1
|
Kelly RJ, Holt M, Vidler J, Arnold LM, Large J, Forrest B, Barnfield C, Pike A, Griffin M, Munir T, Muus P, Nagumantry SK, Varghese A, Davies JR, Trikha R, Kulasekararaj AG, Mitchell L, Gandhi S. Treatment outcomes of complement protein C5 inhibition in 509 UK patients with paroxysmal nocturnal hemoglobinuria. Blood 2024; 143:1157-1166. [PMID: 38142401 DOI: 10.1182/blood.2023021762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic disorder that occurs on a background of bone marrow failure (BMF). In PNH, chronic intravascular hemolysis causes an increase in morbidity and mortality, mainly because of thromboses. Over the last 20 years, treatment of PNH has focused on the complement protein C5 to prevent intravascular hemolysis using the monoclonal antibody eculizumab and more recently ravulizumab. In the United Kingdom, all patients are under review at 1 of 2 reference centers. We report on all 509 UK patients with PNH treated with eculizumab and/or ravulizumab between May 2002 and July 2022. The survival of patients with eculizumab and ravulizumab was significantly lower than that of age- and sex-matched controls (P = .001). Only 4 patients died of thromboses. The survival of patients with PNH (n = 389), when those requiring treatment for BMF (clonal evolution to myelodysplastic syndrome or acute leukemia or had progressive unresponsive aplastic anemia) were excluded, was not significantly different from that of age- and sex-matched controls (P = .12). There were 11 cases of meningococcal sepsis (0.35 events per 100 patient-years). Extravascular hemolysis was evident in patients who received treatment, with 26.7% of patients requiring transfusions in the most recent 12 months on therapy. Eculizumab and ravulizumab are safe and effective therapies that reduce mortality and morbidity in PNH, but further work is needed to reduce mortality in those with concomitant BMF.
Collapse
Affiliation(s)
- Richard J Kelly
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Matthew Holt
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Jennifer Vidler
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Louise M Arnold
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Joanna Large
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Briony Forrest
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Catherine Barnfield
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Alexandra Pike
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Morag Griffin
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Talha Munir
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Petra Muus
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - Sateesh K Nagumantry
- Department of Haematology, Peterborough City Hospital, Peterborough, United Kingdom
| | - Abraham Varghese
- Department of Haematology, St. James's University Hospital, Leeds, United Kingdom
| | - John R Davies
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Roochi Trikha
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Austin G Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lindsay Mitchell
- Department of Haematology, Monklands Hospital, Airdrie, United Kingdom
| | - Shreyans Gandhi
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Mallenahalli Neeekantappa V, Kamath A, Bharathi Rajaduraivelpandian P. Safety Profile of Monoclonal Antibodies and Subsequent Drug Developments in the Treatment of Paroxysmal Nocturnal Hemoglobinuria. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:379. [PMID: 38541105 PMCID: PMC10971871 DOI: 10.3390/medicina60030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 10/06/2024]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal stem cell disease characterized by intravascular hemolysis due to the targeting of affected red blood cells by the complement system. Eculizumab and ravulizumab are two monoclonal antibodies that inhibit the complement system's components and have been shown to significantly improve survival and quality of life. This review describes the role of these monoclonal antibodies in the treatment of PNH with an emphasis on their safety profile. The challenges in the use of these drugs and new drugs in various stages of drug development are also described, which may be helpful in addressing some of these challenges.
Collapse
|
3
|
Kale D, Kikul F, Phapale P, Beedgen L, Thiel C, Brügger B. Quantification of Dolichyl Phosphates Using Phosphate Methylation and Reverse-Phase Liquid Chromatography-High Resolution Mass Spectrometry. Anal Chem 2023; 95:3210-3217. [PMID: 36716239 PMCID: PMC9933046 DOI: 10.1021/acs.analchem.2c03623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dolichyl monophosphates (DolPs) are essential lipids in glycosylation pathways that are highly conserved across almost all domains of life. The availability of DolP is critical for all glycosylation processes, as these lipids serve as membrane-anchored building blocks used by various types of glycosyltransferases to generate complex post-translational modifications of proteins and lipids. The analysis of DolP species by reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) remains a challenge due to their very low abundance and wide range of lipophilicities. Until now, a method for the simultaneous qualitative and quantitative assessment of DolP species from biological membranes has been lacking. Here, we describe a novel approach based on simple sample preparation, rapid and efficient trimethylsilyl diazomethane-dependent phosphate methylation, and RPLC-MS analysis for quantification of DolP species with different isoprene chain lengths. We used this workflow to selectively quantify DolP species from lipid extracts derived of Saccharomyces cerevisiae, HeLa, and human skin fibroblasts from steroid 5-α-reductase 3- congenital disorders of glycosylation (SRD5A3-CDG) patients and healthy controls. Integration of this workflow with global lipidomics analyses will be a powerful tool to expand our understanding of the role of DolPs in pathophysiological alterations of metabolic pathways downstream of HMG-CoA reductase, associated with CDGs, hypercholesterolemia, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Dipali Kale
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany,
| | - Frauke Kikul
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Prasad Phapale
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany
| | - Lars Beedgen
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Christian Thiel
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Britta Brügger
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,
| |
Collapse
|
4
|
Nunes LGA, Pitts MW, Hoffmann PR. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Arch Biochem Biophys 2022; 729:109376. [PMID: 36007576 PMCID: PMC11166481 DOI: 10.1016/j.abb.2022.109376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Anatomy, Physiology and Biochemistry, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
5
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
6
|
Oinam L, Tateno H. Glycan Profiling by Sequencing to Uncover Multicellular Communication: Launching Glycobiology in Single Cells and Microbiomes. Front Cell Dev Biol 2022; 10:919168. [PMID: 35712658 PMCID: PMC9197256 DOI: 10.3389/fcell.2022.919168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glycans are essential building blocks of life that are located at the outermost surface of all cells from mammals to bacteria and even viruses. Cell surface glycans mediate multicellular communication in diverse biological processes and are useful as "surface markers" to identify cells. Various single-cell sequencing technologies have already emerged that enable the high-throughput analysis of omics information, such as transcriptome and genome profiling on a cell-by-cell basis, which has advanced our understanding of complex multicellular interactions. However, there has been no robust technology to analyze the glycome in single cells, mainly because glycans with branched and heterogeneous structures cannot be readily amplified by polymerase chain reactions like nucleic acids. We hypothesized that the generation of lectins conjugated with DNA barcodes (DNA-barcoded lectins) would enable the conversion of glycan information to gene information, which may be amplified and measured using DNA sequencers. This technology will enable the simultaneous analysis of glycan and RNA in single cells. Based on this concept, we developed a technology to analyze glycans and RNA in single cells, which was referred to as scGR-seq. Using scGR-seq, we acquired glycan and gene expression profiles of individual cells constituting heterogeneous cell populations, such as tissues. We further extended Glycan-seq to the profiling of the surface glycans of bacteria and even gut microbiota. Glycan-seq and scGR-seq are new technologies that enable us to elucidate the function of glycans in cell-cell and cell-microorganism communication, which extends glycobiology to the level of single cells and microbiomes.
