1
|
Yang CY, Shih YH, Lung CC. The association between COVID-19 vaccine/infection and new-onset asthma in children - based on the global TriNetX database. Infection 2024:10.1007/s15010-024-02329-3. [PMID: 38904891 DOI: 10.1007/s15010-024-02329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION The COVID-19 pandemic has underscored the importance of its potential long-term health effects, including its link to new-onset asthma in children. Asthma significantly impacts children's health, causing adverse outcomes and increased absenteeism. Emerging evidence suggests a potential association between COVID-19 infection and higher rates of new-onset asthma in adults, raising concerns about its impact on children's respiratory health. METHODS A retrospective cohort study design was employed, using electronic medical records from the TriNetX database, covering January 1, 2021, to December 31, 2022. Two cohorts of children aged 5 to 18 who underwent SARS-CoV-2 RT-PCR testing were analyzed: unvaccinated children with and without COVID-19 infection, and vaccinated children with and without infection. Propensity score matching was used to mitigate selection bias, and hazard ratio (HR) and 95% CI were calculated to assess the risk of new-onset asthma. RESULTS Our study found a significantly higher incidence of new-onset asthma in COVID-19 infected children compared to uninfected children, regardless of vaccination status. In Cohort 1, 4.7% of COVID-19 infected children without vaccination developed new-onset asthma, versus 2.0% in their non-COVID-19 counterparts within a year (HR = 2.26; 95% CI = 2.158-2.367). For Cohort 2, COVID-19 infected children with vaccination showed an 8.3% incidence of new-onset asthma, higher than the 3.1% in those not infected (HR = 2.745; 95% CI = 2.521-2.99). Subgroup analyses further identified higher risks in males, children aged 5-12 years, and Black or African American children. Sensitivity analyses confirmed the reliability of these findings. CONCLUSION The study highlights a strong link between COVID-19 infection and an increased risk of new-onset asthma in children, which is even more marked in those vaccinated. This emphasizes the critical need for ongoing monitoring and customized healthcare strategies to mitigate the long-term respiratory impacts of COVID-19 in children, advocating for thorough strategies to manage and prevent asthma amidst the pandemic.
Collapse
Affiliation(s)
- Chiao-Yu Yang
- Department of Occupational Health Nursing Center, Institute of Public Health, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N.Rd., Taichung City, 40201, Taiwan
| | - Yu-Hsiang Shih
- Department of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N.Rd., Taichung City, 40201, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chia-Chi Lung
- Department of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N.Rd., Taichung City, 40201, Taiwan.
- Department of Health Policy and Management, Chung Shan Medical University, Taichung City, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
2
|
Epstein NK, Yelin D, Shitenberg D, Yahav D, Leibovici L, Daitch V, Margalit I. One-year follow-up of COVID-19 recoverees with impaired pulmonary function: A prospective cohort study. Infect Dis Now 2024; 54:104890. [PMID: 38499177 DOI: 10.1016/j.idnow.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Decreased diffusion capacity for carbon monoxide (DLCO) is the most prevalent pulmonary testing abnormality among COVID-19 recoverees. We prospectively followed 51 individuals with impaired DLCO at an average of ∼3 months following COVID-19 and re-examined them at one year. At follow-up, mean DLCO increased from 68.0 % to 72.6 % (p = 0.002); while 33 % of the cohort experienced a clinically significant rise (>10 points) in DLCO, only 29 % normalized their values. While DLCO change did not correlate with symptoms, lack of improvement was more prevalent among individuals with obesity. Regardless of COVID-19 severity, a substantial proportion continued to exhibit DLCO impairment at 1-year.
