1
|
Clarke E, Chehoud C, Khan N, Spiessens B, Poolman J, Geurtsen J. Unbiased identification of risk factors for invasive Escherichia coli disease using machine learning. BMC Infect Dis 2024; 24:796. [PMID: 39118021 PMCID: PMC11308465 DOI: 10.1186/s12879-024-09669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Invasive Escherichia coli disease (IED), also known as invasive extraintestinal pathogenic E. coli disease, is a leading cause of sepsis and bacteremia in older adults that can result in hospitalization and sometimes death and is frequently associated with antimicrobial resistance. Moreover, certain patient characteristics may increase the risk of developing IED. This study aimed to validate a machine learning approach for the unbiased identification of potential risk factors that correlate with an increased risk for IED. METHODS Using electronic health records from 6.5 million people, an XGBoost model was trained to predict IED from 663 distinct patient features, and the most predictive features were identified as potential risk factors. Using Shapley Additive predictive values, the specific relationships between features and the outcome of developing IED were characterized. RESULTS The model independently predicted that older age, a known risk factor for IED, increased the chance of developing IED. The model also predicted that a history of ≥ 1 urinary tract infection, as well as more frequent and/or more recent urinary tract infections, and ≥ 1 emergency department or inpatient visit increased the risk for IED. Outcomes were used to calculate risk ratios in selected subpopulations, demonstrating the impact of individual or combinations of features on the incidence of IED. CONCLUSION This study illustrates the viability and validity of using large electronic health records datasets and machine learning to identify correlating features and potential risk factors for infectious diseases, including IED. The next step is the independent validation of potential risk factors using conventional methods.
Collapse
Affiliation(s)
- Erik Clarke
- Janssen Research and Development Data Sciences, Spring House, PA, USA
| | - Christel Chehoud
- Janssen Research and Development Data Sciences, Spring House, PA, USA
| | - Najat Khan
- Janssen Research and Development Data Sciences, Spring House, PA, USA
| | | | - Jan Poolman
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | |
Collapse
|
2
|
Aurich S, Wolf SA, Prenger-Berninghoff E, Thrukonda L, Semmler T, Ewers C. Genotypic Characterization of Uropathogenic Escherichia coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats. Antibiotics (Basel) 2023; 13:38. [PMID: 38247597 PMCID: PMC10812829 DOI: 10.3390/antibiotics13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. coli lineages among UTI isolates from dogs and cats and to assess their overlaps with human UPEC lineages. We analysed 315 non-duplicate E. coli isolates from the UT of dogs (198) and cats (117) collected in central Germany in 2019 and 2020 utilizing whole genome sequencing and in silico methods. Phylogroup B2 (77.8%), dog-associated sequence type (ST) 372 (18.1%), and human-associated ST73 (16.6%), were predominant. Other STs included ST12 (8.6%), ST141 (5.1%), ST127 (4.8%), and ST131 (3.5%). Among these, 58.4% were assigned to the ExPEC group and 51.1% to the UPEC group based on their virulence associated gene (VAG) profile (ExPEC, presence of ≥VAGs: papAH and/or papC, sfa/focG, afaD/draBC, kpsMTII, and iutA; UPEC, additionally cnf1 or hlyD). Extended-spectrum cephalosporin (ESC) resistance mediated by extended-spectrum β-lactamases (ESBL) and AmpC-β-lactamase was identified in 1.9% of the isolates, along with one carbapenemase-producing isolate and one isolate carrying a mcr gene. Low occurrence of ESC-resistant or multidrug-resistant (MDR) isolates (2.9%) in the two most frequently detected STs implies that E. coli isolated from UTIs of companion animals are to a lesser extent associated with resistance, but possess virulence-associated genes enabling efficient UT colonization and carriage. Detection of human-related pandemic lineages suggests interspecies transmission and underscores the importance of monitoring companion animals.
