1
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Crystallization of Human Erythrocyte Band 3, the anion exchanger, at the International Space Station “KIBO”. Anal Biochem 2018; 559:91-93. [DOI: 10.1016/j.ab.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
|
3
|
Kalli AC, Reithmeier RAF. Interaction of the human erythrocyte Band 3 anion exchanger 1 (AE1, SLC4A1) with lipids and glycophorin A: Molecular organization of the Wright (Wr) blood group antigen. PLoS Comput Biol 2018; 14:e1006284. [PMID: 30011272 PMCID: PMC6080803 DOI: 10.1371/journal.pcbi.1006284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/07/2018] [Accepted: 06/08/2018] [Indexed: 11/29/2022] Open
Abstract
The Band 3 (AE1, SLC4A1) membrane protein is found in red blood cells and in kidney where it functions as an electro-neutral chloride/bicarbonate exchanger. In this study, we have used molecular dynamics simulations to provide the first realistic model of the dimeric membrane domain of human Band 3 in an asymmetric lipid bilayer containing a full complement of phospholipids, including phosphatidylinositol 4,5–bisphosphate (PIP2) and cholesterol, and its partner membrane protein Glycophorin A (GPA). The simulations show that the annular layer in the inner leaflet surrounding Band 3 was enriched in phosphatidylserine and PIP2 molecules. Cholesterol was also enriched around Band 3 but also at the dimer interface. The interaction of these lipids with specific sites on Band 3 may play a role in the folding and function of this anion transport membrane protein. GPA associates with Band 3 to form the Wright (Wr) blood group antigen, an interaction that involves an ionic bond between Glu658 in Band 3 and Arg61 in GPA. We were able to recreate this complex by performing simulations to allow the dimeric transmembrane portion of GPA to interact with Band 3 in a model membrane. Large-scale simulations showed that the GPA dimer can bridge Band 3 dimers resulting in the dynamic formation of long strands of alternating Band 3 and GPA dimers. Human Band 3 (AE1, SLC4A1), an abundant 911 amino acid glycoprotein, catalyzes the exchange of bicarbonate and chloride across the red blood cell membrane, a process necessary for efficient respiration. Malfunction of Band 3 leads to inherited diseases such as Southeast Asian Ovalocytosis, hereditary spherocytosis and distal renal tubular acidosis. Despite much available structural and functional data about Band 3, key questions about the conformational changes associated with transport and the molecular details of its interaction with lipids and other proteins remain unanswered. In this study, we have used computer simulations to investigate the dynamics of Band 3 in lipid bilayers that resemble the red blood cell plasma membrane. Our results suggest that negatively charged phospholipids and cholesterol interact strongly with Band 3 forming an annulus around the protein. Glycophorin A (GPA) interacts with Band 3 to form the Wright (Wr) blood group antigen. We were able to recreate this complex and show that GPA promotes the clustering of Band 3 in red blood cell membranes. Understanding the molecular details of the interaction of Band 3 with GPA has provided new insights into the nature of the Wright blood group antigen.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | | |
Collapse
|
4
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
5
|
Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 2015; 350:680-4. [PMID: 26542571 DOI: 10.1126/science.aaa4335] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takami Kobayashi-Yurugi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hinako Hatae
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoya Hino
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiyo Ikeda-Suno
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kuma
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Murata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Alexander D Cameron
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Takuya Kobayashi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Hamasaki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - So Iwata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
7
|
Takazaki S, Abe Y, Yamaguchi T, Yagi M, Ueda T, Kang D, Hamasaki N. Arg 901 in the AE1 C-terminal tail is involved in conformational change but not in substrate binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:658-65. [PMID: 22155194 DOI: 10.1016/j.bbamem.2011.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/06/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
In our previous paper, we demonstrated that Arg 901 in the C-terminal tail of human AE1 (band 3, anion exchanger 1) had a functional role in conformational change during anion exchange. To further examine how Arg 901 is involved in conformational change, we expressed various Arg 901 mutants and alanine mutants of the C-terminal tail (from Leu 886 to Val 911) on the plasma membrane of Saccharomyces cerevisiae and evaluated the kinetic parameters of sulfate ion transport. As a result, Vmax decreased as the hydrophobicities of the 901st and peripheral hydrophilic residues increased, indicating that the hydrophobicity of the C-terminal residue is involved in the conformational change. We also found the alkali and protease resistance of the C-terminal region after Arg 901 modification with hydroxyphenylglyoxal (HPG) or phenylglyoxal (PG), a hydrophobic reagent. These results suggested that the increased hydrophobicity of the C-terminal region around Arg 901 leads to inefficient conformational change by the newly produced hydrophobic interaction.