Collapse
Affiliation(s)
- Nitzan Karny Epstein
- Infectious Diseases Unit, Meir Medical Center, Kfar-Saba, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Yelin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Dorit Shitenberg
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pulmonology Unit, Rabin Medical Center, Petach-Tikva, Israel
| | - Dafna Yahav
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Leonard Leibovici
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Research Unit, Rabin Medical Center, Petach-Tikva, Israel
| | - Vered Daitch
- Department of Internal Medicine E, Rabin Medical Center, Petach-Tikva, Israel
| | - Ili Margalit
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
3
|
Kjellberg S, Holm A, Berguerand N, Sandén H, Schiöler L, Olsén MF, Olin A. Impaired function in the lung periphery following COVID-19 is associated with lingering breathing difficulties. Physiol Rep 2024; 12:e15918. [PMID: 38253977 PMCID: PMC10803222 DOI: 10.14814/phy2.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lingering breathing difficulties are common after COVID-19. However, the underlying causes remains unclear, with spirometry often being normal. We hypothesized that small airway dysfunction (SAD) can partly explain these symptoms. We examined 48 individuals (32 women, 4 hospitalized in the acute phase) who experienced dyspnea and/or cough in the acute phase and/or aftermath of COVID-19, and 22 non-COVID-19 controls. Time since acute infection was, median (range), 65 (10-131) weeks. We assessed SAD using multiple breath washout (MBW) and impulse oscillometry (IOS) and included spirometry and diffusing-capacity test (DLCO). One-minute-sit-to-stand test estimated physical function, and breathing difficulties were defined as answering "yes" to the question "do you experience lingering breathing difficulties?" Spirometry, DLCO, and IOS were normal in almost all cases (spirometry: 90%, DLCO: 98%, IOS: 88%), while MBW identified ventilation inhomogeneity in 50%. Breathing difficulties (n = 21) was associated with increased MBW-derived Sacin . However, physical function did not correlate with SAD. Among individuals with breathing difficulties, 25% had reduced physical function, 25% had SAD, 35% had both, and 15% had normal lung function and physical function. Despite spirometry and DLCO being normal in almost all post-COVID-19 individuals, SAD was present in a high proportion and was associated with lingering breathing difficulties.
Collapse
Affiliation(s)
- Sanna Kjellberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexander Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Respiratory Medicine and AllergologySahlgrenska University HospitalGothenburgSweden
| | - Nicolas Berguerand
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Helena Sandén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Monika Fagevik Olsén
- Department of Health and Rehabilitation/PhysiotherapyInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Anna‐Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
4
|
Li J, Xu X, Liu J, Chen Y, Jin S, Zhang G, Yin S, Wang J, Tian K, Luan X, Tan X, Zhao X, Zhang N, Wang Z. N-Acetylglucosamine mitigates lung injury and pulmonary fibrosis induced by bleomycin. Biomed Pharmacother 2023; 166:115069. [PMID: 37633052 DOI: 10.1016/j.biopha.2023.115069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/28/2023] Open
Abstract
Lung injury and pulmonary fibrosis contribute to morbidity and mortality, and, in particular, are characterized as leading cause on confirmed COVID-19 death. To date, efficient therapeutic approach for such lung diseases is lacking. N-Acetylglucosamine (NAG), an acetylated derivative of glucosamine, has been proposed as a potential protector of lung function in several types of lung diseases. The mechanism by which NAG protects against lung injury, however, remains unclear. Here, we show that NAG treatment improves pulmonary function in bleomycin (BLM)-induced lung injury model measured by flexiVent system. At early phase of lung injury, NAG treatment results in silenced immune response by targeting ARG1+ macrophages activation, and, consequently, blocks KRT8+ transitional stem cell in the alveolar region to stimulate PDGF Rβ+ fibroblasts hyperproliferation, thereby attenuating the pulmonary fibrosis. This combinational depression of immune response and extracellular matrix deposition within the lung mitigates lung injury and pulmonary fibrosis induced by BLM. Our findings provide novel insight into the protective role of NAG in lung injury.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jiane Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Shengxi Jin
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Guangmin Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Shulan Yin
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingqi Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Kangqi Tian
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoyang Luan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohua Tan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiangzhong Zhao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, China
| | - Na Zhang
- Yantai Zhifu Baoshang Hemodialysis Center,Yantai, Shandong 264001, China.
| | - Zheng Wang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
5
|
Johnston J, Dorrian D, Linden D, Stanel SC, Rivera-Ortega P, Chaudhuri N. Pulmonary Sequelae of COVID-19: Focus on Interstitial Lung Disease. Cells 2023; 12:2238. [PMID: 37759460 PMCID: PMC10527752 DOI: 10.3390/cells12182238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As the world transitions from the acute phase of the COVID-19 pandemic, a novel concern has arisen-interstitial lung disease (ILD) as a consequence of SARS-CoV-2 infection. This review discusses what we have learned about its epidemiology, radiological, and pulmonary function findings, risk factors, and possible management strategies. Notably, the prevailing radiological pattern observed is organising pneumonia, with ground-glass opacities and reticulation frequently reported. Longitudinal studies reveal a complex trajectory, with some demonstrating improvement in lung function and radiographic abnormalities over time, whereas others show more static fibrotic changes. Age, disease severity, and male sex are emerging as risk factors for residual lung abnormalities. The intricate relationship between post-COVID ILD and idiopathic pulmonary fibrosis (IPF) genetics underscores the need for further research and elucidation of shared pathways. As this new disease entity unfolds, continued research is vital to guide clinical decision making and improve outcomes for patients with post-COVID ILD.