Collapse
Affiliation(s)
- Sophie Aurich
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | - Silver Anthony Wolf
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | | | - Torsten Semmler
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| |
Collapse
|
3
|
Mohammadzadeh A, Naghizadeh H, Mosadegh A, Astani A, Pouresmaeil O, Mardaneh J. Identification and Evaluation of Pathogenic Genes ( traT, hly, aer, pap, and fimH) and Antibiotic Resistance Genes ( blaTEM, blaSHV, and blaCTX) in Escherichia coli in Patients Referred to Gonabad Hospitals, Iran. Rep Biochem Mol Biol 2023; 12:465-475. [PMID: 38618255 PMCID: PMC11015931 DOI: 10.61186/rbmb.12.3.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/24/2023] [Indexed: 04/17/2024]
Abstract
Background Urinary tract infection (UTI) is one of the common bacterial infections. Escherichia coli is the most common cause of UTI. In this research, the prevalence of several virulence factors and beta-lactam resistance genes was investigated. Methods One hundred E. coli isolates were collected from patients' specimens with UTI referred to Allame-Bohlol Gonabadi hospital. Polymerase chain reaction (PCR) was performed to identify five pathogenic genes (fimH, aer, pap, hly, traT) and three antibiotic resistance genes (blaTEM, blaCTX, blaSHV). Results The frequencies of blaSHV, blaTEM and blaCTX beta-lactamase genes among extended-spectrum-beta-lactamases (ESBLs) positive isolates were 11.1%, 48.1%, and 93.3%, respectively. A significant number of isolates were resistant to the most commonly used antibiotics. Conclusion Pathogenic genes may also increase the severity, progression, and expansion of urinary tract infections. Therefore, identifying these genes as critical controllers of illness can use for better manage the treatment.
Collapse
Affiliation(s)
- Alireza Mohammadzadeh
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Hamid Naghizadeh
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Ahmad Mosadegh
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Omid Pouresmaeil
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
4
|
Elshimy R, Zedan H, Elmorsy TH, Khattab RA. Prevalence and In Vivo Assessment of Virulence in Shiga Toxin-Producing Escherichia coli Clinical Isolates from Greater Cairo Area. Microb Drug Resist 2023; 29:407-415. [PMID: 37579256 DOI: 10.1089/mdr.2022.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Background: Shiga toxin-producing Escherichia coli (STEC) has been identified as an important etiologic agent of human disease in Egypt. Aims: To investigate the occurrence and describe the characterization as well as prevalence of STEC in Greater Cairo hospitals as well as molecular characterization of virulence and resistance genes. Methods: Four hundred seventy E. coli clinical isolates were collected from eight hospitals and analyzed by genotypic and phenotypic methods for STEC, followed by histopathological examination and scoring of different organs lesions. Results: The highest proportion of isolates was from urine (151 isolates), whereas the lowest was from splenic drain (3 isolates). In tandem, when serogrouping was performed, 15 serogroups were obtained where the most prevalent was O157 and the least prevalent was O151. All isolates were positive when screened for identity gene gad A, while only typable strains were screened for seven virulence genes stx1 (gene encoding Shiga toxin 1), stx2 (gene encoding Shiga toxin 2), tsh (gene encoding thermostable hemagglutinin), eaeA (gene encoding intimin), invE (gene encoding invasion protein), aggR (gene encoding aggregative adherence transcriptional regulator), and astA (aspartate transaminase) where the prevalence was 48%, 30%, 50%, 57%, 7.5%, 12%, and 58%, respectively. Of 254 typable isolates, 152 were STEC carrying stx1 or stx2 genes or both. Conclusions: Relying on in vivo comparison between different E. coli pathotypes via histopathological examination of different organs, E. coli pathotypes could be divided into mild virulent, moderate virulent, and high virulent strains. Statistical analysis revealed significant correlation between different serogroups and presence of virulence genes.
Collapse
Affiliation(s)
- Rana Elshimy
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Hamdallah Zedan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek H Elmorsy
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza, Egypt
| | | |
Collapse
|
5
|
Damborg P, Pirolo M, Schøn Poulsen L, Frimodt-Møller N, Guardabassi L. Dogs Can Be Reservoirs of Escherichia coli Strains Causing Urinary Tract Infection in Human Household Contacts. Antibiotics (Basel) 2023; 12:1269. [PMID: 37627689 PMCID: PMC10451620 DOI: 10.3390/antibiotics12081269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the role played by pets as reservoirs of Escherichia coli strains causing human urinary tract infections (UTIs) in household contacts. Among 119 patients with community-acquired E. coli UTIs, we recruited 19 patients who lived with a dog or a cat. Fecal swabs from the household pet(s) were screened by antimicrobial selective culture to detect E. coli displaying the resistance profile of the human strain causing UTI. Two dogs shed E. coli isolates indistinguishable from the UTI strain by pulsed-field gel electrophoresis. Ten months later, new feces from these dogs and their owners were screened selectively and quantitatively for the presence of the UTI strain, followed by core-genome phylogenetic analysis of all isolates. In one pair, the resistance phenotype of the UTI strain occurred more frequently in human (108 CFU/g) than in canine feces (104 CFU/g), and human fecal isolates were more similar (2-7 SNPs) to the UTI strain than canine isolates (83-86 SNPs). In the other pair, isolates genetically related to the UTI strain (23-40 SNPs) were only detected in canine feces (105 CFU/g). These results show that dogs can be long-term carriers of E. coli strains causing UTIs in human household contacts.