Collapse
Affiliation(s)
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
7
|
Ma C, Hoffmann FW, Marciel MP, Page KE, Williams-Aduja MA, Akana ENL, Gojanovich GS, Gerschenson M, Urschitz J, Moisyadi S, Khadka VS, Rozovsky S, Deng Y, Horgen FD, Hoffmann PR. Upregulated ethanolamine phospholipid synthesis via selenoprotein I is required for effective metabolic reprogramming during T cell activation. Mol Metab 2021; 47:101170. [PMID: 33484950 PMCID: PMC7881273 DOI: 10.1016/j.molmet.2021.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE T cell activation triggers metabolic reprogramming to meet increased demands for energy and metabolites required for cellular proliferation. Ethanolamine phospholipid synthesis has emerged as a regulator of metabolic shifts in stem cells and cancer cells, which led us to investigate its potential role during T cell activation. METHODS As selenoprotein I (SELENOI) is an enzyme participating in two metabolic pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, we generated SELENOI-deficient mouse models to determine loss-of-function effects on metabolic reprogramming during T cell activation. Ex vivo and in vivo assays were carried out along with metabolomic, transcriptomic, and protein analyses to determine the role of SELENOI and the ethanolamine phospholipids synthesized by this enzyme in cell signaling and metabolic pathways that promote T cell activation and proliferation. RESULTS SELENOI knockout (KO) in mouse T cells led to reduced de novo synthesis of PE and plasmenyl PE during activation and impaired proliferation. SELENOI KO did not affect T cell receptor signaling, but reduced activation of the metabolic sensor AMPK. AMPK was inhibited by high [ATP], consistent with results showing SELENOI KO causing ATP accumulation, along with disrupted metabolic pathways and reduced glycosylphosphatidylinositol (GPI) anchor synthesis/attachment CONCLUSIONS: T cell activation upregulates SELENOI-dependent PE and plasmenyl PE synthesis as a key component of metabolic reprogramming and proliferation.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michael P Marciel
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kathleen E Page
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | | | - Ellis N L Akana
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Greg S Gojanovich
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Johann Urschitz
- Department of Anatomy, Physiology and Biochemistry, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Stefan Moisyadi
- Department of Anatomy, Physiology and Biochemistry, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
8
|
Revollo JR, Dad A, Pearce MG, Mittelstaedt RA, Casildo A, Lapidus RG, Robison TW, Dobrovolsky VN. CD59-deficient bone marrow erythroid cells from rats treated with procarbazine and propyl-nitrosourea have mutations in the Pig-a gene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:797-806. [PMID: 32729949 DOI: 10.1002/em.22402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Procarbazine (PCZ) and N-propyl-N-nitrosourea (PNU) are rodent mutagens and carcinogens. Both induce GPI-anchored marker-deficient mutant-phenotype red blood cells (RBCs) in the flow cytometry-based rat RBC Pig-a assay. In the present study, we traced the origin of the RBC mutant phenotype by analyzing Pig-a mutations in the precursors of RBCs, bone marrow erythroid cells (BMEs). Rats were exposed to a total of 450 mg/kg PCZ hydrochloride or 300 mg/kg PNU, and bone marrow was collected 2, 7, and 10 weeks later. Using a flow cell sorter, we isolated CD59-deficient mutant-phenotype BMEs from PCZ- and PNU-treated rats and examined their endogenous X-linked Pig-a gene by next generation sequencing. Pig-a mutations consistent with the properties of PCZ and PNU were found in sorted mutant-phenotype BMEs. PCZ induced mainly A > T transversions with the mutated A on the nontranscribed strand of the Pig-a gene, while PNU induced mainly T > A transversions with the mutated T on the nontranscribed strand. The treatment-induced mutations were distributed across the protein coding sequence of the Pig-a gene. The causal relationship between BMEs and RBCs and the agent-specific mutational spectra in CD59-deicient BMEs indicate that the rat RBC Pig-a assay, scoring CD59-deficient mutant-phenotype RBCs in peripheral blood, detects Pig-a gene mutation.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Andrea Casildo
- Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rena G Lapidus
- Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy W Robison
- Division of Pulmonary, Allergy and Critical Care Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
9
|
Lima M. Laboratory studies for paroxysmal nocturnal hemoglobinuria, with emphasis on flow cytometry. Pract Lab Med 2020; 20:e00158. [PMID: 32195308 PMCID: PMC7078534 DOI: 10.1016/j.plabm.2020.e00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal hematopoietic stem cell disorder caused by somatic mutations in the PIG-A gene, leading to the production of blood cells with absent or decreased expression of glycosylphosphatidylinositol-anchored proteins, including CD55 and CD59. Clinically, PNH is classified into three variants: classic (hemolytic), in the setting of another specified bone marrow disorder (such as aplastic anemia or myelodysplastic syndrome) and subclinical (asymptomatic). PNH testing is recommended for patients with intravascular hemolysis, acquired bone marrow failure syndromes and thrombosis with unusual features. Despite the availability of consensus guidelines for PNH diagnosis and monitoring, there are still discrepancies on how PNH tests are carried out, and these technical variations may lead to an incorrect diagnosis. Herein, we provide a brief historical overview of PNH, focusing on the laboratory tests available and on the current recommendations for PNH diagnosis and monitoring based in flow cytometry.
Collapse
Affiliation(s)
- Margarida Lima
- Laboratório de Citometria, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas da Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Laboratório de Citometria, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Ex-CICAP, Rua D. Manuel II, s/n, 4099-001, Porto, Portugal.
| |
Collapse
|
10
|
Revollo JR, Dad A, Pearce MG, Mittelstaedt RA, Robison TW, Dobrovolsky VN. Pig-a mutations in bone marrow erythroblasts of rats treated with 7,12-dimethyl-benz[a]anthracene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:503106. [DOI: 10.1016/j.mrgentox.2019.503106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022]
|
11
|
Mersha FB, Cortes LK, Luck AN, McClung CM, Ruse CI, Taron CH, Foster JM. Computational and experimental analysis of the glycophosphatidylinositol-anchored proteome of the human parasitic nematode Brugia malayi. PLoS One 2019; 14:e0216849. [PMID: 31513600 PMCID: PMC6742230 DOI: 10.1371/journal.pone.0216849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/20/2019] [Indexed: 12/05/2022] Open
Abstract
Further characterization of essential systems in the parasitic filarial nematode Brugia malayi is needed to better understand its biology, its interaction with its hosts, and to identify critical components that can be exploited to develop novel treatments. The production of glycophosphatidylinositol-anchored proteins (GPI-APs) is essential for eukaryotic cellular and physiological function. In addition, GPI-APs perform many important roles for cells. In this study, we characterized the B. malayi GPI-anchored proteome using both computational and experimental approaches. We used bioinformatic strategies to show the presence or absence of B. malayi GPI-AP biosynthetic pathway genes and to compile a putative B. malayi GPI-AP proteome using available prediction programs. We verified these in silico analyses using proteomics to identify GPI-AP candidates prepared from the surface of intact worms and from membrane enriched extracts. Our study represents the first description of the GPI-anchored proteome in B. malayi and lays the groundwork for further exploration of this essential protein modification as a target for novel anthelmintic therapeutic strategies.