Collapse
Affiliation(s)
- Janet Johnston
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
| | - Delia Dorrian
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Dermot Linden
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
- Mater Hospital, Belfast Health and Social Care Trust, Belfast BT14 6AB, UK
| | - Stefan Cristian Stanel
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Pilar Rivera-Ortega
- Interstitial Lung Diseases Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK (P.R.-O.)
| | - Nazia Chaudhuri
- School of Medicine, Magee Campus, University of Ulster, Northlands Road, Londonderry BT48 7JL, UK;
| |
Collapse
|
6
|
Kenny G, Townsend L, Savinelli S, Mallon PWG. Long COVID: Clinical characteristics, proposed pathogenesis and potential therapeutic targets. Front Mol Biosci 2023; 10:1157651. [PMID: 37179568 PMCID: PMC10171433 DOI: 10.3389/fmolb.2023.1157651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
The emergence of persistent ill-health in the aftermath of SARS-CoV-2 infection has presented significant challenges to patients, healthcare workers and researchers. Termed long COVID, or post-acute sequelae of COVID-19 (PASC), the symptoms of this condition are highly variable and span multiple body systems. The underlying pathophysiology remains poorly understood, with no therapeutic agents proven to be effective. This narrative review describes predominant clinical features and phenotypes of long COVID alongside the data supporting potential pathogenesis of these phenotypes including ongoing immune dysregulation, viral persistence, endotheliopathy, gastrointestinal microbiome disturbance, autoimmunity, and dysautonomia. Finally, we describe current potential therapies under investigation, as well as future potential therapeutic options based on the proposed pathogenesis research.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Liam Townsend
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Kewalramani N, Heenan KM, McKeegan D, Chaudhuri N. Post-COVID Interstitial Lung Disease—The Tip of the Iceberg. Immunol Allergy Clin North Am 2023; 43:389-410. [PMID: 37055095 PMCID: PMC9982726 DOI: 10.1016/j.iac.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The proportion of symptomatic patients with post-coronavirus 2019 (COVID-19) condition (long COVID) represents a significant burden on the individual as well as on the health care systems. A greater understanding of the natural evolution of symptoms over a longer period and the impacts of interventions will improve our understanding of the long-term impacts of the COVID-19 disease. This review will discuss the emerging evidence for the development of post-COVID interstitial lung disease focusing on the pathophysiological mechanisms, incidence, diagnosis, and impact of this potentially new and emerging respiratory disease.
Collapse
Affiliation(s)
- Namrata Kewalramani
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Switzerland,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland,Corresponding author. Department of Biomedical Research, Lung Precision Medicine, Room 340, Murtenstrasse 24, Bern 3008. Switzerland
| | - Kerri-Marie Heenan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Denise McKeegan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Nazia Chaudhuri
- University of Ulster Magee Campus, Northland Road, Londonderry, Northern Ireland, UK
| |
Collapse
|
8
|
Severe COVID-19 Illness and α1-Antitrypsin Deficiency: COVID-AATD Study. Biomedicines 2023; 11:biomedicines11020516. [PMID: 36831051 PMCID: PMC9953718 DOI: 10.3390/biomedicines11020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Epidemiologic studies have reported that the geographical distribution of the prevalence of allelic variants of serine protein inhibitor-A1 (SERPINA1) and severe cases of COVID-19 were similar. METHODS A multicenter, cross-sectional, observational study to evaluate the frequency of alpha-1 antitrypsin deficiency (AATD) in patients with COVID-19 and whether it was associated with having suffered severe COVID-19. RESULTS 2022 patients who had laboratory-confirmed SARS-CoV-2 infection. Mutations associated with AATD were more frequent in severe COVID versus non-severe (23% vs. 18.8%, p = 0.022). The frequency of Pi*Z was 37.8/1000 in severe COVID versus 17.5/1000 in non-severe, p = 0.001. Having an A1AT level below 116 was more frequent in severe COVID versus non-severe (29.5% vs. 23.1, p = 0.003). Factors associated with a higher likelihood of severe COVID-19 were being male, older, smoking, age-associated comorbidities, and having an A1AT level below 116 mg/dL [OR 1.398, p = 0.003], and a variant of the SERPINA1 gene that could affect A1AT protein [OR 1.294, p = 0.022]. CONCLUSIONS These observations suggest that patients with AATD should be considered at a higher risk of developing severe COVID-19. Further studies are needed on the role of A1AT in the prognosis of SARS-CoV-2 infection and its possible therapeutic role.