Collapse
Affiliation(s)
- Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | - Laura Schøn Poulsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | | | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| |
Collapse
|
6
|
Li D, Elankumaran P, Kudinha T, Kidsley AK, Trott DJ, Jarocki VM, Djordjevic SP. Dominance of Escherichia coli sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids. Microb Genom 2023; 9:mgen001068. [PMID: 37471138 PMCID: PMC10438821 DOI: 10.1099/mgen.0.001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) (n=73) and non-pUTI89-like (n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.
Collapse
Affiliation(s)
- Dmitriy Li
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Paarthiphan Elankumaran
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Timothy Kudinha
- Central West Pathology Laboratory, Charles Sturt University, Orange, NSW, Australia
| | - Amanda K. Kidsley
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J. Trott
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Veronica Maria Jarocki
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Steven Philip Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| |
Collapse
|
7
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
An Emerging Lineage of Uropathogenic Extended Spectrum β-Lactamase Escherichia coli ST127. Microbiol Spectr 2022; 10:e0251122. [PMID: 36416548 PMCID: PMC9769692 DOI: 10.1128/spectrum.02511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the most common causes of urinary tract infections. Here, we report for the first time the whole-genome sequencing (WGS) and analysis of four extended-spectrum β-lactamase (ESBL), UPEC sequence type (ST) 127 isolates that were recovered from patients in five hospitals in Armenia from January to August of 2019. A phylogenetic comparison revealed that our isolates were closely related to each other by their core and accessory genomes, despite having been isolated from different regions and hospitals in Armenia. We identified unique genes in our isolates and in a closely related isolate recovered in France. The unique genes (hemolysin E virulence gene, lactate utilization operon lutABC, and endonuclease restriction modification operon hsdMSR) were identified in three separate genomic regions that were adjacent to prophage genes, including one region containing the TonB-dependent iron siderophore receptor gene ireA, which was only found in 5 other ST127 isolates from the European Nucleotide Archive (ENA). We further identified that these isolates possessed unique virulence and metabolic genes and harbored antibiotic resistance genes, including the ESBL genes blaCTX-M-3 (n = 3), blaCTX-M-236 (n = 1), and blaTEM-1 (n = 1), in addition to a quinolone resistance protein gene qnrD1 (n = 1), which was absent in the ST127 isolates obtained from the ENA. Moreover, a plasmid replicon gene IncI2 (n = 1) was unique to ARM88 of the Armenian isolates. Our findings demonstrate that at the time of this study, E. coli ST127 was a cause of urinary tract infections in patients in different regions of Armenia, with a possibility of cross-country transmission between Armenia and France. IMPORTANCE Whole-genome sequencing studies of pathogens causing infectious diseases are seriously lacking in Armenia, hampering global efforts to track, trace and contain infectious disease outbreaks. In this study, we report for the first-time the whole-genome sequencing and analysis of ESBL UPEC ST127 isolates recovered from hospitalized patients in Armenia and compare them with other E. coli ST127 retrieved from the ENA. We found close genetic similarities of the Armenian isolates, indicating that E. coli ST127 was potentially a dominant lineage causing urinary tract infections in Armenia. Furthermore, we identified unique genes that were horizontally acquired in the clusters of Armenian and French isolates that were absent in other ST127 isolates obtained from the ENA. Our findings highlight a possible cross-country transmission between Armenia and France and the idea that the implementation of WGS surveillance could contribute to global efforts in tackling antibiotic resistance, as bacteria carrying antimicrobial resistance (AMR) genes do not recognize borders.
