissions and enable the establishment of more realistic and effective mitigation measures.
Collapse
Affiliation(s)
- Yulong Yin
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Zihan Wang
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xingshuai Tian
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yingcheng Wang
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Jiahui Cong
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Zhenling Cui
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Lee SI, Park HJ, Jeong YJ, Seo BS, Kwak JH, Yang HI, Xu X, Tang S, Cheng W, Lim SS, Choi WJ. Biochar-induced reduction of N 2O emission from East Asian soils under aerobic conditions: Review and data analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118154. [PMID: 34537599 DOI: 10.1016/j.envpol.2021.118154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Global meta-analyses showed that biochar application can reduce N2O emission. However, no relevant review study is available for East Asian countries which are responsible for 70% of gaseous N losses from croplands globally. This review analyzed data of the biochar-induced N2O mitigation affected by experimental conditions, including experimental types, biochar types and application rates, soil properties, and chemical forms and application rates of N fertilizer for East Asian countries. The magnitude of biochar-induced N2O mitigation was evaluated by calculating N2O reduction index (Rindex, percentage reduction of N2O by biochar relative to control). The Rindex was further standardized against biochar application rate by calculating Rindex per unit of biochar application rate (ton ha-1) (Unit Rindex). The Rindex averaged across different experimental types (n = 196) was -21.1 ± 2.4%. Incubation and pot experiments showed greater Rindex than column and field experiments due to higher biochar application rate and shorter experiment duration. Feedstock type and pyrolysis temperature also affected Rindex; either bamboo feedstock or pyrolysis at > 400 °C resulted in a greater Rindex. The magnitude of Rindex also increased with increasing biochar rate. Soil properties did not affect Rindex when evaluated across all experimental types, but there was an indication that biochar decreased N2O emission more at a lower soil moisture level in field experiments. The magnitude of Rindex increased with increasing N fertilizer rate up to 500-600 kg N ha-1, but it decreased thereafter. The Unit Rindex averaged across experimental types was -1.2 ± 0.9%, and it was rarely affected by experimental type and conditions but diminished with increasing biochar rate. Our results highlight that since N2O mitigation by biochar is affected by biochar application rate, Rindex needs to be carefully evaluated by standardizing against biochar application rate to suggest the best conditions for biochar usage in East Asia.
Collapse
Affiliation(s)
- Sun-Il Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Hyun-Jin Park
- Department of Rural and Bio-systems Engineering (Brain Korea 21), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Jae Jeong
- Department of Rural and Bio-systems Engineering (Brain Korea 21), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bo-Seong Seo
- Department of Rural and Bio-systems Engineering (Brain Korea 21), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Hyeob Kwak
- Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 57896, Republic of Korea
| | - Hye In Yang
- Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| | - Xingkai Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuirong Tang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Sang-Sun Lim
- Bio R&D Center, CJ Cheiljedang, Suwon, Gyeonggi-do, 16495, Republic of Korea
| | - Woo-Jung Choi
- Department of Rural and Bio-systems Engineering (Brain Korea 21), Chonnam National University, Gwangju, 61186, Republic of Korea; AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
35
|
Wang Q, Liu R, Zhou F, Huang J, Jiao L, Li L, Wang Y, Cao L, Xia X. A Declining Trend in China's Future Cropland-N 2O Emissions Due to Reduced Cropland Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14546-14555. [PMID: 34677952 DOI: 10.1021/acs.est.1c03612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Croplands are the largest anthropogenic source of nitrous oxide (N2O), a powerful greenhouse gas that contributes to the growing atmospheric N2O burden. However, few studies provide a comprehensive depiction of future cropland-N2O emissions on a national scale due to a lack of accurate cropland prediction data. Herein, we present a newly developed distributed land-use change prediction model for the high-precision prediction of national-scale land-use change. The high-precision land-use data provide an opportunity to elucidate how the changes in cropland area will affect the magnitude and spatial distribution of N2O emissions from China's croplands during 2020-2070. The results showed a declining trend in China's total cropland-N2O emissions from 0.44 ± 0.03 Tg N/year in 2020 to 0.39 ± 0.07 Tg N/year in 2070, consistent with a cropland area reduction from (1.78 ± 0.02) × 108 ha to (1.40 ± 0.15) × 108 ha. However, approximately 31% of all calculated cities in China would emit more than the present level. Furthermore, different land use and climate change scenarios would have important impacts on cropland-N2O emissions. The Grain for Green Plan implemented in China would effectively control emissions by approximately 12%.