Collapse
Affiliation(s)
- Fana B. Mersha
- New England Biolabs, Ipswich MA, United States of America
| | | | - Ashley N. Luck
- New England Biolabs, Ipswich MA, United States of America
| | | | | | | | | |
Collapse
|
12
|
Berentsen S, Hill A, Hill QA, Tvedt THA, Michel M. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther Adv Hematol 2019; 10:2040620719873321. [PMID: 31523413 PMCID: PMC6734604 DOI: 10.1177/2040620719873321] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Complement-mediated hemolytic anemias can either be caused by deficiencies in regulatory complement components or by autoimmune pathogenesis that triggers inappropriate complement activation. In paroxysmal nocturnal hemoglobinuria (PNH) hemolysis is entirely complement-driven. Hemolysis is also thought to be complement-dependent in cold agglutinin disease (CAD) and in paroxysmal cold hemoglobinuria (PCH), whereas warm antibody autoimmune hemolytic anemia (wAIHA) is a partially complement-mediated disorder, depending on the subtype of wAIHA and the extent of complement activation. The pathophysiology, clinical presentation, and current therapies for these diseases are reviewed in this article. Novel, complement-directed therapies are being rapidly developed. Therapeutic terminal complement inhibition using eculizumab has revolutionized the therapy and prognosis in PNH but has proved less efficacious in CAD. Upstream complement modulation is currently being investigated and appears to be a highly promising therapy, and two such agents have entered phase II and III trials. Of these, the anti-C1s monoclonal antibody sutimlimab has shown favorable activity in CAD, while the anti-C3 cyclic peptide pegcetacoplan appears to be promising in PNH as well as CAD, and may also have a therapeutic potential in wAIHA.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, P.O. Box 2170, Haugesund, 5504, Norway
| | - Anita Hill
- Department of Haematology, Leeds Teaching Hospitals, Leeds, UK
| | - Quentin A Hill
- Department of Haematology, Leeds Teaching Hospitals, Leeds, UK
| | | | - Marc Michel
- Department of Medicine, Henri Mondor Hospital, Université Paris-Est, Assistance Publique Hôpitaux de Paris Creteil, Creteil, France
| |
Collapse
|
13
|
Zhang Z, Shen Y, Shu X, Li B, Li N. Successful whole-blood exchange transfusion in a patient with paroxysmal nocturnal hemoglobinuria: A case report and literature review. J Int Med Res 2019; 47:4562-4567. [PMID: 31431110 PMCID: PMC6753549 DOI: 10.1177/0300060519861165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal disorder
of the hematopoietic stem cells that involves all blood cells. The primary
aim of this study was to assess the role of whole-blood exchange (WBE) in
treating patients with PNH. Methods A 32-year-old male patient was admitted our hospital because of severe
anemia. His clinical test results indicated serious hemolysis, with positive
anti-I on pretransfusion antibody screening tests. Because immunosuppressive
therapy was ineffective and red blood cell (RBC) transfusion may aggravate
hemolytic symptoms, the COBE Spectra blood cell separator was used for
WBE. Results We performed WBE, where 1789 mL of the patient’s blood was removed and
replaced with 12 U of packed RBCs, along with 150 mL of frozen plasma and
200 mL of normal saline (total volume, 1883 mL), representing an exchange of
42.5% of the patient’s total blood volume (approximately 4209 mL). The WBE
treatment was considered successful. Rapid improvement in clinical signs and
symptoms were observed after the WBE transfusion. The patient was discharged
from the hospital on the third day after treatment. Conclusion Whole-blood exchange may be an applicable emergency treatment for rescuing
PNH patients with severe or life-threatening hemolysis.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yamei Shen
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiangwu Shu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bijuan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
14
|
Abstract
Pregnancy can be a dangerous trigger for patients with paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), or hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome. Due to the possibility of several serious complications, pregnancy is somewhat discouraged in the presence of the above diseases. Eculizumab is a humanized antibody that may dramatically change the clinical course of PNH, aHUS and HELLP syndrome. However, data on the safety of eculizumab in pregnancy are scarce. In this narrative overview, we summarize current evidence on the use of eculizumab during pregnancy in women with PNH, aHUS and HELLP syndrome. Eculizumab is not present in breast milk, and the levels observed in umbilical cord blood samples are not sufficient to affect the concentrations of complement in newborns. Therefore, eculizumab may be regarded as safe in pregnancy. Nonetheless, given that data on eculizumab in pregnancy are limited, it is not possible to completely exclude risks for both mother and fetus in treating PNH, aHUS and HELLP syndrome.
Collapse
|
15
|
Dal MS, Karakuş A, Ekmen MÖ, Ayyildiz O. Presentation and Management of Paroxysmal Nocturnal Hemoglobinuria: A Single-Center Experience. Hematol Rep 2016; 8:6409. [PMID: 27103981 PMCID: PMC4815950 DOI: 10.4081/hr.2016.6409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disorder characterized by intravascular hemolysis. Real-world experience of PNH management is largely unreported. A retrospective analysis was undertaken based on medical records from six patients with PNH [two with aplastic anemia (AA)] treated at our center, Dicle University, Turkey. Diagnosis was based on granulocyte PNH clones, ranging from 93% to 66%. All patients had symptoms consistent with PNH. One patient was managed adequately with supportive measures only. Five were treated with the complement inhibitor eculizumab. Follow-up data (<1 year) were available in four cases (the fifth had received only three infusions by final follow-up). Hemoglobin level in these four patients increased from 4.1-7.2 g/dL to 8.3-13.0 g/dL. Lactate dehydrogenase, a marker for hemolysis, decreased profoundly in the two non-AA patients, with more minor improvements in the two AA patients. Weakness and fatigue improved in all eculizumab-treated patients. Four of the five treated patients became transfusion independent, including the patient given only three infusions. In the remaining case, a patient with AA, transfusion requirement decreased, and abdominal pain and dysphagia resolved. No adverse events occurred. PNH can be successfully managed in routine practice.
Collapse
Affiliation(s)
| | | | | | - Orhan Ayyildiz
- Department of Hematology, Dicle University , Diyarbakir, Turkey
| |
Collapse
|
16
|
Ohta K, Goto H, Yumine N, Nishio M. Human parainfluenza virus type 2 V protein inhibits and antagonizes tetherin. J Gen Virol 2015; 97:561-570. [PMID: 26675672 DOI: 10.1099/jgv.0.000373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tetherin (BST-2/CD317/HM1.24) is an antiviral membrane protein that prevents the release of enveloped viruses from the cell surface. We found that the growth of human parainfluenza virus type 2 (hPIV-2), but not that of V protein-deficient recombinant hPIV-2, was inhibited by tetherin. V protein immunoprecipitates with tetherin, and this interaction requires its C-terminal Trp residues. The glycosyl phosphatidylinositol attachment signal of tetherin, but not its cytoplasmic tail, was necessary for its binding with V. The distribution of the V protein clearly changed when co-expressed with tetherin in plasmid-transfected cells. hPIV-2 infection of HeLa cells reduced cell surface tetherin without affecting total cellular tetherin. This reduction also occurred in HeLa cells constitutively expressing V, whereas mutated V protein did not affect the cell surface tetherin. Our results suggest that hPIV-2 V protein antagonizes tetherin by binding it and reducing its presence at the cell surface.
Collapse
Affiliation(s)
- K Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - H Goto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - N Yumine
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - M Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
17
|
Liew M, Farley M, Andreasen J, Parker CJ, Wittwer CT. Rare event counting of CD59− red cells in human blood: A 47-month experience using PNH consensus guidelines for WBC and RBC testing in a reference lab. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 88:261-9. [DOI: 10.1002/cyto.b.21225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Liew
- Institute for Clinical and Experimental Pathology, ARUP Laboratories; Salt Lake City Utah 84108
| | - Marjorie Farley
- Institute for Clinical and Experimental Pathology, ARUP Laboratories; Salt Lake City Utah 84108
| | - John Andreasen
- Institute for Clinical and Experimental Pathology, ARUP Laboratories; Salt Lake City Utah 84108
| | - Charles J. Parker
- Division of Hematology; Department of Internal Medicine; University of Utah School of Medicine; Salt Lake City Utah 84132
| | - Carl T. Wittwer
- Institute for Clinical and Experimental Pathology, ARUP Laboratories; Salt Lake City Utah 84108
- Department of Pathology; University of Utah School of Medicine; Salt Lake City Utah 84132
| |
Collapse
|
18
|
Assessing complement blockade in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab. Blood 2015; 125:775-83. [DOI: 10.1182/blood-2014-03-560540] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Key Points
CH50 activity reflects C5 blockade in PNH patients treated with eculizumab and is directly related to circulating free eculizumab levels. Both CH50 and free eculizumab level markers look promising for the monitoring of complement blockade in patients with PNH receiving eculizumab.