Collapse
|
9
|
Holcomb DA, Quist AJL, Engel LS. Exposure to industrial hog and poultry operations and urinary tract infections in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158749. [PMID: 36108846 PMCID: PMC9613609 DOI: 10.1016/j.scitotenv.2022.158749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
An increasing share of urinary tract infections (UTIs) are caused by extraintestinal pathogenic Escherichia coli (ExPEC) lineages that have also been identified in poultry and hogs with high genetic similarity to human clinical isolates. We investigated industrial food animal production as a source of uropathogen transmission by examining relationships of hog and poultry density with emergency department (ED) visits for UTIs in North Carolina (NC). ED visits for UTI in 2016-2019 were identified by ICD-10 code from NC's ZIP code-level syndromic surveillance system and livestock counts were obtained from permit data and aerial imagery. We calculated separate hog and poultry spatial densities (animals/km2) by Census block with a 5 km buffer on the block perimeter and weighted by block population to estimate mean ZIP code densities. Associations between livestock density and UTI incidence were estimated using a reparameterized Besag-York-Mollié (BYM2) model with ZIP code population offsets to account for spatial autocorrelation. We excluded metropolitan and offshore ZIP codes and assessed effect measure modification by calendar year, ZIP code rurality, and patient sex, age, race/ethnicity, and health insurance status. In single-animal models, hog exposure was associated with increased UTI incidence (rate ratio [RR]: 1.21, 95 % CI: 1.07-1.37 in the highest hog-density tertile), but poultry exposure was associated with reduced UTI rates (RR: 0.86, 95 % CI: 0.81-0.91). However, the reference group for single-animal poultry models included ZIP codes with only hogs, which had some of the highest UTI rates; when compared with ZIP codes without any hogs or poultry, there was no association between poultry exposure and UTI incidence. Hog exposure was associated with increased UTI incidence in areas that also had medium to high poultry density, but not in areas with low poultry density, suggesting that intense hog production may contribute to increased UTI incidence in neighboring communities.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
11
|
Biggel M, Moons P, Nguyen MN, Goossens H, Van Puyvelde S. Convergence of virulence and antimicrobial resistance in increasingly prevalent Escherichia coli ST131 papGII+ sublineages. Commun Biol 2022; 5:752. [PMID: 35902767 PMCID: PMC9334617 DOI: 10.1038/s42003-022-03660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli lineage ST131 is an important cause of urinary tract and bloodstream infections worldwide and is highly resistant to antimicrobials. Specific ST131 lineages carrying invasiveness-associated papGII pathogenicity islands (PAIs) were previously described, but it is unknown how invasiveness relates to the acquisition of antimicrobial resistance (AMR). In this study, we analysed 1638 ST131 genomes and found that papGII+ isolates carry significantly more AMR genes than papGII-negative isolates, suggesting a convergence of virulence and AMR. The prevalence of papGII+ isolates among human clinical ST131 isolates increased dramatically since 2005, accounting for half of the recent E. coli bloodstream isolates. Emerging papGII+ lineages within clade C2 were characterized by a chromosomally integrated blaCTX-M-15 and the loss and replacement of F2:A1:B- plasmids. Convergence of virulence and AMR is worrying, and further dissemination of papGII+ ST131 lineages may lead to a rise in severe and difficult-to-treat extraintestinal infections.
Collapse
Affiliation(s)
- Michael Biggel
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Pieter Moons
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Minh Ngoc Nguyen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. Antimicrob Agents Chemother 2022; 66:e0051122. [PMID: 35658504 DOI: 10.1128/aac.00511-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli ST1193 is an emerging global multidrug (MDR) high-risk clone and an important cause of community-onset urinary and bloodstream infections. ST1193 is imitating E. coli ST131, the most successful MDR clone of all time. Both clones emerged in the early 1990s by acquiring quinolone resistance-determining region (QRDR) mutations, IncF plasmids, virulence factors, and type 1 pilus (fimH) recombination. They are the only MDR clones that are dominant among unselected E. coli populations. ST131 is the most frequent clone and ST1193 the second most frequent clone among fluoroquinolone/cephalosporin-resistant E. coli isolates. Both clones have played pivotal roles in the global spread of MDR E. coli. ST1193 originated from ST clonal complex 14 (STc14), is lactose nonfermenting, belongs to phylogenetic group B2, and contains the O type O75. Global ST1193 prevalence has been increasing since 2012, even replacing ST131 in certain regions. blaCTX-M genes are rapidly expanding among ST1193 isolates, a scenario that occurred with ST131 during the 2000s. A validated PCR will enable global surveys to determine the extent of ST1193 among One Health E. coli isolates. The rapid emergence of ST1193 is concerning and is adding to the public health burden of MDR E. coli clones. Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently required to investigate the success of ST1193. Such information will aid with management and prevention strategies. The medical community can ill afford to ignore the spread of another global successful MDR high-risk E. coli clone, especially one that is following in the footsteps of E. coli ST131.