Collapse
Affiliation(s)
- Shinya Takazaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Hirai T, Hamasaki N, Yamaguchi T, Ikeda Y. Topology models of anion exchanger 1 that incorporate the anti-parallel V-shaped motifs found in the EM structureThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:148-56. [DOI: 10.1139/o10-160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently published the three-dimensional structure of the membrane domain of human erythrocyte anion exchanger 1 (AE1) at 7.5 Å resolution, solved by electron crystallography. The structure exhibited distinctive anti-parallel V-shaped motifs, which protrude from the membrane bilayer on both sides. Similar motifs exist in the previously reported structure of a bacterial chloride channel (ClC)-type protein. Here, we propose two topology models of AE1 that reflect the anti-parallel V-shaped structural motifs. One is assumed to have structural similarity with the ClC protein and the other is only assumed to have internal repeats, as is often the case with transporters. Both models are consistent with most topological results reported thus far for AE1, each having advantages and disadvantages.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Naotaka Hamasaki
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Tomohiro Yamaguchi
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Yohei Ikeda
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
9
|
Yamaguchi T, Ikeda Y, Abe Y, Kuma H, Kang D, Hamasaki N, Hirai T. Structure of the membrane domain of human erythrocyte anion exchanger 1 revealed by electron crystallography. J Mol Biol 2010; 397:179-89. [PMID: 20100494 DOI: 10.1016/j.jmb.2010.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
The membrane domain of human erythrocyte anion exchanger 1 (AE1) works as a Cl(-)/HCO(3)(-) antiporter. This exchange is a key step for CO(2)/O(2) circulation in the blood. In spite of their importance, structural information about AE1 and the AE (anion exchanger) family are still very limited. We used electron microscopy to solve the three-dimensional structure of the AE1 membrane domain, fixed in an outward-open conformation by cross-linking, at 7.5-A resolution. A dimer of AE1 membrane domains packed in two-dimensional array showed a projection map similar to that of the prokaryotic homolog of the ClC chloride channel, a Cl(-)/H(+) antiporter. In a three-dimensional map, there are V-shaped densities near the center of the dimer and slightly narrower V-shaped clusters at a greater distance from the center of the dimer. These appear to be inserted into the membrane from opposite sides. The structural motifs, two homologous pairs of helices in internal repeats of the ClC transporter (helices B+C and J+K), are well fitted to those AE1 densities after simple domain movement.
Collapse
Affiliation(s)
- Tomohiro Yamaguchi
- Three-Dimensional Microscopy Research Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamaguchi T, Fujii T, Abe Y, Hirai T, Kang D, Namba K, Hamasaki N, Mitsuoka K. Helical image reconstruction of the outward-open human erythrocyte band 3 membrane domain in tubular crystals. J Struct Biol 2009; 169:406-12. [PMID: 20005958 DOI: 10.1016/j.jsb.2009.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022]
Abstract
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.
Collapse
|
11
|
Fu GH, Wang Y, Xi YH, Guo ZW, Liu XB, Bai SZ, Yang BF, Chen GQ. As2O3enhances the anion transport activity of band 3 and the action is related with the C-terminal 16 residues of the protein. J Drug Target 2008; 13:235-43. [PMID: 16051535 DOI: 10.1080/10611860500207060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Successful application of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL) has been attracting worldwide interest, but the exact mechanism for the action of As2O3 remains somewhat obscure. In the present work, we show for the first time that As2O3 facilitates the DIDS-sensitive anion transport activity of band 3 protein in red blood cells (RBCs) isolated from normal adults and APL patients. To elucidate the effect of As2O3 on band 3 protein, constructs encoding the full length of the band 3 transmembrane domain (mdb3) and its C-terminal deletion forms were transfected into yeast cells by a yeast display system. The results demonstrate that deletion of the C-terminal 16 residues of mdb3 (mdb3-d16) does not affect anion transport activity of mdb3 or its sensitivity to DIDS, but decreases its sensitivity to As2O3 in the yeast cell. More intriguingly, the forced expression of intact mdb3 by transfection significantly induces cell apoptosis in HeLa cells, to a higher degree than in cells transfected with mdb3-d16 or empty vector. Expression of activated caspase 3 in HeLa cells also indicates that the C-terminal 16 residues are important for mdb3-mediated apoptosis in cells treated with As2O3. Our results provide the first evidence that As2O3 enhances the anion transport activity of band 3 and the action is related with the C-terminal 16 residues of the protein.