Collapse
Affiliation(s)
- Qingrui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Feng Zhou
- Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100875, China
| | - Jing Huang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Cui X, Zhou F, Ciais P, Davidson EA, Tubiello FN, Niu X, Ju X, Canadell JG, Bouwman AF, Jackson RB, Mueller ND, Zheng X, Kanter DR, Tian H, Adalibieke W, Bo Y, Wang Q, Zhan X, Zhu D. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. NATURE FOOD 2021; 2:886-893. [PMID: 37117501 DOI: 10.1038/s43016-021-00384-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/09/2021] [Indexed: 04/30/2023]
Abstract
Mitigating soil nitrous oxide (N2O) emissions is essential for staying below a 2 °C warming threshold. However, accurate assessments of mitigation potential are limited by uncertainty and variability in direct emission factors (EFs). To assess where and why EFs differ, we created high-resolution maps of crop-specific EFs based on 1,507 georeferenced field observations. Here, using a data-driven approach, we show that EFs vary by two orders of magnitude over space. At global and regional scales, such variation is primarily driven by climatic and edaphic factors rather than the well-recognized management practices. Combining spatially explicit EFs with N surplus information, we conclude that global mitigation potential without compromising crop production is 30% (95% confidence interval, 17-53%) of direct soil emissions of N2O, equivalent to the entire direct soil emissions of China and the United States combined. Two-thirds (65%) of the mitigation potential could be achieved on one-fifth of the global harvested area, mainly located in humid subtropical climates and across gleysols and acrisols. These findings highlight the value of a targeted policy approach on global hotspots that could deliver large N2O mitigation as well as environmental and food co-benefits.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Feng Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, Gif sur Yvette, France
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Eric A Davidson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Francesco N Tubiello
- Statistics Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Xiaoyue Niu
- Department of Statistics, The Pennsylvania State University, State College, PA, USA
| | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou, China
| | - Josep G Canadell
- Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory, Australia
| | - Alexander F Bouwman
- Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
- PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Robert B Jackson
- Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| | - Nathaniel D Mueller
- Department of Ecosystem Science and Sustainability and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - David R Kanter
- Department of Environmental Studies, New York University, New York, NY, USA
| | - Hanqin Tian
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Wulahati Adalibieke
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yan Bo
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qihui Wang
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiaoying Zhan
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongqiang Zhu
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
37
|
Shang Z, Abdalla M, Xia L, Zhou F, Sun W, Smith P. Can cropland management practices lower net greenhouse emissions without compromising yield? GLOBAL CHANGE BIOLOGY 2021; 27:4657-4670. [PMID: 34241939 DOI: 10.1111/gcb.15796] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Smart cropland management practices can mitigate greenhouse gas (GHG) emissions while safeguarding food security. However, the integrated effects on net greenhouse gas budget (NGHGB) and grain yield from different management practices remain poorly defined and vary with environmental and application conditions. Here, we conducted a global meta-analysis on 347 observation sets of non-CO2 GHG (CH4 and N2 O) emissions and grain yield, and 412 observations of soil organic carbon sequestration rate (SOCSR). Our results show that for paddy rice, replacing synthetic nitrogen at the rate of 30%-59% with organic fertilizer significantly decreased net GHG emissions (NGHGB: -15.3 ± 3.4 [standard error], SOCSR: -15.8 ± 3.8, non-CO2 GHGs: 0.6 ± 0.1 in Mg CO2 eq ha-1 year-1 ) and improved rice yield (0.4 ± 0.1 in Mg ha-1 year-1 ). In contrast, intermittent irrigation significantly increased net GHG emissions by 11.2 ± 3.1 and decreased rice yield by 0.4 ± 0.1. The reduction in SOC sequestration by intermittent irrigation (15.5 ± 3.3), which was most severe (>20) in alkaline soils (pH > 7.5), completely offset the mitigation in CH4 emissions. Straw return for paddy rice also led to a net increase in GHG emissions (NGHGB: 4.8 ± 1.4) in silt-loam soils, where CH4 emissions (6.3 ± 1.3) were greatly stimulated. For upland cropping systems, mostly by enhancing SOC sequestration, straw return (NGHGB: -3.4 ± 0.8, yield: -0.5 ± 0.6) and no-tillage (NGHGB: -2.9 ± 0.7, yield: -0.1 ± 0.3) were more effective in warm climates. This study highlights the importance of carefully managing croplands to sequester SOC without sacrifice in yield while limiting CH4 emissions from rice paddies.