Collapse
|
13
|
Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100106. [PMID: 35128493 PMCID: PMC8803956 DOI: 10.1016/j.crmicr.2022.100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST127, a recently emerged global pathogen noted for high virulence gene carriage, is a leading cause of urinary tract and blood stream infections. ST127 is frequently isolated from humans and companion animals; however, it is unclear if they are distinct or related populations of ST127. We performed a phylogenomic analysis of 299 E. coli ST127 of diverse epidemiological origin to characterize their population structure, genetic determinants of virulence, antimicrobial resistance, and repertoire of mobile genetic elements with a focus on plasmids. The core gene phylogeny was divided into 13 clusters, the largest of which (BAP4) contained the majority of human and companion animal origin isolates. This dominant cluster displayed genetic differences to the remainder of the phylogeny, most notably alternative gene alleles encoding important virulence factors including lipid A, flagella, and K capsule. Furthermore, numerous close genetic linkages (<30 SNPs) between human and companion animal isolates were observed within the cluster. Carriage of antimicrobial resistance genes in the collection was limited, but virulence gene carriage was extensive. We found evidence of pUTI89-like virulence plasmid carriage in over a third of isolates, localised to four of the major phylogenetic clusters. Our study supports global scale repetitive transfer of E. coli ST127 lineages between humans and companion animals, particularly within the dominant BAP4 cluster.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
14
|
Ksiezarek M, Novais Â, Peixe L. The Darkest Place Is under the Candlestick-Healthy Urogenital Tract as a Source of Worldwide Disseminated Extraintestinal Pathogenic Escherichia coli Lineages. Microorganisms 2021; 10:27. [PMID: 35056476 PMCID: PMC8778945 DOI: 10.3390/microorganisms10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of the urinary microbiome, including the identification of Escherichia coli in healthy hosts, its involvement in UTI development has been a subject of high interest. We explored the population diversity and antimicrobial resistance of E. coli (n = 22) in the urogenital microbiome of ten asymptomatic women (representing 50% of the sample tested). We evaluated their genomic relationship with extraintestinal pathogenic E. coli (ExPEC) strains from healthy and diseased hosts, including the ST131 lineage. E. coli prevalence was higher in vaginal samples than in urine samples, and occasionally different lineages were observed in the same individual. Furthermore, B2 was the most frequent phylogenetic group, with the most strains classified as ExPEC. Resistance to antibiotics of therapeutic relevance (e.g., amoxicillin-clavulanate conferred by blaTEM-30) was observed in ExPEC widespread lineages sequence types (ST) 127, ST131, and ST73 and ST95 clonal complexes. Phylogenomics of ST131 and other ExPEC lineages revealed close relatedness with strains from gastrointestinal tract and diseased host. These findings demonstrate that healthy urogenital microbiome is a source of potentially pathogenic and antibiotic resistant E. coli strains, including those causing UTI, e.g., ST131. Importantly, diverse E. coli lineages can be observed per individual and urogenital sample type which is relevant for future studies screening for this uropathogen.
Collapse
Affiliation(s)
- Magdalena Ksiezarek
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Peirano G, Matsumara Y, Nobrega D, DeVinney R, Pitout J. Population-based epidemiology of Escherichia coli ST1193 causing blood stream infections in a centralized Canadian region. Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04373-5. [PMID: 34750697 DOI: 10.1007/s10096-021-04373-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
Escherichia coli ST1193 is an emerging global clone associated with fluoroquinolone resistance. A population-based study described genomics, clinical factors, susceptibility patterns, and incidence rates of ST1193 (n = 69) causing incident blood stream infections in a centralized Canadian region 2016-18. ST1193 was responsible for community-acquired upper urinary tract infections among the elderly. The incidence rate (IR) per 100,000 person-years among Calgary residents increased from 1.0 (95%confidence interval [95%CI] 0.7-1.5) in 2016, to 1.7 (95%CI 1.3-2.3) in 2018 (p = 0.05). This was mainly due to the significant increase of ST1193 blood stream infections among female long-term care (LTC) residents. ST1193 IR with blaCTX-Ms was 3.18 times higher in 2018 than in 2016 (CI 95% 0.98-13.49). We identified a ST1193 isolate with only a parC S80I mutation that is different from previously published data. The population-based study identified a significant increase over a 2-year period of E. coli ST1193 blood stream infections among elderly females residing in LTC centers. There was also a notable increase of ST1193 with bla CTX-Ms in 2018. The rapid emergence of ST1193 is concerning and adding to the public health burden of multidrug resistant E. coli blood stream infections in Calgary.