Collapse
Affiliation(s)
- Guo-Hui Fu
- Department of Pathophysiology, Rui-Jin Hospital, Shanghai Second Medical University (SSMU), Shanghai 200025, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li C, Takazaki S, Jin X, Kang D, Abe Y, Hamasaki N. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping. Biochemistry 2006; 45:12117-24. [PMID: 17002311 DOI: 10.1021/bi060627f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Takazaki S, Abe Y, Kang D, Li C, Jin X, Ueda T, Hamasaki N. The Functional Role of Arginine 901 at the C-Terminus of the Human Anion Transporter Band 3 Protein. ACTA ACUST UNITED AC 2006; 139:903-12. [PMID: 16751598 DOI: 10.1093/jb/mvj097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.
Collapse
Affiliation(s)
- Shinya Takazaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | | | | | | | | | | | | |
Collapse
|
14
|
Cheung J, Li J, Reithmeier R. Topology of transmembrane segments 1-4 in the human chloride/bicarbonate anion exchanger 1 (AE1) by scanning N-glycosylation mutagenesis. Biochem J 2005; 390:137-44. [PMID: 15804238 PMCID: PMC1184569 DOI: 10.1042/bj20050315] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human AE1 (anion exchanger 1), or Band 3, is an abundant membrane glycoprotein found in the plasma membrane of erythrocytes. The physiological role of the protein is to carry out chloride/bicarbonate exchange across the plasma membrane, a process that increases the carbon-dioxide-carrying capacity of blood. To study the topology of TMs (transmembrane segments) 1-4, a series of scanning N-glycosylation mutants were created spanning the region from EC (extracellular loop) 1 to EC2 in full-length AE1. These constructs were expressed in HEK-293 (human embryonic kidney) cells, and their N-glycosylation efficiencies were determined. Unexpectedly, positions within putative TMs 2 and 3 could be efficiently glycosylated. In contrast, the same positions were very poorly glycosylated when present in mutant AE1 with the SAO (Southeast Asian ovalocytosis) deletion (DeltaA400-A408) in TM1. These results suggest that the TM2-3 region of AE1 may become transiently exposed to the endoplasmic reticulum lumen during biosynthesis, and that there is a competition between proper folding of the region into the membrane and N-glycosylation at introduced sites. The SAO deletion disrupts the proper integration of TMs 1-2, probably leaving the region exposed to the cytosol. As a result, engineered N-glycosylation acceptor sites in TM2-3 could not be utilized by the oligosaccharyltransferase in this mutant form of AE1. The properties of TM2-3 suggest that these segments form a re-entrant loop in human AE1.
Collapse
Affiliation(s)
- Joanne C. Cheung
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Jing Li
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Reinhart A. F. Reithmeier
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Kanki T, Young MT, Sakaguchi M, Hamasaki N, Tanner MJA. The N-terminal region of the transmembrane domain of human erythrocyte band 3. Residues critical for membrane insertion and transport activity. J Biol Chem 2003; 278:5564-73. [PMID: 12482865 DOI: 10.1074/jbc.m211662200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the role of the N-terminal region of the transmembrane domain of the human erythrocyte anion exchanger (band 3; residues 361-408) in the insertion, folding, and assembly of the first transmembrane span (TM1) to give rise to a transport-active molecule. We focused on the sequence around the 9-amino acid region deleted in Southeast Asian ovalocytosis (Ala-400 to Ala-408), which gives rise to nonfunctional band 3, and also on the portion of the protein N-terminal to the transmembrane domain (amino acids 361-396). We examined the effects of mutations in these regions on endoplasmic reticulum insertion (using cell-free translation), chloride transport, and cell-surface movement in Xenopus oocytes. We found that the hydrophobic length of TM1 was critical for membrane insertion and that formation of a transport-active structure also depended on the presence of specific amino acid sequences in TM1. Deletions of 2 or 3 amino acids including Pro-403 retained transport activity provided that a polar residue was located 2 or 3 amino acids on the C-terminal side of Asp-399. Finally, deletion of the cytoplasmic surface sequence G(381)LVRD abolished chloride transport, but not surface expression, indicating that this sequence makes an essential structural contribution to the anion transport site of band 3.