Collapse
Affiliation(s)
- Ziyin Shang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Mohamed Abdalla
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Feng Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Sino-France Institute of Earth Systems Science, Peking University, Beijing, P.R. China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
38
|
Yang N, Chen L, Wang W, Shen Z. The land carrying capacity and environmental risk assessment of livestock and poultry breeding considering crop planting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51356-51368. [PMID: 33982249 DOI: 10.1007/s11356-021-14310-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
At present, the contradiction between survival and ecology necessitates the integration of crop planting, chemical fertilizer application, and livestock and poultry breeding. Reasonably integrated crop-livestock systems (ICLSs) have become an important part of regional ecological and agricultural development. In this study, the relationship between manure nutrient demands for crops and manure nutrient supply from livestock is considered based on the balance of ICLSs in Jiangxi Province, China. The land carrying capacity index and potential of livestock breeding under uncoordinated systems are further discussed. The study also addresses water environmental risk due to surplus nutrients by integrating a traditional land carrying capacity framework and hydrological model. The results show that phosphorus absorption in land areas is the main limiting factor for the development of the livestock and poultry industries. In addition, manure nutrient demand exceeded supply in most districts, while the unbalanced regions with nutrient pollution are located in the upper and middle reaches of the Ganjiang basin. In addition, expanding the crop demand for manure or increasing the manure collection rate will help reduce environmental harm; however, attention should be paid to the risk of excessive manure returns. Additional livestock manure can be transferred to regions with developed crop planting systems. This study supports more harmonious and common ICLSs construction.
Collapse
Affiliation(s)
- Nian Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Wenzhuo Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
39
|
Bibby G, Krasniqi B, Reddy I, Sekar D, Ross K. Capturing the RNA castle: Exploiting MicroRNA inhibition for wound healing. FEBS J 2021; 289:5137-5151. [PMID: 34403569 DOI: 10.1111/febs.16160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
The growing pipelines of RNA-based therapies herald new opportunities to deliver better patient outcomes for complex disorders such as chronic nonhealing wounds associated with diabetes. Members of the microRNA (miRNA) family of small noncoding RNAs have emerged as targets for diverse elements of cutaneous wound repair, and both miRNA enhancement with mimics or inhibition with antisense oligonucleotides represent tractable approaches for miRNA-directed wound healing. In this review, we focus on miRNA inhibition strategies to stimulate skin repair given advances in chemical modifications to enhance the performance of antisense miRNA (anti-miRs). We first explore miRNAs whose inhibition in keratinocytes promotes keratinocyte migration, an essential part of re-epithelialisation during wound repair. We then focus on miRNAs that can be targeted for inhibition in endothelial cells to promote neovascularisation for wound healing in the context of diabetic mouse models. The picture that emerges is that direct comparisons of different anti-miRNAs modifications are required to establish the most translationally viable options in the chronic wound environment, that direct comparisons of the impact of inhibition of different miRNAs are needed to quantify and rank their relative efficacies in promoting wound repair, and that a standardised human ex vivo model of the diabetic wound is needed to reduce reliance on mouse models that do not necessarily enhance mechanistic understanding of miRNA-targeted wound healing.