Collapse
|
19
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
20
|
Abstract
Glycans participate in many key cellular processes during development and in physiology and disease. In this review, the functional role of various glycans in the regeneration of neurons and body parts in adult metazoans is discussed. Understanding glycosylation may facilitate research in the field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Glycomics and Glycoproteomics,
Centre for Cellular and Molecular Platforms, NCBS-TIFR, GKVK Post, Bangalore 560065, India
| |
Collapse
|
21
|
Swoboda KJ, Margraf RL, Carey JC, Zhou H, Newcomb TM, Coonrod E, Durtschi J, Mallempati K, Kumanovics A, Katz BE, Voelkerding KV, Opitz JM. A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. Am J Med Genet A 2013; 164A:17-28. [PMID: 24259288 DOI: 10.1002/ajmg.a.36189] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/25/2013] [Indexed: 01/22/2023]
Abstract
Three related males presented with a newly recognized x-linked syndrome associated with neurodegeneration, cutaneous abnormalities, and systemic iron overload. Linkage studies demonstrated that they shared a haplotype on Xp21.3-Xp22.2 and exome sequencing was used to identify candidate variants. Of the segregating variants, only a PIGA mutation segregated with disease in the family. The c.328_330delCCT PIGA variant predicts, p.Leu110del (or c.1030_1032delCTT, p.Leu344del depending on the reference sequence). The unaffected great-grandfather shared his X allele with the proband but he did not have the PIGA mutation, indicating that the mutation arose de novo in his daughter. A single family with a germline PIGA mutation has been reported; affected males had a phenotype characterized by multiple congenital anomalies and severe neurologic impairment resulting in infantile lethality. In contrast, affected boys in the family described here were born without anomalies and were neurologically normal prior to onset of seizures after 6 months of age, with two surviving to the second decade. PIGA encodes an enzyme in the GPI anchor biosynthesis pathway. An affected individual in the family studied here was deficient in GPI anchor proteins on granulocytes but not erythrocytes. In conclusion, the PIGA mutation in this family likely causes a reduction in GPI anchor protein cell surface expression in various cell types, resulting in the observed pleiotropic phenotype involving central nervous system, skin, and iron metabolism.
Collapse
Affiliation(s)
- Kathryn J Swoboda
- Pediatric Motor Disorders Research Program, Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Krishnan SK, Hill A, Hillmen P, Arnold LM, Brooksbank GL, Wood A, Scarsbrook A, Davies MH, Kelly RJ. Improving cytopenia with splenic artery embolization in a patient with paroxysmal nocturnal hemoglobinuria on eculizumab. Int J Hematol 2013; 98:716-8. [PMID: 24318160 DOI: 10.1007/s12185-013-1454-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 11/26/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria is a rare acquired stem cell disorder characterized by intravascular hemolysis, aplasia and an increased risk of thrombosis. We describe a patient under treatment with the anti-complement antibody eculizumab who developed pancytopenia, requiring blood transfusions, due to massive splenomegaly. The patient underwent two separate splenic embolizations, which reduced the size of the spleen and improved his blood count to the point that blood transfusions were no longer necessary. Splenic embolization was chosen over splenectomy due to the potential postoperative complications of splenectomy, especially that of thrombosis.
Collapse
Affiliation(s)
- Suresh K Krishnan
- Department of Hematology/Oncology, St-James University Hospital, Beckett Street, Leeds, LS9 7TF, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Studies on the roles of clathrin-mediated membrane trafficking and zinc transporter Cis4 in the transport of GPI-anchored proteins in fission yeast. PLoS One 2012; 7:e41946. [PMID: 22848669 PMCID: PMC3405024 DOI: 10.1371/journal.pone.0041946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl2-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast.
Collapse
|
24
|
Kelly R, Richards S, Hillmen P, Hill A. The pathophysiology of paroxysmal nocturnal hemoglobinuria and treatment with eculizumab. Ther Clin Risk Manag 2011; 5:911-21. [PMID: 20011245 PMCID: PMC2789686 DOI: 10.2147/tcrm.s3334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria is a rare disorder of hemopoietic stem cells. Affected individuals have a triad of clinical associations – intravascular hemolysis, an increased risk of thromboembolism, and bone marrow failure. Most of the symptoms experienced in this disease occur due to the absence of complement regulatory proteins on the surface of the red blood cells. Complement activation is thus not checked and causes destruction of these cells. Eculizumab is a monoclonal antibody treatment which specifically binds to the complement protein C5, preventing its cleavage, and so halts the complement cascade and prevents the formation of the terminal complement proteins. Eculizumab prevents intravascular hemolysis, stabilizes hemoglobin levels, reduces or stops the need for blood transfusions, and improves fatigue and patient quality of life as well as reducing pulmonary hypertension, decreasing the risk of thrombosis and protecting against worsening renal function. It is not a curative therapy but has a great benefit on those with this rare debilitating condition.
Collapse
Affiliation(s)
- Richard Kelly
- Institute of Oncology, St. James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|
25
|
Long-term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. Blood 2011; 117:6786-92. [PMID: 21460245 DOI: 10.1182/blood-2011-02-333997] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic disorder with increased mortality and morbidity resulting from intravascular hemolysis. Eculizumab, a monoclonal antibody against the complement protein 5, stops the intravascular hemolysis in PNH. We evaluated 79 consecutive patients treated with eculizumab in Leeds between May 2002 and July 2010. The survival of patients treated with eculizumab was not different from age- and sex-matched normal controls (P = .46) but was significantly better than 30 similar patients managed before eculizumab (P = .030). Three patients on eculizumab, all over 50 years old, died of causes unrelated to PNH. Twenty-one patients (27%) had a thrombosis before starting eculizumab (5.6 events per 100 patient-years) compared with 2 thromboses on eculizumab (0.8 events per 100 patient-years; P < .001). Twenty-one patients with no previous thrombosis discontinued warfarin on eculizumab with no thrombotic sequelae. Forty of 61 (66%) patients on eculizumab for more than 12 months achieved transfusion independence. The 12-month mean transfusion requirement reduced from 19.3 units before eculizumab to 5.0 units in the most recent 12 months on eculizumab (P < .001). Eculizumab dramatically alters the natural course of PNH, reducing symptoms and disease complications as well as improving survival to a similar level to that of the general population.
Collapse
|
26
|
Haeuptle MA, Welti M, Troxler H, Hülsmeier AJ, Imbach T, Hennet T. Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid. J Biol Chem 2010; 286:6085-91. [PMID: 21183681 DOI: 10.1074/jbc.m110.165795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc(2)Man(5) in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells.
Collapse
Affiliation(s)
- Micha A Haeuptle
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Victoria GS, Kumar P, Komath SS. The Candida albicans homologue of PIG-P, CaGpi19p: gene dosage and role in growth and filamentation. Microbiology (Reading) 2010; 156:3041-3051. [DOI: 10.1099/mic.0.039628-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidyl inositol (GPI)-anchored proteins in Candida albicans are responsible for a vast range of functions, and deletions in certain GPI-anchored proteins severely reduce adhesion and virulence of this organism. In addition, completely modified GPIs are necessary for virulence. GPI anchor biosynthesis is essential for viability and starts with the transfer of N-acetylglucosamine to phosphatidylinositol. This step is catalysed by a multi-subunit complex, GPI–N-acetylglucosaminyltransferase (GPI–GnT). In this, the first report to our knowledge on a subunit of the Candida GPI–GnT complex, we show that CaGpi19p is the functional equivalent of the Saccharomyces cerevisiae Gpi19p. An N-terminal truncation mutant of CaGpi19p functionally complements a conditionally lethal S. cerevisiae gpi19 mutant. Further, we constructed a conditional null mutant of CaGPI19 by disrupting one allele and placing the remaining copy under the control of the MET3 promoter. Repression leads to growth defects, cell wall biogenesis aberrations, azole sensitivity and hyperfilamention. In addition, there is a noticeable gene dosage effect, with the heterozygote also displaying intermediate degrees of most phenotypes. The mutants also displayed a reduced susceptibility to the antifungal agent amphotericin B. Collectively, the results suggest that CaGPI19 is required for normal morphology and cell wall architecture.