Collapse
Affiliation(s)
- Tomotake Kanki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
16
|
Zhu Q, Lee DWK, Casey JR. Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 2003; 278:3112-20. [PMID: 12446737 DOI: 10.1074/jbc.m207797200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human AE1 performs electroneutral exchange of Cl(-) for HCO(3)(-) across the erythrocyte membrane. We examined the topology of the AE1 C-terminal region using cysteine-scanning mutagenesis and sulfhydryl-specific chemistry. Eighty individual cysteine residues, introduced into an otherwise cysteine-less mutant between Phe(806) and Cys(885), were expressed by transient transfection of HEK293 cells. Topology of the region was determined by comparing cysteine labeling with the membrane-permeant cysteine-directed reagent biotin maleimide, with or without prior labeling with the membrane-impermeant reagents, bromotrimethylammoniumbimane bromide (qBBr) and lucifer yellow iodoacetamide (LYIA). Phe(806)-Leu(835), Ser(852)-Ala(855), and Ile(872)-Cys(885) were labeled by biotin maleimide, suggesting their location in an aqueous environment. In contrast, Phe(836)-Lys(851) and Ser(856)-Arg(871) were not labeled by biotin maleimide and therefore localize to the plane of the bilayer, as transmembrane segments (TM). Labeling by qBBr revealed that Pro(815)-Lys(829) and Ser(852)-Ala(855) are accessible to the extracellular medium. Pro(815)-Lys(829) mutants were also labeled with LYIA. Mutants Ile(872)-Cys(885) were inaccessible to the extracellular medium and thus localized to the intracellular surface of AE1. Functional assays revealed that one face of each of two AE1 TMs was sensitive to mutation. Based on these results, we propose a topology model for the C-terminal region of the membrane domain of human AE1.
Collapse
Affiliation(s)
- Quansheng Zhu
- Canadian Institutes of Health Research Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
17
|
Kanki T, Sakaguchi M, Kitamura A, Sato T, Mihara K, Hamasaki N. The tenth membrane region of band 3 is initially exposed to the luminal side of the endoplasmic reticulum and then integrated into a partially folded band 3 intermediate. Biochemistry 2002; 41:13973-81. [PMID: 12437354 DOI: 10.1021/bi026619q] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Band 3 is a typical polytopic membrane protein that mediates anion exchange activity [anion exchanger 1 (AE1)]. Although the topology and topogenesis of approximately 40 residues just after transmembrane (TM) 9 have been extensively studied, the topogenesis of this region [tenth region (10thR)] has been unclear. Glycosylation sites created in the 10thR were efficiently glycosylated in a cell-free transcription/translation system, whereas the glycosylation efficiencies were quite low in a cultured cell system. When TM12-14 was deleted or when cycloheximide was added to the culture medium, however, the glycosylation efficiency in the cultured cells increased to the same level as in the cell-free system, indicating that TM12 is essential for the sequestration from oligosaccharyl transferase into membrane and that cycloheximide treatment of the cells can mimic the cell-free system by reducing the rate of chain elongation. The glycosylation efficiency in cultured cells also increased with deletion of TM1-3. These results suggest that the 10thR is transiently extruded into the lumen and then inserted into the membrane. Both TM12 and the distant TM1-3 affect the membrane insertion of the 10thR. This indicates that during the folding of the protein, the 10thR is inserted into the membrane after the TM1-12 segments are properly assembled.
Collapse
Affiliation(s)
- Tomotake Kanki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Hamasaki N, Abe Y, Tanner MJA. Flexible regions within the membrane-embedded portions of polytopic membrane proteins. Biochemistry 2002; 41:3852-4. [PMID: 11900525 DOI: 10.1021/bi011918l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conventional view of the structure of the membrane-embedded regions of integral membrane proteins is that they are in contact with lipids that interact with the hydrophobic surfaces of the polypeptide, and therefore have intrinsically rigid alpha-helical structures. Here, we briefly review the evidence that in the case of integral membrane proteins with many membrane spans (including membrane transporters and channels), some membrane peptide segments are more or less completely shielded from the lipid bilayer by other membrane polypeptide portions. These portions do not need to have alpha-helical structures and are likely to be much more flexible than typical membrane-spanning helices. The ability of the band 3 anion exchanger to accommodate anionic substrates of different sizes, geometries, and charge distributions suggests the presence of flexible regions in the active center of this protein. These flexible substructures may have important functional roles in membrane proteins, particularly in the mechanisms of membrane transporters and channels.