Collapse
Affiliation(s)
- George Bibby
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Blerta Krasniqi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Izaak Reddy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| |
Collapse
|
40
|
Yang Y, Liu L, Zhang F, Zhang X, Xu W, Liu X, Wang Z, Xie Y. Soil Nitrous Oxide Emissions by Atmospheric Nitrogen Deposition over Global Agricultural Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4420-4429. [PMID: 33734680 DOI: 10.1021/acs.est.0c08004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Agricultural soil is the main source of nitrous oxide (N2O) emissions which contribute to global warming and stratospheric ozone depletion. In recent decades, atmospheric nitrogen (N) deposition has increased dramatically as an important agricultural soil N input, while its effect on soil N2O emissions in the current and future climate change remains unknown. Here, we conducted a thorough analysis of the effect of N deposition and climate change on soil N2O emissions as well as their trends. Soil N2O emissions induced by N deposition accounted for 25% of global cropland soil N2O emissions. Global soil N2O emissions over croplands increased by 2% yr-1 during 1996-2013, of which N deposition could explain 15% of the increase. The emission factor of N deposition was ∼7 times that of N fertilizer plus manure (∼1%) through a more direct way, since N deposition including nitrate (NO3-) and ammonium (NH4+) could be directly used for nitrification and denitrification. By 2100, N deposition will increase by 80% and cropland soil N2O emissions will increase by 241% under the RCP8.5 scenario in comparison with the 2010 baseline. These results suggest that, under the background of increasing global N deposition, it is essential to consider its effects on soil N2O emissions in climatic change studies.
Collapse
Affiliation(s)
- Yuyu Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhen Wang
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yaowen Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
41
|
Jiang R, Liu S, Li L, Ji Y, Li H, Guo X, Jia L, Zhong Z, Su F. Single Ir Atoms Anchored on Ordered Mesoporous WO
3
Are Highly Efficient for the Selective Catalytic Reduction of NO with CO under Oxygen‐rich Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruihuan Jiang
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006, Heilongjiang Province P. R. China
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shaomian Liu
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Liang Li
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006, Heilongjiang Province P. R. China
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongjun Ji
- School of Light Industry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Huifang Li
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiangfeng Guo
- College of Chemistry Guangdong University of Petrochemical Technology Guangdong Maoming 525000 P. R. China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering Qiqihaer University Qiqihaer 161006, Heilongjiang Province P. R. China
| | - Ziyi Zhong
- Department of Chemical Engineering Guangdong Technion-Israel Institute of Technology (GTIIT) Shantou 515063 P. R. China
- Technion-Israel Institute of Technology (IIT) Haifa 32000 Israel
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Institute of Industrial Chemistry and Energy Technology Shenyang University of Chemical Technology Shenyang 110142 P. R. China
| |
Collapse
|
42
|
Ma R, Zou J, Han Z, Yu K, Wu S, Li Z, Liu S, Niu S, Horwath WR, Zhu-Barker X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. GLOBAL CHANGE BIOLOGY 2021; 27:855-867. [PMID: 33155724 DOI: 10.1111/gcb.15437] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3 ) emissions from fertilized soils to the atmosphere and the subsequent deposition to land surface exert adverse effects on biogeochemical nitrogen (N) cycling. The region- and crop-specific emission factors (EFs) of N fertilizer for NH3 are poorly developed and therefore the global estimate of soil NH3 emissions from agricultural N fertilizer application is constrained. Here we quantified the region- and crop-specific NH3 EFs of N fertilizer by compiling data from 324 worldwide manipulative studies and focused to map the global soil NH3 emissions from agricultural N fertilizer application. Globally, the NH3 EFs averaged 12.56% and 14.12% for synthetic N fertilizer and manure, respectively. Regionally, south-eastern Asia had the highest NH3 EFs of synthetic N fertilizer (19.48%) and Europe had the lowest (6%), which might have been associated with the regional discrepancy in the form and rate of N fertilizer use and management practices in agricultural production. Global agricultural NH3 emissions from the use of synthetic N fertilizer and manure in 2014 were estimated to be 12.32 and 3.79 Tg N/year, respectively. China (4.20 Tg N/year) followed by India (2.37 Tg N/year) and America (1.05 Tg N/year) together contributed to over 60% of the total global agricultural NH3 emissions from the use of synthetic N fertilizer. For crop-specific emissions, the NH3 EFs averaged 11.13%-13.95% for the three main staple crops (i.e., maize, wheat, and rice), together accounting for 72% of synthetic N fertilizer-induced NH3 emissions from croplands in the world and 70% in China. The region- and crop-specific NH3 EFs of N fertilizer established in this study offer references to update the default EF in the IPCC Tier 1 guideline. This work also provides an insight into the spatial variation of soil-derived NH3 emissions from the use of synthetic N fertilizer in agriculture at the global and regional scales.