Collapse
Affiliation(s)
| | - Pravin Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
28
|
Rachidi S, Musallam KM, Taher AT. A closer look at paroxysmal nocturnal hemoglobinuria. Eur J Intern Med 2010; 21:260-7. [PMID: 20603032 DOI: 10.1016/j.ejim.2010.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/05/2010] [Indexed: 12/28/2022]
Abstract
Knowledge of the molecular mechanisms leading to the paroxysmal nocturnal hemoglobinuria (PNH) phenotypes has substantially increased in the past two decades. The associated intravascular hemolysis, hypercoagulablilty, and bone marrow failure result in a wide range of clinical sequlae. Although treatment has usually been symptomatic through several modalities and rarely curative through hematopoietic cell transplantation, recent development of the novel targeted therapeutic agent eculizumab has offered new promises for this highly morbid and fatal disease. This review summarizes current knowledge of the pathophysiology, diagnostic modalities, clinical implications, and treatment approaches of patients with PNH.
Collapse
MESH Headings
- Anemia, Hemolytic/etiology
- Anemia, Hemolytic/physiopathology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Blood Coagulation/physiology
- Blood Coagulation Disorders/etiology
- Blood Coagulation Disorders/physiopathology
- Hemoglobinuria, Paroxysmal/complications
- Hemoglobinuria, Paroxysmal/diagnosis
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/physiopathology
- Hemoglobinuria, Paroxysmal/therapy
- Hemolysis/physiology
- Humans
- Kidney Diseases/etiology
- Kidney Diseases/physiopathology
- Prognosis
- Thrombosis/etiology
- Thrombosis/physiopathology
Collapse
Affiliation(s)
- Saleh Rachidi
- Department of Internal Medicine, Division of Hematology & Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | |
Collapse
|
29
|
Kelly R, Arnold L, Richards S, Hill A, Bomken C, Hanley J, Loughney A, Beauchamp J, Khursigara G, Rother RP, Chalmers E, Fyfe A, Fitzsimons E, Nakamura R, Gaya A, Risitano AM, Schubert J, Norfolk D, Simpson N, Hillmen P. The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br J Haematol 2010; 149:446-50. [DOI: 10.1111/j.1365-2141.2010.08099.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Haeuptle MA, Hülsmeier AJ, Hennet T. HPLC and mass spectrometry analysis of dolichol-phosphates at the cell culture scale. Anal Biochem 2009; 396:133-8. [PMID: 19761748 DOI: 10.1016/j.ab.2009.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022]
Abstract
Dolichols (Dol) are polyprenol lipids that are essential structural components of eukaryotic membranes. In addition, the phosphorylated derivatives of Dol function as lipid anchors of mono- and oligosaccharide precursors involved in protein glycosylation. The biological importance of Dol phosphates (Dol-P) is illustrated by the severe outcome of human disorders linked to Dol biosynthetic defects, such as Dol-kinase deficiency. For characterization of inherited human diseases and evaluation of therapeutic trials, cultured cells often serve as a sole possible source for experimentation. Limited amounts of cell culture material render the quantitative analysis of Dol a challenging task. Here, we present HPLC- and mass spectrometry-based approaches to analyze and quantitate Dol-P from cultured human cells. The composition of naturally occurring Dol-P and the saturation state of the alpha-isoprene units was identified by negative-ion electrospray ionization mass spectrometry. Furthermore, fluorescently labeled Dol-P were separated by HPLC and quantified by comparison to known amounts of the internal standard polyprenol-P. The effect of pravastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitor, on the formation of Dol-P in HeLa cells was investigated. As expected, this treatment led to a decrease of Dol-P down to 35% of normal levels.
Collapse
Affiliation(s)
- Micha A Haeuptle
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Hernández-Campo PM, Almeida J, Orfao A. Hemoglobinuria paroxística nocturna. Med Clin (Barc) 2008; 131:617-30. [DOI: 10.1157/13127921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Chen G, Ye Z, Yu X, Zou J, Mali P, Brodsky RA, Cheng L. Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell 2008; 2:345-55. [PMID: 18397754 DOI: 10.1016/j.stem.2008.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 12/16/2007] [Accepted: 02/08/2008] [Indexed: 01/10/2023]
Abstract
Pluripotent human embryonic stem (hES) cells can differentiate into various cell types derived from the three embryonic germ layers and extraembryonic tissues such as trophoblasts. The mechanisms governing lineage choices of hES cells are largely unknown. Here, we report that we established two independent hES cell clones lacking a group of cell surface molecules, glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs). The GPI-AP deficiency in these two hES clones is due to the deficiency in the gene expression of PIG-A (phosphatidyl-inositol-glycan class A), which is required for the first step of GPI synthesis. GPI-AP-deficient hES cells were capable of forming embryoid bodies and initiating cell differentiation into the three embryonic germ layers. However, GPI-AP-deficient hES cells failed to form trophoblasts after differentiation induction by embryoid body formation or by adding exogenous BMP4. The defect in trophoblast formation was due to the lack of GPI-anchored BMP coreceptors, resulting in the impairment of full BMP4 signaling activation in the GPI-AP-deficient hES cells. These data reveal that GPI-AP-enhanced full activation of BMP signaling is required for human trophoblast formation.
Collapse
Affiliation(s)
- Guibin Chen
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Lee DH, Kang SG. Characterization of phosphatidylinositol-glycan biosynthesis protein class F gene in rice. ACTA ACUST UNITED AC 2007; 19:282-90. [PMID: 17852346 DOI: 10.1080/10425170701575364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The glycosylphosphatidylinositol (GPI) anchors are linked to glycosylphosphatidylinositol-anchored proteins (GAPs) which are essential for the growth of mammalian, yeast and protozoan cells. The GPI anchor is covalently linked to GAP by amide bond formation between the carboxyl terminus and phosphoethanolamine attached at the third mannose and mediated by a transamidase complex. Mediation of GPI synthesis is by the sequential additions of GPI-N-acetylglucosaminyltransferase (GPI-GnT) complex, the GlcN-PI de-N-acetylase, the GlcN-PI mannosyltransferases and the GPI lipid anchor phosphoethanolamine transferase complexes. We report a rice gene OsPIG-F that encodes a homolog to the human PIG-F protein, one of GPI lipid anchor phosphoethanolamine transferase complexes. The amino acid sequences of rice PIG-F consisted of six helix transmembrane domains, one glycosaminoglycan attachment site, one cGMP-dependent protein kinase phosphorylation site and a protein C phosphorylation site at the C-terminus. This unique structure of rice PIG-F indicates the typical membrane bound structure of a protein. Polyclonal antibody for rice PIG-F was found to be cross-reactive with a protein extracted from the leaves of rice. The levels of rice PIG-F transcripts were found to be abundant in leaves, moderately in the milky stage of seed development and less in the floral spikelet, indicating that the rice PIG-F gene was differentially regulated in specific tissues. Furthermore, the levels of rice PIG-F transcription were up-regulated by growth hormones including GA(3), NAA and kinetin. These results indicated that the rice PIG-F gene expression may medicated by these growth regulators.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Citrus Experiment Station, National Institute of Subtropical Agriculture, RDA, Jeju-do, South Korea
| | | |
Collapse
|
34
|
Hill A, Richards SJ, Hillmen P. Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. Br J Haematol 2007; 137:181-92. [PMID: 17408457 DOI: 10.1111/j.1365-2141.2007.06554.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) has been recognised as a discrete disease entity since 1882. Approximately a half of patients will eventually die as a result of having PNH. Many of the symptoms of PNH, including recurrent abdominal pain, dysphagia, severe lethargy and erectile dysfunction, result from intravascular haemolysis with absorption of nitric oxide by free haemoglobin from the plasma. These symptoms, as well as the occurrence of thrombosis and aplasia, significantly affect patients' quality of life; thrombosis is the leading cause of premature mortality. The syndrome of haemolytic-anaemia-associated pulmonary hypertension has been further identified in PNH patients. There is currently an air of excitement surrounding therapies for PNH as recent therapeutic developments, particularly the use of the complement inhibitor eculizumab, promise to radically alter the symptomatology and natural history of haemolytic PNH.