Collapse
|
9
|
Lung transplantation in patients with lung disease secondary to coronavirus disease 2019 infection. Curr Opin Crit Care 2022; 28:681-685. [PMID: 36302197 DOI: 10.1097/mcc.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this article, we describe preoperative patient selection and outcomes of patients with lung disease secondary to infection from COVID-19 who receive lung transplantation. RECENT FINDINGS Lung transplants for patients with lung disease secondary to infection from COVID-19 have been performed successfully in over 200 patients in the United States. The preoperative course of these patients is somewhat atypical in comparison with patients who have had lung transplants related to chronic lung diseases, where there are more traditional indications for lung transplants. COVID-19 patients have more severe pulmonary disease often requiring mechanical ventilation and extracorporeal mechanical ventilation (ECMO), frequent nosocomial infections, and renal and cardiac dysfunction. The intraoperative course of these COVID-19 patients is often longer and requires increased transfusions of blood products in comparison with non-COVID-19 patients. Additionally, in the postoperative period, COVID-19 patients more frequently require mechanical ventilation and ECMO support. However, the survival rate of such patients at 6 months is greater than 90%. SUMMARY Patients with respiratory failure secondary to COVID-19 infection that require a lung transplant generally have a complicated preoperative course and the operations are more complex, but the long-term outcomes are excellent.
Collapse
|
10
|
Du M, Ma Y, Deng J, Liu M, Liu J. Comparison of Long COVID-19 Caused by Different SARS-CoV-2 Strains: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16010. [PMID: 36498103 PMCID: PMC9736973 DOI: 10.3390/ijerph192316010] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/01/2023]
Abstract
Although many studies of long COVID-19 were reported, there was a lack of systematic research which assessed the differences of long COVID-19 in regard to what unique SARS-CoV-2 strains caused it. As such, this systematic review and meta-analysis aims to evaluate the characteristics of long COVID-19 that is caused by different SARS-CoV-2 strains. We systematically searched the PubMed, EMBASE, and ScienceDirect databases in order to find cohort studies of long COVID-19 as defined by the WHO (Geneva, Switzerland). The main outcomes were in determining the percentages of long COVID-19 among patients who were infected with different SARS-CoV-2 strains. Further, this study was registered in PROSPERO (CRD42022339964). A total of 51 studies with 33,573 patients was included, of which three studies possessed the Alpha and Delta variants, and five studies possessed the Omicron variant. The highest pooled estimate of long COVID-19 was found in the CT abnormalities (60.5%; 95% CI: 40.4%, 80.6%) for the wild-type strain; fatigue (66.1%; 95% CI: 42.2%, 89.9%) for the Alpha variant; and ≥1 general symptoms (28.4%; 95% CI: 7.9%, 49.0%) for the Omicron variant. The pooled estimates of ≥1 general symptoms (65.8%; 95% CI: 47.7%, 83.9%) and fatigue were the highest symptoms found among patients infected with the Alpha variant, followed by the wild-type strain, and then the Omicron variant. The pooled estimate of myalgia was highest among patients infected with the Omicron variant (11.7%; 95%: 8.3%, 15.1%), compared with those infected with the wild-type strain (9.4%; 95%: 6.3%, 12.5%). The pooled estimate of sleep difficulty was lowest among the patients infected with the Delta variant (2.5%; 95%: 0.2%, 4.9%) when compared with those infected with the wild-type strain (24.5%; 95%: 17.5%, 31.5%) and the Omicron variant (18.7%; 95%: 1.0%, 36.5%). The findings of this study suggest that there is no significant difference between long COVID-19 that has been caused by different strains, except in certain general symptoms (i.e., in the Alpha or Omicron variant) and in sleep difficulty (i.e., the wild-type strain). In the context of the ongoing COVID-19 pandemic and its emerging variants, directing more attention to long COVID-19 that is caused by unique strains, as well as implementing targeted intervention measures to address it are vital.