Collapse
Affiliation(s)
- Gisele Peirano
- Alberta Precision Laboratories, Calgary, Alberta, Canada
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
| | | | | | - Rebekah DeVinney
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
| | - Johann Pitout
- Alberta Precision Laboratories, Calgary, Alberta, Canada.
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada.
- University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
16
|
Zhang S, Zhang Q, Huang J, Cao Y, Zhao Z, Li B. Epidemic Potential of Escherichia coli O16:H41-ST131: Compared with Pandemic O25b:H30-ST131 Lineage. Infect Drug Resist 2021; 14:2625-2632. [PMID: 34262307 PMCID: PMC8275142 DOI: 10.2147/idr.s313261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 01/26/2023] Open
Abstract
Background O16:H41 is an important subclone among Escherichia coli (E. coli) sequence type (ST) 131, which has risen dramatically in recent years. However, reasons for the rapid increase of E. coli O16:H41-ST131 remain unclear. The aim of this study was to compare the pathogenicity and survivability features of E. coli O16:H41-ST131 with global epidemic O25b:H30-ST131 lineage. Methods Sixteen E. coli ST131 were divided into two groups: group O16:H41-ST131 (n=6) and group O25b:H30-ST131 (n=10). Adhesion and invasion activity of different isolates were measured using human T24 cells. Biofilm production was quantified by crystal violet staining. Fifty percent human serum was used to detect serum sensitivity. Resistance to hydrogen peroxide was detected by broth microdilution method, and anti-phagocytic function was determined by phagocytosis experiments. Results E. coli O16:H41-ST131 and O25b:H30-ST131 lineage showed similar biofilm formation, adhesion and invasion abilities. In terms of survivability, resistance to serum and hydrogen peroxide of E. coli O16:H41-ST131 was similar as that of E. coli O25b:H30-ST131. But anti-phagocytic function of E. coli O16:H41-ST131 was significantly weaker than that of E. coli O25b:H30-ST131. Conclusion The pathogenicity and survivability of E. coli O16:H41-ST131 were similar to those of E. coli O25b:H30-ST131, which may be important reasons for its increasing prevalence. Our study may contribute to a better understanding of the prevalence of E. coli O16:H41-ST131.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| |
Collapse
|
17
|
Biggel M, Xavier BB, Johnson JR, Nielsen KL, Frimodt-Møller N, Matheeussen V, Goossens H, Moons P, Van Puyvelde S. Horizontally acquired papGII-containing pathogenicity islands underlie the emergence of invasive uropathogenic Escherichia coli lineages. Nat Commun 2020; 11:5968. [PMID: 33235212 PMCID: PMC7686366 DOI: 10.1038/s41467-020-19714-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli is the leading cause of urinary tract infection, one of the most common bacterial infections in humans. Despite this, a genomic perspective is lacking regarding the phylogenetic distribution of isolates associated with different clinical syndromes. Here, we present a large-scale phylogenomic analysis of a spatiotemporally and clinically diverse set of 907 E. coli isolates, including 722 uropathogenic E. coli (UPEC) isolates. A genome-wide association approach identifies the (P-fimbriae-encoding) papGII locus as the key feature distinguishing invasive UPEC, defined as isolates associated with severe UTI, i.e., kidney infection (pyelonephritis) or urinary-source bacteremia, from non-invasive UPEC, defined as isolates associated with asymptomatic bacteriuria or bladder infection (cystitis). Within the E. coli population, distinct invasive UPEC lineages emerged through repeated horizontal acquisition of diverse papGII-containing pathogenicity islands. Our findings elucidate the molecular determinants of severe UTI and have implications for the early detection of this pathogen.