Collapse
Affiliation(s)
- Ruoya Ma
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaoqiang Han
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaofu Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - William R Horwath
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Xia Zhu-Barker
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| |
Collapse
|
43
|
Zhan X, Adalibieke W, Cui X, Winiwarter W, Reis S, Zhang L, Bai Z, Wang Q, Huang W, Zhou F. Improved Estimates of Ammonia Emissions from Global Croplands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1329-1338. [PMID: 33378621 DOI: 10.1021/acs.est.0c05149] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reducing ammonia (NH3) volatilization from croplands while satisfying the food demand is strategically required to mitigate haze pollution. However, the global pattern of NH3 volatilization remains uncertain, primarily because of the episodic nature of NH3 volatilization rates and the high variation of fertilization practices. Here, we improve a global estimate of crop-specific NH3 emissions at a high spatial resolution using an updated data-driven model with a survey-based dataset of the fertilization scheme. Our estimate of the globally averaged volatilization rate (12.6% ± 2.1%) is in line with previous data-driven studies (13.7 ± 3.1%) but results in one-quarter lower emissions than process-based models (16.5 ± 3.1%). The associated global emissions are estimated at 14.4 ± 2.3 Tg N, with more than 50% of the total stemming from three stable crops or 12.2% of global harvested areas. Nearly three-quarters of global cropland-NH3 emissions could be reduced by improving fertilization schemes (right rate, right type, and right placement). A small proportion (20%) of global harvested areas, primarily located in China, India, and Pakistan, accounts for 64% of abatement potentials. Our findings provide a critical reference guide for the future abatement strategy design when considering locations and crop types.
Collapse
Affiliation(s)
- Xiaoying Zhan
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
- Agricultural Clean Watershed Research Group, Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing 100081, PR China
| | - Wulahati Adalibieke
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
| | - Xiaoqing Cui
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
- The Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra 65-417, Poland
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Penicuik EH26 0QB, United Kingdom
- University of Exeter Medical School, Knowledge Spa, Truro TR1 3HD, United Kingdom
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Qihui Wang
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
| | - Weichen Huang
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
| | - Feng Zhou
- College of Urban and Environmental Sciences, and Ministry of Education Laboratory for Earth Surface Processes, Peking University, Beijing 100871, PR China
| |
Collapse
|
44
|
Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, Bernoux M, Bruni E, Caliman JP, Cardinael R, Chen S, Ciais P, Desbois D, Fouche J, Frank S, Henault C, Lugato E, Naipal V, Nesme T, Obersteiner M, Pellerin S, Powlson DS, Rasse DP, Rees F, Soussana JF, Su Y, Tian H, Valin H, Zhou F. Can N 2 O emissions offset the benefits from soil organic carbon storage? GLOBAL CHANGE BIOLOGY 2021; 27:237-256. [PMID: 32894815 DOI: 10.1111/gcb.15342] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 05/02/2023]
Abstract
To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.