Collapse
Affiliation(s)
- Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yirui Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
- Institute for Global Health and Development, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing 100871, China
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People’s Republic of China, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
11
|
Granata V, Fusco R, Villanacci A, Magliocchetti S, Urraro F, Tetaj N, Marchioni L, Albarello F, Campioni P, Cristofaro M, Di Stefano F, Fusco N, Petrone A, Schininà V, Grassi F, Girardi E, Ianniello S. Imaging Severity COVID-19 Assessment in Vaccinated and Unvaccinated Patients: Comparison of the Different Variants in a High Volume Italian Reference Center. J Pers Med 2022; 12:955. [PMID: 35743740 PMCID: PMC9224665 DOI: 10.3390/jpm12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the “gravity” of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26−50% of involvement, severe: 51−75% of involvement, and critical involvement: 76−100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71−0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Alberta Villanacci
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Simona Magliocchetti
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Fabrizio Urraro
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Nardi Tetaj
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Luisa Marchioni
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Fabrizio Albarello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Paolo Campioni
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Massimo Cristofaro
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Federica Di Stefano
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Nicoletta Fusco
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Ada Petrone
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Vincenzo Schininà
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Enrico Girardi
- Department of Epidemiology and Research, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Stefania Ianniello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| |
Collapse
|
12
|
Abohelwa M, Peterson CJ, Landis D, Le D, Conde C, DeWare C, Elgendy F, Payne D, Nugent K. Clinical Characteristics of Hospital Follow-up for Patients Hospitalized from SARS CoV-2 (COVID 19) in an Academic Outpatient Internal Medicine Clinic. J Prim Care Community Health 2022; 13:21501319221134560. [PMID: 36314373 PMCID: PMC9619072 DOI: 10.1177/21501319221134560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND As of July 2022, there have been more than 91.3 million cases of COVID-19 and nearly 1.03 million deaths in the United States alone. In addition, many people who survived COVID-19 had long-term symptoms, such as fatigue, dyspnea, loss of smell and taste, depression, and anxiety. OBJECTIVES The purpose of our study is to evaluate the status of COVID-19 patients who were previously hospitalized. METHODS We conducted a single-center retrospective cohort study at Texas Tech University Health Sciences Center and its affiliated University Medical Center under IRB of L21-144. We included all patients hospitalized for COVID-19 and followed up in our Internal Medicine Clinic at any time between April 1, 2020, and April 1, 2021, and reviewed follow-up data for these patients after discharge. RESULTS A total of 128 patients were included; 59 (46%) were men, and 69 (54%) were women with an average age of 59.7 ± 14.8 years. Most of the patients (n = 78, 60.9%) identified their race as Hispanic or Latino origin; the next largest group was Caucasian (n = 29, 22.65%). The average number of days until post-hospitalization follow-up was 36 ± 38 days. The 50% of the patients (n = 64) used telemedicine for follow-up visits. Important comorbidities in these patients included diabetes (n = 84, 65.6%) and hypertension (n = 94, 73.4%). Thirty-four patients (26.6%) reported respiratory symptoms at their follow-up appointments, 24 patients (18.8%) reported constitutional symptoms, 12 patients (9.4%) reported GI symptoms, and 25 patients (19.5%) reported other symptoms, such as paresthesia, lower extremity edema, or psychological symptoms. After hospital discharge, 54 patients had follow-up chest x-rays, and 41 (75.9%) still had abnormal findings consistent with COVID-19 imaging characteristics. Follow-up laboratory tests identified 44 patients (77.2%, 57 tested) with elevated D-dimer levels, 44 patients (78.6%, 56 tested) with high ferritin levels, and 21patients (35.6%, 59 tested) with elevated troponin T HS levels. CONCLUSION Long-lasting COVID-19 symptoms in these patients included respiratory symptoms (26.6%), constitutional symptoms (18.8%), GI symptoms (9.4%), and other symptoms, such as paresthesia, lower extremity edema, or psychological symptoms (19.5%). The rate of telehealth follow-up was 50%. Many patients had elevated inflammatory markers that will need follow up to determine the clinical implications.
Collapse
Affiliation(s)
| | | | - Dylan Landis
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| | - Duc Le
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| | - Camila Conde
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| | - Charles DeWare
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| | | | - Drew Payne
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Texas Tech University Health Sciences
Center, Lubbock, TX, USA
| |
Collapse
|