Collapse
Affiliation(s)
- Michael Biggel
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - Basil B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - James R Johnson
- Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN, USA
| | - Karen L Nielsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Veerle Matheeussen
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Moons
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
18
|
Huang J, Zhang S, Zhang S, Zhao Z, Cao Y, Chen M, Li B. A Comparative Study of Fluoroquinolone-Resistant Escherichia coli Lineages Portrays Indistinguishable Pathogenicity- and Survivability-Associated Phenotypic Characteristics Between ST1193 and ST131. Infect Drug Resist 2020; 13:4167-4175. [PMID: 33244246 PMCID: PMC7685377 DOI: 10.2147/idr.s277681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Sequence type 1193 is a new such lineage among fluoroquinolone-resistant Escherichia coli, which has risen dramatically within the last several years. However, reasons for rapid emergence and successful spread of E. coli ST1193 remain unclear. The aim of this study was to compare the pathogenicity and survivability features of E. coli ST1193 with global epidemic lineage, ST131. Methods A total of 30 E. coli were used in this study. Isolates were divided into two groups, ST1193 (n=15) and ST131 (n=15). Adhesion and invasion to T24 cells and resistance to serum were quantified and compared among two groups. Biofilm formation capacity was assessed by crystal violet assay. Macrocolony formation was assessed on macrocolony formation plates. Resistance to hydrogen peroxide was performed by broth microdilution. RAW264.7 cells were used to assess the anti-phagocytic function of different isolates. Results Adhesion and invasion assays revealed that E. coli ST1193 could adhere and invade T24 cells (p <0.05). 93.3% of E. coli ST1193 could form biofilms. The majority of E. coli ST1193 (66.7%) possessed no curli/no cellulose on macrocolony formation plates. E. coli ST1193 showed significant growth in serum and hydrogen peroxide and illustrated higher anti-phagocytic function to RAW264.7 cells (p <0.05). Group analysis showed that E. coli ST1193 was similar to ST131 in pathogenicity- and survivability-associated phenotypic characteristics (p >0.05). Conclusion Our study provided more insights into pathogenicity and survivability features of E. coli ST1193, which was similar to ST131. Our study could be of great importance in understanding the emergence of global spread E. coli ST1193. Strategic and continued surveillance should be carried out to prevent the infections caused by E. coli ST1193.
Collapse
Affiliation(s)
- Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Shuyu Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Min Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| |
Collapse
|
19
|
Antibiotic-Resistant Escherichia coli and Sequence Type 131 in Fecal Colonization in Dogs in Taiwan. Microorganisms 2020; 8:microorganisms8091439. [PMID: 32962221 PMCID: PMC7565575 DOI: 10.3390/microorganisms8091439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Most drug-resistant Escherichia coli isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods: Rectal swabs were used for E. coli isolation from 299 non-infectious dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (p < 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22. Conclusion: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.
Collapse
|
20
|
Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy. Microorganisms 2020; 8:microorganisms8081232. [PMID: 32806766 PMCID: PMC7466171 DOI: 10.3390/microorganisms8081232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using “Microbial Assembly”. Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6′)-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3′)-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
Collapse
|
21
|
Draft Genome Sequence of an Escherichia coli Sequence Type 420 Isolate from a Patient with Urinary Tract Infection in Northern California. Microbiol Resour Announc 2020; 9:9/23/e00251-20. [PMID: 32499367 PMCID: PMC7272548 DOI: 10.1128/mra.00251-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of a uropathogenic Escherichia coli sequence type 420 strain isolated from a patient with urinary tract infection in northern California is described here. The draft genome sequence includes a 4.8-Mb chromosome, accompanied by a 114-kb plasmid containing IncFIB/IncFII/Col156 and a 35-kb plasmid containing IncN3. The genome sequence of a uropathogenic Escherichia coli sequence type 420 strain isolated from a patient with urinary tract infection in northern California is described here. The draft genome sequence includes a 4.8-Mb chromosome, accompanied by a 114-kb plasmid containing IncFIB/IncFII/Col156 and a 35-kb plasmid containing IncN3.
Collapse
|
22
|
Valat C, Drapeau A, Beurlet S, Bachy V, Boulouis HJ, Pin R, Cazeau G, Madec JY, Haenni M. Pathogenic Escherichia coli in Dogs Reveals the Predominance of ST372 and the Human-Associated ST73 Extra-Intestinal Lineages. Front Microbiol 2020; 11:580. [PMID: 32373083 PMCID: PMC7186358 DOI: 10.3389/fmicb.2020.00580] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli is a ubiquitous commensal and pathogen that has also been recognized as a multi-sectoral indicator of antimicrobial resistance (AMR). Given that latter focus, such as on resistances to extended-spectrum cephalosporins (ESC) and carbapenems, the reported population structure of E. coli is generally biased toward resistant isolates, with sequence type (ST)131 being widely reported in humans, and ST410 and ST648 being reported in animals. In this study, we characterized 618 non-duplicate E. coli isolates collected throughout France independently of their resistance phenotype. The B2 phylogroup was over-represented (79.6%) and positively associated with the presence of numerous virulence factors (VFs), including those defining the extra-intestinal pathogenic E. coli isolates (presence of ≥2 VFs: papA, sfaS, focG, afaD, iutA, and kpsMTII) and those more specifically related to uropathogenic E. coli (cnf1, hlyD). The major STs associated with clinical isolates from dogs were by far the dog-associated ST372 (20.7%) and ST73 (20.1%), a lineage that had commonly been considered until now as human-associated. Resistance to ESC was found in 33 isolates (5.3%), along with one carbapenemase-producing isolate, and was mostly restricted to non-B2 isolates. In conclusion, the presence of virulent E. coli lineages may be the issue, rather than the presence of ESC-resistant isolates, and the risk of transmission of such virulent isolates to humans needs to be further studied.