Collapse
Affiliation(s)
- Bertrand Guenet
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSCALAY, Gif sur Yvette, France
| | - Benoit Gabrielle
- UMR ÉcoSys, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Claire Chenu
- UMR ÉcoSys, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | | | - Jérôme Balesdent
- Aix-Marseille Université, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Martial Bernoux
- Food and Agriculture Organization of the United Nations (FAO), Climate and Environment Division, Rome, Italy
| | - Elisa Bruni
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSCALAY, Gif sur Yvette, France
| | | | - Rémi Cardinael
- CIRAD, UPR AIDA, Harare, Zimbabwe
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- Crop Science Department, University of Zimbabwe, Harare, Zimbabwe
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSCALAY, Gif sur Yvette, France
| | - Dominique Desbois
- UMR Économie publique, INRAE-AgroParisTech, Université Paris Saclay, Paris, France
| | - Julien Fouche
- Institut Agro, LISAH, Univ Montpellier, INRAE, IRD, Montpellier, France
| | - Stefan Frank
- IIASA, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Catherine Henault
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Ispra, Italy
| | - Victoria Naipal
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSCALAY, Gif sur Yvette, France
| | - Thomas Nesme
- ISPA, INRAE, Bordeaux Sciences Agro, Univ. Bordeaux, Villenave d'Ornon, France
| | - Michael Obersteiner
- IIASA, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Sylvain Pellerin
- ISPA, INRAE, Bordeaux Sciences Agro, Univ. Bordeaux, Villenave d'Ornon, France
| | - David S Powlson
- Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Daniel P Rasse
- Department of Biogeochemistry and Soil Quality, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Frédéric Rees
- UMR ÉcoSys, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | | | - Yang Su
- UMR ÉcoSys, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Hanqin Tian
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Hugo Valin
- IIASA, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Feng Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, P. R. China
| |
Collapse
|
45
|
Liu W, Ciais P, Liu X, Yang H, Hoekstra AY, Tang Q, Wang X, Li X, Cheng L. Global Phosphorus Losses from Croplands under Future Precipitation Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14761-14771. [PMID: 33138381 DOI: 10.1021/acs.est.0c03978] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) losses from fertilized croplands to inland water bodies cause serious environmental problems. During wet years, high precipitation disproportionately contributes to P losses. We combine simulations of a gridded crop model and outputs from a number of hydrological and climate models to assess global impacts of changes in precipitation regimes on P losses during the 21st century. Under the baseline climate during 1991-2010, median P losses are 2.7 ± 0.5 kg P ha-1 year-1 over global croplands of four major crops, while during wet years, P losses are 3.6 ± 0.7 kg P ha-1 year-1. By the end of this century, P losses in wet years would reach 4.2 ± 1.0 (RCP2.6) and 4.7 ± 1.3 (RCP8.5) kg P ha-1 year-1 due to increases in high annual precipitation alone. The increases in P losses are the highest (up to 200%) in the arid regions of Middle East, Central Asia, and northern Africa. Consequently, in three quarters of the world's river basins, representing about 40% of total global runoff and home up to 7 billion people, P dilution capacity of freshwater could be exceeded due to P losses from croplands by the end of this century.