Collapse
Affiliation(s)
- Anita Hill
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, UK.
| | | | | |
Collapse
|
35
|
Almeida AM, Murakami Y, Baker A, Maeda Y, Roberts IAG, Kinoshita T, Layton DM, Karadimitris A. Targeted therapy for inherited GPI deficiency. N Engl J Med 2007; 356:1641-7. [PMID: 17442906 DOI: 10.1056/nejmoa063369] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disrupted binding of the transcription factor Sp1 to the mutated promoter region of the mannosyl transferase-encoding gene PIGM causes inherited glycosylphosphatidylinositol (GPI) deficiency characterized by splanchnic vein thrombosis and epilepsy. We show that this results in histone hypoacetylation at the promoter of PIGM. The histone deacetylase inhibitor butyrate increases PIGM transcription and surface GPI expression in vitro as well as in vivo through enhanced histone acetylation in an Sp1-dependent manner. More important, the drug caused complete cessation of intractable seizures in a child with inherited GPI deficiency.
Collapse
Affiliation(s)
- Antonio M Almeida
- Department of Haematology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kimmel J, Smith TK, Azzouz N, Gerold P, Seeber F, Lingelbach K, Dubremetz JF, Schwarz RT. Membrane topology and transient acylation of Toxoplasma gondii glycosylphosphatidylinositols. EUKARYOTIC CELL 2007; 5:1420-9. [PMID: 16896225 PMCID: PMC1539143 DOI: 10.1128/ec.00078-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.
Collapse
Affiliation(s)
- Jürgen Kimmel
- Institut für Virologie, Zentrum für Hygiene und Medizinische Mikrobiologie, Philipps-Universität, Robert-Koch-Strasse 17, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jin H, Yoshitake H, Tsukamoto H, Takahashi M, Mori M, Takizawa T, Takamori K, Ogawa H, Kinoshita K, Araki Y. Molecular characterization of a germ-cell-specific antigen, TEX101, from mouse testis. ZYGOTE 2006; 14:201-8. [PMID: 16822331 DOI: 10.1017/s0967199406003753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 01/13/2006] [Indexed: 11/06/2022]
Abstract
TEX101, a glycoprotein we recently identified, is primarily characterized as a unique germ-cell-specific marker protein that shows sexually dimorphic expression during mouse gonad development. Based on data obtained from molecular biological as well as immuno-morphological studies, we believe this molecule may play a role in the process underlying germ cell formation. However, many points remain unclear as the molecular characteristics and its physiological functions are far from being completely understood. To clarify the molecular basis of TEX101, we herein report a further biochemical characterization of the molecule using testicular Triton X-100 extracts from mice. Deglycosylation studies using endoglycohydrolases that delete N-linked oligosaccharides (OS) from the molecule show that TEX101 is highly (approximately 47%) N-glycosylated. All potential N-glycosylation sites within TEX101 are glycosylated and most of these sites are occupied by endoglycosidase F2-sensitive biantennary complex type OS units. In addition, an extremely low population among TEX101 possesses only endoglycosidase H-sensitive hybrid type OS units. In studies using phosphatidylinositol-specific phospholipase C against native testicular cells or TEX101 transfectant, the enzyme treatment caused major reduction of the TEX101 expression on the cell, suggesting that TEX101, at least in part, is expressed as a glycosylphosphatidylinositol-anchored protein. Taken together, these findings will help elucidate the molecular nature of TEX101, a marker molecule that appeared on germ cells during gametogenesis.
Collapse
Affiliation(s)
- Hong Jin
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Glycosylation produces an abundant, diverse, and highly regulated repertoire of cellular glycans that are frequently attached to proteins and lipids. The past decade of research on glycan function has revealed that the enzymes responsible for glycosylation-the glycosyltransferases and glycosidases-are essential in the development and physiology of living organisms. Glycans participate in many key biological processes including cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. This review discusses the increasingly sophisticated molecular mechanisms being discovered by which mammalian glycosylation governs physiology and contributes to disease.
Collapse
Affiliation(s)
- Kazuaki Ohtsubo
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, 9500 Gilman Drive-MC0625, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
39
|
Almeida AM, Murakami Y, Layton DM, Hillmen P, Sellick GS, Maeda Y, Richards S, Patterson S, Kotsianidis I, Mollica L, Crawford DH, Baker A, Ferguson M, Roberts I, Houlston R, Kinoshita T, Karadimitris A. Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat Med 2006; 12:846-51. [PMID: 16767100 DOI: 10.1038/nm1410] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/10/2006] [Indexed: 12/22/2022]
Abstract
Attachment to the plasma membrane by linkage to a glycosylphosphatidylinositol (GPI) anchor is a mode of protein expression highly conserved from protozoa to mammals. As a clinical entity, deficiency of GPI has been recognized as paroxysmal nocturnal hemoglobinuria, an acquired clonal disorder associated with somatic mutations of the X-linked PIGA gene in hematopoietic cells. We have identified a novel disease characterized by a propensity to venous thrombosis and seizures in which deficiency of GPI is inherited in an autosomal recessive manner. In two unrelated kindreds, a point mutation (c --> g) at position -270 from the start codon of PIGM, a mannosyltransferase-encoding gene, disrupts binding of the transcription factor Sp1 to its cognate promoter motif. This mutation substantially reduces transcription of PIGM and blocks mannosylation of GPI, leading to partial but severe deficiency of GPI. These findings indicate that biosynthesis of GPI is essential to maintain homeostasis of blood coagulation and neurological function.