Collapse
Affiliation(s)
- Naotaka Hamasaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
19
|
Kuma H, Shinde AA, Howren TR, Jennings ML. Topology of the anion exchange protein AE1: the controversial sidedness of lysine 743. Biochemistry 2002; 41:3380-8. [PMID: 11876646 DOI: 10.1021/bi015879p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The topology of the band 3 (AE1) polypeptide of the erythrocyte membrane is not fully established despite extensive study. Residues near lysine 743 (K743) have been reported to be extracellular in some studies and cytoplasmic in others. In the work presented here, we have attempted to establish the sidedness of K743 using in situ proteolysis. Trypsin, papain, and proteinase K do not cleave band 3 at or near K743 in intact red cells, even under conditions that cause cleavage on the C-terminal side of the glycosylation site (N642) in extracellular loop 4. In contrast, trypsin sealed inside red cell ghosts cleaves at K743, as does trypsin treatment of inside-out vesicles (IOVs). The transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H(2)DIDS), acting from the extracellular side, blocks trypsin cleavage at K743 in unsealed membranes by inducing a protease-resistant conformation. H(2)DIDS added to IOVs does not prevent cleavage at K743; therefore, trypsin cleavage at K743 in IOVs is not a consequence of cleavage of right-side-out or leaky vesicles. Finally, microsomes were prepared from HEK293 cells expressing the membrane domain of AE1 lacking the normal glycosylation site. This polypeptide does not traffic to the surface membrane; trypsin treatment of microsomes containing this polypeptide produces the 20 kDa fragment, providing further evidence that K743 is exposed at the cytoplasmic surface. Therefore, the actions of trypsin on intact cells, resealed ghosts, unsealed ghosts, inside-out vesicles, and microsomes from HEK293 cells all indicate that K743 is cytoplasmic and not extracellular.
Collapse
Affiliation(s)
- Hiroyuki Kuma
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
20
|
Kuma H, Abe Y, Askin D, Bruce LJ, Hamasaki T, Tanner MJA, Hamasaki N. Molecular basis and functional consequences of the dominant effects of the mutant band 3 on the structure of normal band 3 in Southeast Asian ovalocytosis. Biochemistry 2002; 41:3311-20. [PMID: 11876639 DOI: 10.1021/bi011678+] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Southeast Asian ovalocytosis (SAO) human red cell membranes contain similar proportions of normal band 3 and a mutant band 3 with a nine amino acid deletion (band 3 SAO). We employed specific chemical modification and proteolytic cleavage to probe the structures of band 3 in normal and SAO membranes. When the membranes were modified specifically at lysine residues with N-hydroxysulfosuccinimide-SS-biotin, band 3 Lys-851 was not modified in normal membranes but quantitatively modified in SAO membranes. Normal and SAO membranes showed different patterns of band 3 proteolytic cleavage. Notably, many sites cleaved in normal membranes were not cleaved in SAO membranes, despite the presence of normal band 3 in these membranes. The mutant band 3 changes the structure of essentially all the normal band 3 present in the SAO membranes, and these changes extend throughout the normal band 3 molecules. The results also imply that band 3 in SAO membranes is present as hetero-tetramers or higher hetero-oligomers. The dominant structural effects of band 3 SAO on the other band 3 allele have important consequences on the functional and hematological properties of human red cells heterozygous for band 3 SAO. Analysis of the altered profile of biotinylation and protease cleavage sites suggests the location of exposed surfaces in the band 3 membrane domain and identifies likely interacting regions within the molecule. Our approach provides a sensitive method for studying structural changes in polytopic membrane proteins.