Collapse
Affiliation(s)
- Wenfeng Liu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Xingcai Liu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
- Department of Environmental Sciences, MGU, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Arjen Y Hoekstra
- Twente Water Centre, University of Twente, 7522 NB Enschede, The Netherlands
- Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 259772 Singapore
| | - Qiuhong Tang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuhui Wang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaodong Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China
| |
Collapse
|
46
|
Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, Suntharalingam P, Davidson EA, Ciais P, Jackson RB, Janssens-Maenhout G, Prather MJ, Regnier P, Pan N, Pan S, Peters GP, Shi H, Tubiello FN, Zaehle S, Zhou F, Arneth A, Battaglia G, Berthet S, Bopp L, Bouwman AF, Buitenhuis ET, Chang J, Chipperfield MP, Dangal SRS, Dlugokencky E, Elkins JW, Eyre BD, Fu B, Hall B, Ito A, Joos F, Krummel PB, Landolfi A, Laruelle GG, Lauerwald R, Li W, Lienert S, Maavara T, MacLeod M, Millet DB, Olin S, Patra PK, Prinn RG, Raymond PA, Ruiz DJ, van der Werf GR, Vuichard N, Wang J, Weiss RF, Wells KC, Wilson C, Yang J, Yao Y. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020; 586:248-256. [DOI: 10.1038/s41586-020-2780-0] [Citation(s) in RCA: 377] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
|
47
|
Grace PR, van der Weerden TJ, Rowlings DW, Scheer C, Brunk C, Kiese R, Butterbach-Bahl K, Rees RM, Robertson GP, Skiba UM. Global Research Alliance N 2 O chamber methodology guidelines: Considerations for automated flux measurement. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1126-1140. [PMID: 33016438 DOI: 10.1002/jeq2.20124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2 O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2 O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2 O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2 O chamber systems.
Collapse
Affiliation(s)
- Peter R Grace
- Queensland University of Technology, Brisbane, QLD, 4000, Australia
- W.K. Kellogg Biological Station and Dep. of Plant. Soil, and Microbial Sciences, Michigan State Univ., Hickory Corners, MI, 49060, USA
| | | | - David W Rowlings
- Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Clemens Scheer
- Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Karlsruhe Institute of Technology, Garmisch, Bavaria, 82467, Germany
| | - Christian Brunk
- Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Ralf Kiese
- Karlsruhe Institute of Technology, Garmisch, Bavaria, 82467, Germany
| | | | - Robert M Rees
- Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, UK
| | - G Philip Robertson
- W.K. Kellogg Biological Station and Dep. of Plant. Soil, and Microbial Sciences, Michigan State Univ., Hickory Corners, MI, 49060, USA
| | - Ute M Skiba
- UK Centre for Ecology and Hydrology, Penicuik, Edinburgh, EH26 0QB, UK
| |
Collapse
|
48
|
Shen H, Chen Y, Hu Y, Ran L, Lam SK, Pavur GK, Zhou F, Pleim JE, Russell AG. Intense Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem Health. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2020.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Qin X, Li Y, Goldberg S, Wan Y, Fan M, Liao Y, Wang B, Gao Q, Li Y. Assessment of Indirect N 2O Emission Factors from Agricultural River Networks Based on Long-Term Study at High Temporal Resolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10781-10791. [PMID: 31438664 DOI: 10.1021/acs.est.9b03896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessment of indirect emission factors (EF5r) of nitrous oxide (N2O) from agricultural river networks remains challenging, and results are uncertain due to limited data availability. This study compared two methods of assessing EF5r using data from long-term observations at high temporal resolution in a typical agricultural catchment in subtropical central China. The concentration method (method 1) and the Intergovernmental Panel on Climate Change (IPCC) 2006 method (method 2) were employed to evaluate the emission factor. EF5r estimated using method 1 (i.e., EF5r1) was 0.00077 ± 0.00025 (0.00038-0.00097). EF5r calculated using method 2 (i.e., EF5r2) was lower than EF5r1, with a mean value of 0.00004 (0.000015-0.00012). Both EF5r1 and EF5r2 were significantly lower than the IPCC 2006 default value of 0.0025, suggesting that N2O emissions from China and world river networks may be grossly overestimated. A complex N2O production pathway and diffusion mechanism were responsible for the transfer of N2O from the sediment to river water and then to the atmosphere. These findings provide essential data for refining national greenhouse gas inventories and contribute evidence for downward revision of indirect emission factors adopted by the IPCC.
Collapse
Affiliation(s)
- Xiaobo Qin
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125 , China
| | - Stefanie Goldberg
- Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 6502021 , China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Meirong Fan
- Changsha Environmental Protection College , Changsha 410004 , China
| | - Yulin Liao
- Soils and Fertilizer Institute of Hunan Province , Changsha 410125 , China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yu'e Li
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| |
Collapse
|