Collapse
Affiliation(s)
- Antonio M Almeida
- Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12, 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lamani E, Mewbourne RB, Fletcher DS, Maltsev SD, Danilov LL, Veselovsky VV, Lozanova AV, Grigorieva NY, Pinsker OA, Xing J, Forsee WT, Cheung HC, Schutzbach JS, Shibaev VN, Jedrzejas MJ. Structural studies and mechanism of Saccharomyces cerevisiae dolichyl-phosphate-mannose synthase: insights into the initial step of synthesis of dolichyl-phosphate-linked oligosaccharide chains in membranes of endoplasmic reticulum. Glycobiology 2006; 16:666-78. [PMID: 16549409 DOI: 10.1093/glycob/cwj104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dolichyl-phosphate-mannose (Dol-P-Man) synthase catalyzes the reversible formation of a key intermediate that is involved as a mannosyl donor in at least three different pathways for the synthesis of glycoconjugates important for eukaryotic development and viability. The enzyme is found associated with membranes of the endoplasmic reticulum (ER), where it transfers mannose from the water soluble cytoplasmic donor, guanosine 5'-diphosphate (GDP)-Man, to the membrane-bound, extremely hydrophobic, and long-chain polyisoprenoid acceptor, dolichyl-phosphate (Dol-P). The enzyme from Saccharomyces cerevisiae has been utilized to investigate the structure and activity of the protein and interactions of the enzyme with Dol-P and synthetic Dol-P analogs containing fluorescent probes. These interactions have been explored utilizing fluorescence resonance energy transfer (FRET) to establish intramolecular distances within the protein molecule as well as intermolecular distances to determine the localization of the active site and the hydrophobic substrate on the enzyme's surface. A three-dimensional (3D) model of the enzyme was produced with bound substrates, Dol-P, GDP-Man, and divalent cations to delineate the binding sites for these substrates as well as the catalytic site. The FRET analysis was used to characterize the functional properties of the enzyme and to evaluate its modeled structure. The data allowed for proposing a molecular mechanism of catalysis as an inverting mechanism of mannosyl residue transfer.
Collapse
Affiliation(s)
- Ejvis Lamani
- Children's Hospital Oakland Research Institute, CA 94609, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scaffidi A, Stick RV. Glycosynthase-Assisted Synthesis of Some Glycosylated scyllo-Inositols. Aust J Chem 2006. [DOI: 10.1071/ch06393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three derivatives of scyllo-inositol, a 4-nitrophenyl ether, a benzyl ether, and an ester of 4-toluenesulfonic acid, have been treated with α-d-galactopyranosyl fluoride and a glycosynthase to give the corresponding mono-glycosylated inositols. In one instance, a similar treatment with α-d-glucopyranosyl fluoride gave a mono- and a di-glycosylated inositol.
Collapse
|
42
|
Ko JH, Kim JH, Jayanty SS, Howe GA, Han KH. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:2923-36. [PMID: 16873454 DOI: 10.1093/jxb/erl052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An Arabidopsis T-DNA insertion mutant that results in complete loss-of-function of the COBRA gene has been identified. The COBRA gene encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that modulates cellulose deposition and oriented cell expansion in roots. The loss-of-function mutant allele (named "cob-5") exhibits abnormal cell growth throughout the entire plant body and accumulates massive amounts of stress response chemicals such as anthocyanins and callose. To gain further insight into the mechanism by which COBRA affects cell growth and physiology, the whole-genome gene expression profile of cob-5 plants was compared with that of wild-type plants. Consistent with the mutant phenotype, many genes involved in anthocyanin biosynthesis were up-regulated in the cob-5 plants, whereas genes involved in cell elongation were down-regulated. The most striking feature of the gene expression profile of cob-5 was the massive and co-ordinate induction of defence- and stress-related genes, many of which are regulated by the plant stress signal jasmonic acid (JA). Indeed, the cob-5 plants over-accumulated JA by nearly 8-fold compared with wild-type plants. Furthermore, induction of cell elongation defects in conditional allele cob-3 plants triggers the expression of a defence-responsive gene. These results provide potential clues to the mechanisms by which plant cells initially perceive biotic stress at the cell surface.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
43
|
Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 2005; 16:5236-46. [PMID: 16162815 PMCID: PMC1266422 DOI: 10.1091/mbc.e05-08-0743] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by an unusually complex GPI-N-acetylglucosaminyltransferase (GPI-GnT) consisting of at least six proteins. Here, we report that human GPI-GnT requires another component, termed PIG-Y, a 71 amino acid protein with two transmembrane domains. The Burkitt lymphoma cell line Daudi, severely defective in the surface expression of GPI-anchored proteins, was a null mutant of PIG-Y. A complex of six components was formed without PIG-Y. PIG-Y appeared to be directly associated with PIG-A, implying that PIG-Y is the key molecule that regulates GPI-GnT activity by binding directly to the catalytic subunit PIG-A. PIG-Y is probably homologous to yeast Eri1p, a component of GPI-GnT. We did not obtain evidence for a functional linkage between GPI-GnT and ras GTPases in mammalian cells as has been reported for yeast cells. A single transcript encoded PIG-Y and, to its 5' side, another protein PreY that has homologues in a wide range of organisms and is characterized by a conserved domain termed DUF343. These two proteins are translated from one mRNA by leaky scanning of the PreY initiation site.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Pielsticker LK, Mann KJ, Lin WL, Sevlever D. Raft-like membrane domains contain enzymatic activities involved in the synthesis of mammalian glycosylphosphatidylinositol anchor intermediates. Biochem Biophys Res Commun 2005; 330:163-71. [PMID: 15781246 DOI: 10.1016/j.bbrc.2005.02.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The synthesis of the glycosylphosphatidylinositol (GPI) anchor occurs in different compartments within the ER. We have previously shown that GPI anchor intermediates including GlcNAc-PI and GlcN-(acyl)PI are present in Triton insoluble membranes (TIMs), believed to be derived from lipid rafts. The present study was initiated to determine if GPI anchor intermediates move to raft-like domains after their synthesis or if these domains represent another ER compartment for GPI anchor synthesis. We determined that in transfected cells Pig-Ap and Pig-Lp, two proteins involved in the synthesis of GlcNAc-PI and GlcN-PI, respectively, are present in TIMs. In addition, we detected GlcNAc-PI synthase, GlcNAc-PI deacetylase, and GlcN-PI acyltransferase activities in TIMs isolated from untransfected cells. These results lend support to the possibility of additional GPI biosynthetic compartments in the ER and to the notion that GPI anchor intermediates produced in and outside raft-like domains may have a different fate.
Collapse
Affiliation(s)
- Liza K Pielsticker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | | | | | | |
Collapse
|
45
|
Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R, Takeda J. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med 2005; 11:160-6. [PMID: 15665832 PMCID: PMC7095966 DOI: 10.1038/nm1179] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 12/08/2004] [Indexed: 12/13/2022]
Abstract
The angiotensin-converting enzyme (ACE) is a key regulator of blood pressure. It is known to cleave small peptides, such as angiotensin I and bradykinin and changes their biological activities, leading to upregulation of blood pressure. Here we describe a new activity for ACE: a glycosylphosphatidylinositol (GPI)-anchored protein releasing activity (GPIase activity). Unlike its peptidase activity, GPIase activity is weakly inhibited by the tightly binding ACE inhibitor and not inactivated by substitutions of core amino acid residues for the peptidase activity, suggesting that the active site elements for GPIase differ from those for peptidase activity. ACE shed various GPI-anchored proteins from the cell surface, and the process was accelerated by the lipid raft disruptor filipin. The released products carried portions of the GPI anchor, indicating cleavage within the GPI moiety. Further analysis by high-performance liquid chromatography–mass spectrometry predicted the cleavage site at the mannose-mannose linkage. GPI-anchored proteins such as TESP5 and PH-20 were released from the sperm membrane of wild-type mice but not in Ace knockout sperm in vivo. Moreover, peptidase-inactivated E414D mutant ACE and also PI-PLC rescued the egg-binding deficiency of Ace knockout sperms, implying that ACE plays a crucial role in fertilization through this activity.