Collapse
Affiliation(s)
- Hiroyuki Kuma
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Taylor AM, Zhu Q, Casey JR. Cysteine-directed cross-linking localizes regions of the human erythrocyte anion-exchange protein (AE1) relative to the dimeric interface. Biochem J 2001; 359:661-8. [PMID: 11672441 PMCID: PMC1222188 DOI: 10.1042/0264-6021:3590661] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human erythrocyte anion-exchanger isoform 1 (AE1) is a dimeric membrane protein that exchanges chloride for bicarbonate across the erythrocyte plasma membrane. Crystallographic studies suggest that the transmembrane anion channel lies at the interface between the two monomers, whereas kinetic analysis provides evidence that each monomer contains an anion channel. We have studied the structure-function relationship of residues at the dimeric interface of AE1 by cysteine-directed cross-linking. Single cysteine mutations were introduced in 16 positions of putative loop regions throughout AE1. The ability of these residues to be chemically cross-linked to their partner within the dimeric protein complex was assessed by mobility of the protein on immunoblots. Introduced cysteine residues in extracellular loops (ECs) 1-4 and intracellular loop 1 formed disulphide cross-linked dimers. Treatment with homobifunctional maleimide cross-linkers of different lengths (6, 10 and 16 A; 1 A identical with 0.1 nm) also cross-linked AE1 with introduced cysteines in EC5 and close to the start of transmembrane segment (TM) 1. On the basis of these data, tentative positional constraints of TMs 1-4 and 6 relative to the dimeric interface are proposed. Neither disulphide- nor maleimide-mediated cross-linking perturbed AE1 transport function, suggesting that loop-loop contacts across the dimeric interface are not primarily responsible for allosteric interactions between monomers within the functional dimeric protein complex.
Collapse
Affiliation(s)
- A M Taylor
- Departments of Physiology and Biochemistry, Membrane Transport Group and CIHR Group in Molecular Biology of Membrane Proteins, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
22
|
Ota K, Sakaguchi M, Hamasaki N, Mihara K. Membrane integration of the second transmembrane segment of band 3 requires a closely apposed preceding signal-anchor sequence. J Biol Chem 2000; 275:29743-8. [PMID: 10893228 DOI: 10.1074/jbc.m002468200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the topogenic rules of multispanning membrane proteins using erythrocyte band 3. Here, the fine structural requirements for the correct disposition of its second transmembrane segment (TM2) were assessed. We made fusion proteins where TM1 and the loop sequence preceding TM2 were changed and fused to prolactin. They were expressed in a cell-free system supplemented with rough microsomal membrane, and their topologies on the membrane were assessed by protease sensitivity and N-glycosylation. TM1 was demonstrated to be a signal-anchor sequence that mediates translocation of the downstream portion, and thus TM2 should be responsible to halt the translocation to acquire TM topology. When the loop between TM1 and TM2 was elongated, however, TM2 was readily translocated through the membrane and not integrated. For the membrane integration of TM2, TM2 must be in close proximity to TM1. The TM1 can be replaced with another signal-anchor sequence with a long hydrophobic segment but not with a signal sequence with shorter hydrophobic stretch. The length of the hydrophobic segment affected final topology of TM2. We concluded that the two TM segments work synergistically within the translocon to acquire the correct topology and that the length of the preceding signal sequence is critical for stable transmembrane assembly of TM2. We propose that direct interaction among the TM segments is one of the critical factors for the transmembrane topogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- K Ota
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
This review describes some of the naturally occurring band 3 (AEI) variants and their association with disease. Southeast Asian Ovalocytic (SAO) band 3, an inactive and misfolded protein, is probably only maintained in certain populations because it provides protection against the cerebral form of malaria. Many mutations that cause instability of band 3, either at the mRNA or protein level, result in hereditary spherocytosis (HS). Some polymorphisms alter amino acid residues in the extracellular loops of band 3 and are associated with blood group antigens. A truncated form of AEI is expressed in kidney cells and certain AEI mutations are associated with distal renal tubular acidosis (dRTA). The molecular basis of these variants and their effect on the structure and function of band 3 are discussed. The association between band 3 and glycophorin A (GPA) and the structure/function changes of band 3 in the absence of GPA are also described.