Collapse
Affiliation(s)
- Charlotte Valat
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon – Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon – Université de Lyon, Lyon, France
| | | | | | - Henri-Jean Boulouis
- Unité de Bactériologie, BioPôle, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | | | - Géraldine Cazeau
- Unité Epidémiologie et Appui à la Surveillance, ANSES Laboratoire de Lyon – Université de Lyon, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon – Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon – Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Clonal Structure, Virulence Factor-encoding Genes and Antibiotic Resistance of Escherichia coli, Causing Urinary Tract Infections and Other Extraintestinal Infections in Humans in Spain and France during 2016. Antibiotics (Basel) 2020; 9:antibiotics9040161. [PMID: 32260467 PMCID: PMC7235800 DOI: 10.3390/antibiotics9040161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli is the main pathogen responsible for extraintestinal infections. A total of 196 clinical E. coli consecutively isolated during 2016 in Spain (100 from Lucus Augusti hospital in Lugo) and France (96 from Beaujon hospital in Clichy) were characterized. Phylogroups, clonotypes, sequence types (STs), O:H serotypes, virulence factor (VF)-encoding genes and antibiotic resistance were determined. Approximately 10% of the infections were caused by ST131 isolates in both hospitals and approximately 60% of these infections were caused by isolates belonging to only 10 STs (ST10, ST12, ST58, ST69, ST73, ST88, ST95, ST127, ST131, ST141). ST88 isolates were frequent, especially in Spain, while ST141 isolates significantly predominated in France. The 23 ST131 isolates displayed four clonotypes: CH40-30, CH40-41, CH40-22 and CH40-298. Only 13 (6.6%) isolates were carriers of extended-spectrum beta-lactamase (ESBL) enzymes. However, 37.2% of the isolates were multidrug-resistant (MDR). Approximately 40% of the MDR isolates belonged to only four of the dominant clones (B2-CH40-30-ST131, B2-CH40-41-ST131, C-CH4-39-ST88 and D-CH35-27-ST69). Among the remaining MDR isolates, two isolates belonged to B2-CH14-64-ST1193, i.e., the new global emergent MDR clone. Moreover, a hybrid extraintestinal pathogenic E.coli (ExPEC)/enteroaggregative isolate belonging to the A-CH11-54-ST10 clone was identified.
Collapse
|
24
|
Molecular epidemiology of Escherichia coli causing bloodstream infections in a centralized Canadian region: a population-based surveillance study. Clin Microbiol Infect 2020; 26:1554.e1-1554.e8. [PMID: 32120035 DOI: 10.1016/j.cmi.2020.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Escherichia coli is a leading cause of bloodstream infections worldwide, and is responsible for substantial patient morbidity, mortality and healthcare expenditure. Understanding the molecular epidemiology of E. coli will aid in designing superior treatment and prevention strategies. METHODS We undertook a population-based surveillance study describing the clinical factors, susceptibility patterns, incidence rates and geographical distribution of sequence types (STs) among E. coli isolates (n = 686) causing incident bloodstream infections in a centralized Canadian region during 2016. STs were identified using a seven-single-nucleotide-polymorphism quantitative PCR (n = 422) and sequencing of certain house-keeping genes (n = 249). RESULTS The annual population incidence rate of E. coli bloodstream infections was 48.8/100 000 patient years, and five dominant clones (ST131, ST73, ST69, ST95 and ST1193) accounting for 55% (378/686) of the population were identified, each with a specific geographical distribution within Calgary. ST131 was the most common (overall incidence rate of 10.4/100 000 patient years), an antimicrobial-resistant (AMR) clone affecting mainly the elderly and the very young. ST131 was common among residents in long-term care with an incidence rate of 312.5/100 000 patient years. ST73 was associated with community infections in the elderly, while ST69 and ST95 had increased incidence rates among females. ST1193 was the second most AMR clone and was associated with bloodstream infections in elderly males. CONCLUSIONS This study showed that E. coli clones have unique characteristics in a well-defined human population. The elimination of ST131 would substantially decrease the overall incidence rate and AMR burden among E. coli bloodstream infections in the Calgary region, leading to considerable public health benefits.
Collapse
|