Collapse
Affiliation(s)
- Gen Kondoh
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, 2-2 Yamadaoka, Osaka, 565-0871 Japan
- Present Address: Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Japan
- Present Address: CREST, Japan Science and Technology Society, 53 Syogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hiromasa Tojo
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, Suita, 2-2 Yamadaoka, Osaka, 565-0871 Japan
| | - Yuka Nakatani
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, 2-2 Yamadaoka, Osaka, 565-0871 Japan
| | - Nobuyasu Komazawa
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, 2-2 Yamadaoka, Osaka, 565-0871 Japan
| | - Chie Murata
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kazuo Yamagata
- Genome Information Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
- Present Address: Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba Science City, Ibaraki, 305-8572 Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
- Present Address: CREST, Japan Science and Technology Society, 53 Syogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masaru Okabe
- Genome Information Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: CREST, Japan Science and Technology Society, 53 Syogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Junji Takeda
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, 2-2 Yamadaoka, Osaka, 565-0871 Japan
- Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
46
|
Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T. GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J Biol Chem 2005; 280:9728-34. [PMID: 15632136 DOI: 10.1074/jbc.m413755200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many eukaryotic cell surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). GPI is synthesized from phosphatidylinositol by stepwise reactions and attached en bloc to nascent proteins. In mammalian cells, the major GPI species transferred to proteins is termed H7. By attachment of an additional ethanolamine phosphate (EtNP) to the second mannose, H7 can be converted to H8, which acts as a minor type of protein-linked GPI and also exists as a free GPI on the cell surface. Yeast GPI7 is involved in the transfer of EtNP to the second mannose, but the corresponding mammalian enzyme has not yet been clarified. Here, we report that the human homolog of Gpi7p (hGPI7) forms a protein complex with PIG-F and is involved in the H7-to-H8 conversion. We knocked down hGPI7 by RNA interference and found that H7 accumulated with little production of H8. Immunoprecipitation experiments revealed that hGPI7 was associated with and stabilized by PIG-F, which is known to bind to and stabilize PIG-O, a protein homologous to hGPI7. PIG-O is a transferase that adds EtNP to the third mannose, rendering GPI capable of attaching to proteins. We further found that the overexpression of hGPI7 decreased the level of PIG-O and, therefore, decreased the level of EtNP transferred to the third mannose. Finally, we propose a mechanism for the regulation of GPI biosynthesis through competition between the two independent enzymes, PIG-O and hGPI7, for the common stabilizer, PIG-F.
Collapse
Affiliation(s)
- Nobue Shishioh
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 2004; 280:9489-97. [PMID: 15623507 DOI: 10.1074/jbc.m413867200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors many proteins to the eukaryotic cell surface. The biosynthetic pathway of GPI is mediated by sequential additions of sugars and other components to phosphatidylinositol. Four mannoses in the GPI are transferred from dolichol-phosphate-mannose (Dol-P-Man) and are linked through different glycosidic linkages. Therefore, four Dol-P-Man-dependent mannosyltransferases, GPI-MT-I, -MT-II, -MT-III, and -MT-IV for the first, second, third, and fourth mannoses, respectively, are required for generation of GPI. GPI-MT-I (PIG-M), GPI-MT-III (PIG-B), and GPI-MT-IV (SMP3) were previously reported, but GPI-MT-II remains to be identified. Here we report the cloning of PIG-V involved in transferring the second mannose in the GPI anchor. Human PIG-V encodes a 493-amino acid, endoplasmic reticulum (ER) resident protein with eight putative transmembrane regions. Saccharomyces cerevisiae protein encoded in open reading frame YBR004c, which we termed GPI18, has 25% amino acid identity to human PIG-V. Viability of the yeast gpi18 deletion mutant was restored by human PIG-V cDNA. PIG-V has two functionally important conserved regions facing the ER lumen. Taken together, we suggest that PIG-V is the second mannosyltransferase in GPI anchor biosynthesis.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Immunoregulation, Research Institute for Microbial Diseases, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kitazawa H, Nishihara T, Nambu T, Nishizawa H, Iwaki M, Fukuhara A, Kitamura T, Matsuda M, Shimomura I. Intectin, a Novel Small Intestine-specific Glycosylphosphatidylinositol-anchored Protein, Accelerates Apoptosis of Intestinal Epithelial Cells. J Biol Chem 2004; 279:42867-74. [PMID: 15292182 DOI: 10.1074/jbc.m408047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intestinal epithelial cells undergo rapid turnover and exfoliation especially at the villus tips. This process is modulated by various nutrients especially fat. Apoptosis is one of the important regulatory mechanisms of this turnover. Therefore, identification of the factors that control epithelial cell apoptosis should help us understand the mechanism of intestinal mucosal turnover. Here, we report the identification of a novel small intestine-specific member of the Ly-6 family, intectin, by signal sequence trap method. Intectin mRNA expression was exclusively identified in the intestine and localized at the villus tips of intestinal mucosa, which is known to undergo apoptosis. Intectin mRNA expression was modulated by nutrition. Intestinal epithelial cells expressing intectin were more sensitive to palmitate-induced apoptosis, compared with control intestinal epithelial cells, and such effect was accompanied by increased activity of caspase-3. Intectin expression also reduced cell-cell adhesion of intestinal epithelial cells.
Collapse
Affiliation(s)
- Hidefumi Kitazawa
- Department of Medicine and Pathophysiology, Graduate School of Frontier Bioscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hara-Chikuma M, Takeda J, Tarutani M, Uchida Y, Holleran WM, Endo Y, Elias PM, Inoue S. Epidermal-specific defect of GPI anchor in Pig-a null mice results in Harlequin ichthyosis-like features. J Invest Dermatol 2004; 123:464-9. [PMID: 15304084 DOI: 10.1111/j.0022-202x.2004.23227.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously demonstrated that the epidermal-specific glycosylphosphatidylinositol (GPI)-anchor-deficient mice, generated by Pig-a gene disruption (Pig-a null mice), exhibited wrinkled and dry skin with hyperkeratosis and abnormal differentiation, and they died within a few days after birth. Here, we investigated the basis for the early demise of these animals, and the potential role of epidermal structural and biochemical abnormalities. The rapid demise of these animals was associated with both diminished epidermal permeability barrier function and decreased stratum corneum (SC) water content. The barrier abnormality could be attributed abnormal internal contents of lamellar bodies, with a downstream failure to generate normal extracellular lamellar bilayers in the SC. Moreover, processing profilaggrin to its monomeric form was impaired in Pig-a null mouse epidermis, while levels of the differentiation-specific proteins, involucrin, loricrin and profilaggrin were normal. Failure of filaggrin processing was accompanied by decreased activity of protein phosphatase 2A, an enzyme involved in profilaggrin to filaggrin processing. Thus, these studies demonstrate a critical role for GPI anchor and GPI-anchored proteins in divergent arms of epidermal terminal differentiation. While the permeability barrier abnormality can be attributed to defects in the lamellar body secretory system, the hydration abnormality is, in part, due to lack of availability of filaggrin-derived proteolytic products. Finally, since the dual abnormalities in the lamellar body secretory system and filaggrin processing resemble two key features of human Harlequin ichthyosis, Pig-a null mice could provide an appropriate analog for further studies of this disease.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Basic Research Laboratory, Kanebo Ltd., 5-chome Kotobuki-cho, Odawara-shi, Kanagawa-ken 250-0002, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wichroski MJ, Ward GE. Biosynthesis of glycosylphosphatidylinositol is essential to the survival of the protozoan parasite Toxoplasma gondii. EUKARYOTIC CELL 2004; 2:1132-6. [PMID: 14555496 PMCID: PMC219362 DOI: 10.1128/ec.2.5.1132-1136.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PIGA gene from Toxoplasma gondii has been cloned and characterized. Like mammalian PIGA, the transmembrane and C-terminal domains are sufficient to direct localization to the parasite endoplasmic reticulum. A functional copy of PIGA is required for tachyzoite viability, demonstrating that glycosylphosphatidylinositol biosynthesis is an essential process in T. gondii.
Collapse
Affiliation(s)
- Michael J Wichroski
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|