Collapse
MESH Headings
- Acidosis, Renal Tubular/blood
- Acidosis, Renal Tubular/genetics
- Anemia, Hemolytic, Congenital/blood
- Anemia, Hemolytic, Congenital/genetics
- Anion Exchange Protein 1, Erythrocyte/genetics
- Blood Group Antigens/chemistry
- Blood Group Antigens/genetics
- Elliptocytosis, Hereditary/blood
- Elliptocytosis, Hereditary/genetics
- Erythrocytes/metabolism
- Erythrocytes/pathology
- Genetic Variation/physiology
- Humans
- Mutation
- Spherocytosis, Hereditary/blood
- Spherocytosis, Hereditary/genetics
Collapse
Affiliation(s)
- L J Bruce
- Department of Biochemistry, University of Bristol, UK.
| | | |
Collapse
|
24
|
Tang XB, Casey JR. Trapping of inhibitor-induced conformational changes in the erythrocyte membrane anion exchanger AE1. Biochemistry 1999; 38:14565-72. [PMID: 10545179 DOI: 10.1021/bi991524i] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.
Collapse
Affiliation(s)
- X B Tang
- Department of Physiology, Membrane Transport Group and MRC Group in Molecular Biology of Membranes, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
25
|
Chambers EJ, Bloomberg GB, Ring SM, Tanner MJ. Structural studies on the effects of the deletion in the red cell anion exchanger (band 3, AE1) associated with South East Asian ovalocytosis. J Mol Biol 1999; 285:1289-307. [PMID: 9887277 DOI: 10.1006/jmbi.1998.2392] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have carried out a solution-state NMR study of synthetic peptides patterned on the first membrane span of normal human band 3, and the same region of the mutant band 3 present in Southeast Asian ovalocytosis (SAO) which has a nine amino acid deletion. In 1:1 (v/v) chloroform/methanol, the 42 residue normal peptide (R389-K430) consisted of three helical regions. The slow solvent exchange of backbone amide protons revealed the helix from P403 to A416 was more stable than the "cytoplasmic" N-terminal helix from P391 to A400. These helices were separated by a sharp bend at P403, which is probably located at the boundary between the cytoplasmic domain and the first transmembrane span. The SAO deletion (A400-A408) removed the bend at P403, to leave a stable helix from P391 to A416 containing the residuum of the normal first transmembrane helix and with a hydrophobic turn replaced by a polar turn in the SAO peptide. Insertion of fragments of normal band 3 and band 3 SAO into microsomal membranes was investigated using a cell free translation system. A fragment composed of the cytoplasmic domain and the putative first membrane domain of normal band 3 (B3(1)) inserted stably into the membrane. However, the corresponding fragment of band 3 SAO [SAO(1)] did not integrate stably into membranes. Our results suggest that in SAO band 3, the region of the first membrane span of normal band 3 does not integrate properly into the membrane because it lacks a sufficiently long hydrophobic segment, and the deletion also disrupts a conserved structural subdomain at the membrane surface.
Collapse
Affiliation(s)
- E J Chambers
- Department of Biochemistry School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
26
|
Ota K, Sakaguchi M, Hamasaki N, Mihara K. Assessment of topogenic functions of anticipated transmembrane segments of human band 3. J Biol Chem 1998; 273:28286-91. [PMID: 9774451 DOI: 10.1074/jbc.273.43.28286] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Band 3 protein is a typical multispanning membrane protein whose membrane topology has been extensively studied from various protein chemical approaches. To clarify the membrane topogenesis of this multispanning protein on the endoplasmic reticulum, the topogenic functions of the anticipated transmembrane segments were individually assessed in an in vitro system using two series of model proteins in which each segment was placed in either a "stop-transfer" context or a "translocation initiation" context. They were expressed in a cell-free system containing rough microsomal membranes, and their topologies were evaluated by taking advantage of either sensitivity to protease or accessibility to N-glycosylation. We found that some segments seem to possess insufficient topogenic functions for membrane integration: the second transmembrane segment (TM2) is insufficient for the stop-transfer sequence, and TM3, TM5, and TM7 are not sufficient for the translocation initiation. In contrast to these phenomena, we herein demonstrate that TM2 shows an efficient stop-transfer function when it is near the preceding TM1 and suggest that TM3, TM5, and TM7 are followed by TM segments with a strong topogenic function to form Nexo/Ccyt topology, via which the preceding segments are integrated into the membrane. From these results, we propose that the interactions between the TMs should be operative during membrane integration, and that the segments with a weak topogenic function are given a transmembrane orientation by their following TMs.
Collapse
Affiliation(s)
- K Ota
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
27
|
Ota K, Sakaguchi M, von Heijne G, Hamasaki N, Mihara K. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. Mol Cell 1998; 2:495-503. [PMID: 9809071 DOI: 10.1016/s1097-2765(00)80149-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a current model of integration of multispanning membrane proteins into the endoplasmic reticulum, it is proposed that the transmembrane segments show alternating translocation initiation and stop-transfer functions. Here, we present evidence for a mode of cotranslational insertion in which an internal signal-anchor sequence with Nexo/Ccyt topology confers a transmembrane disposition onto a preceding hydrophilic segment, resulting in a topology where the hydrophilic segment apparently can slip back and forth across the membrane. Our results demonstrate that hydrophobicity is not, as hitherto thought, an absolute requirement for the formation of a transmembrane segment, and suggest that integral membrane proteins may contain hydrophilic transmembrane segments with a considerable freedom to move in relation to the membrane.
Collapse
Affiliation(s)
- K Ota
- Department of Molecular Biology, Graduate School of Medical Science, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
28
|
Tang XB, Fujinaga J, Kopito R, Casey JR. Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem 1998; 273:22545-53. [PMID: 9712881 DOI: 10.1074/jbc.273.35.22545] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AE1 protein transports Cl- and HCO3- across the erythrocyte membrane by an electroneutral exchange mechanism. Glu681 of human AE1 may form part of the anion translocation apparatus and the permeability barrier. We have therefore studied the structure of the sequence surrounding Glu681, using scanning cysteine mutagenesis. Residues of the Ser643 (adjacent to the glycosylation site) to Ser690 region of cysteineless mutant (AE1C-) were replaced individually with cysteine. The ability of mutants to mediate Cl-/HCO3- exchange in transfected HEK293 cells revealed that extracellular mutants, W648C, I650C, P652C, L655C, and F659C have an important role in transport. By contrast, only transmembrane mutation E681C fully blocked anion exchange activity. The topology of the region was investigated by comparing cysteine labeling with the membrane-permeant cysteine-directed reagent 3-(N-maleimidylpropionyl)biocytin, with or without prior labeling with membrane-impermeant lucifer yellow iodoacetamide (LYIA). Two regions readily label with 3-(N-maleimidylpropionyl)biocytin (Ser643-Met663 and Ile684-Ser690). We propose that poorly labeled Met664-Gln683 corresponds to transmembrane segment 8 of AE1. Regions Ser643-Met663 and Ile684-Ser690 localize, respectively, to extracellular and intracellular sites on the basis of accessibility to LYIA. On the basis of LYIA accessibility, we propose that the Arg656-Met663 region forms a "vestibule" that leads anions to the transport channel. Glu681 is located 3 amino acids from the C terminus of transmembrane segment 8, which places the membrane permeability barrier within 5 A of the intracellular surface of the membrane.
Collapse
Affiliation(s)
- X B Tang
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
29
|
Sugimoto R, Yae Y, Akaiwa M, Kitajima S, Shibata Y, Sato H, Hirata J, Okochi K, Izuhara K, Hamasaki N. Cloning and characterization of the Hakata antigen, a member of the ficolin/opsonin p35 lectin family. J Biol Chem 1998; 273:20721-7. [PMID: 9694814 DOI: 10.1074/jbc.273.33.20721] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hakata antigen is a novel, thermolabile beta2-macroglycoprotein that reacts with sera from patients suffering from systemic lupus erythematosus. In this study we present the structure and the function of the Hakata antigen. We have identified cDNA clones encoding the Hakata antigen and analyzed its function. The cDNA included a possible open reading frame of 897 nucleotides, encoding 299 amino acids. The Hakata antigen consisted of a collagen-like domain in the middle section and a fibrinogen-like domain in the COOH terminus, both of which are homologous to human ficolin-1 and opsonin P35, indicating that these three molecules form a distinct family. The molecular mass of the Hakata antigen expressed in transfected cells was 35 kDa under reduced conditions, and it formed ladder bands under nonreducing conditions compatible with the previous result that the Hakata antigen exists in serum as homopolymers. Purified Hakata antigen sustained lectin activity, showing affinity with GalNAc, GlcNAc, D-fucose as mono/oligosaccharide, and lipopolysaccharides from Salmonella typhimurium and Salmonella minnesota. These results suggest that the Hakata antigen, a new member of the ficolin/opsonin P35 family, plays a role in the serum exerting lectin activity under physiological conditions.
Collapse
Affiliation(s)
- R Sugimoto
- Department of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|