1
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and uncommon mouse models of growth hormone deficiency. Endocr Rev 2024:bnae017. [PMID: 38853618 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the five "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates - and have protection from age-associated disease - they have become important fixtures in the aging field. On the other hand, the twelve "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the CNS, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
2
|
Khan F, Khan S, Rana N, Rahim T, Arshad A, Khan I, Ogaly HA, Ahmed DAEM, Dera AA, Zaib S. Mutational analysis of consanguineous families and their targeted therapy against dwarfism. J Biomol Struct Dyn 2024:1-18. [PMID: 38321911 DOI: 10.1080/07391102.2024.2307446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Dwarfism is a medical term used to describe individuals with a height-vertex measurement that falls below two standard deviations (-2SD) or the third percentile for their gender and age. Normal development of growth is a complicated dynamic procedure that depends upon the coordination of different aspects involving diet, genetics, and biological aspects like hormones in equilibrium. Any severe or acute pathologic procedure may disturb the individual's normal rate of growth. In this research, we examined four (A-D) Pakistani consanguineous families that exhibited syndromic dwarfism, which was inherited in an autosomal recessive pattern. The genomic DNA of each family member was extracted by using phenol-chloroform and Kit methods. Whole Exome Sequencing (WES) of affected family members (IV-11, III-5, IV-4 and III-13) from each group was performed at the Department of Medical Genetics, University of Antwerp, Belgium. After filtering the exome data, the mutations in PPM1F, FGFR3, ERCC2, and PCNT genes were determined by Sanger sequencing of each gene by using specific primers. Afterward, FGFR3 was found to be a suitable drug target among all the mutations to treat achondroplasia also known as disproportionate dwarfism. BioSolveIT softwares were used to discover the lead active inhibitory molecule against FGFR3. This research will not only provide short knowledge to the concerned pediatricians, researchers, and family physicians for the preliminary assessment and management of the disorder but also provide a lead inhibitor for the treatment of disproportionate dwarfism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sarmir Khan
- Center of Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Tariq Rahim
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Gonigam RL, Weis KE, Ge X, Yao B, Zhang Q, Raetzman LT. Characterization of Somatotrope Cell Expansion in Response to GHRH in the Neonatal Mouse Pituitary. Endocrinology 2023; 164:bqad131. [PMID: 37616545 PMCID: PMC11009787 DOI: 10.1210/endocr/bqad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown. LIT mice and wild-type littermates were examined for differences in proliferation and gene expression of pituitary lineage markers by quantitative reverse transcription polymerase chain reaction and immunohistochemistry at postnatal day 5 (p5) and 5 weeks. At p5, the LIT mouse shows a global decrease in pituitary proliferation measured by proliferation marker Ki67 and phospho-histone H3. This proliferative defect is seen in a pituitary cell expressing POU1F1 with or without GH. SOX9-positive progenitors show no changes in proliferation in p5 LIT mice. Additionally, the other POU1F1 lineage cells are not decreased in number; rather, we observe an increase in lactotrope cell population as well as messenger RNA for Tshb and Prl. In the 5-week LIT pituitary, the proliferative deficit in POU1F1-expressing cells observed neonatally persists, while the number and proliferative proportion of SOX9 cells do not appear changed. Treatment of cultured pituitary explants with GHRH promotes proliferation of POU1F1-expressing cells, but not GH-positive cells, in a mitogen-activated protein kinase-dependent manner. These findings indicate that hypothalamic GHRH targets proliferation of a POU1F1-positive cell, targeted to the somatotrope lineage, to fine tune their numbers.
Collapse
Affiliation(s)
- Richard L Gonigam
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyuan Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
5
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
6
|
Chang CW, Sung YW, Hsueh YW, Chen YY, Ho M, Hsu HC, Yang TC, Lin WC, Chang HM. Growth hormone in fertility and infertility: Mechanisms of action and clinical applications. Front Endocrinol (Lausanne) 2022; 13:1040503. [PMID: 36452322 PMCID: PMC9701841 DOI: 10.3389/fendo.2022.1040503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Secreted by the anterior pituitary gland, growth hormone (GH) is a peptide that plays a critical role in regulating cell growth, development, and metabolism in multiple targeted tissues. Studies have shown that GH and its functional receptor are also expressed in the female reproductive system, including the ovaries and uterus. The experimental data suggest putative roles for GH and insulin-like growth factor 1 (IGF-1, induced by GH activity) signaling in the direct control of multiple reproductive functions, including activation of primordial follicles, folliculogenesis, ovarian steroidogenesis, oocyte maturation, and embryo implantation. In addition, GH enhances granulosa cell responsiveness to gonadotropin by upregulating the expression of gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), indicating crosstalk between this ovarian regulator and the endocrine signaling system. Notably, natural gene mutation of GH and the age-related decline in GH levels may have a detrimental effect on female reproductive function, leading to several reproductive pathologies, such as diminished ovarian reserve, poor ovarian response during assisted reproductive technology (ART), and implantation failure. Association studies using clinical samples showed that mature GH peptide is present in human follicular fluid, and the concentration of GH in this fluid is positively correlated with oocyte quality and the subsequent embryo morphology and cleavage rate. Furthermore, the results obtained from animal experiments and human samples indicate that supplementation with GH in the in vitro culture system increases steroid hormone production, prevents cell apoptosis, and enhances oocyte maturation and embryo quality. The uterine endometrium is another GH target site, as GH promotes endometrial receptivity and pregnancy by facilitating the implantation process, and the targeted depletion of GH receptors in mice results in fewer uterine implantation sites. Although still controversial, the administration of GH during ovarian stimulation alleviates age-related decreases in ART efficiency, including the number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, pregnancy rate, and live birth rate, especially in patients with poor ovarian response and recurrent implantation failure.
Collapse
|
7
|
de Paula DG, Bohlen TM, Zampieri TT, Mansano NS, Vieira HR, Gusmao DO, Wasinski F, Donato J, Frazao R. Distinct effects of growth hormone deficiency and disruption of hypothalamic kisspeptin system on reproduction of male mice. Life Sci 2021; 285:119970. [PMID: 34562435 DOI: 10.1016/j.lfs.2021.119970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhrlit/lit mice). Interestingly, although Ghrhrlit/lit mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhrlit/lit mice. Despite presenting dwarfism, the majority of Ghrhrlit/lit male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.
Collapse
Affiliation(s)
- Daniella G de Paula
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Naira S Mansano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique R Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
9
|
List EO, Basu R, Duran-Ortiz S, Krejsa J, Jensen EA. Mouse models of growth hormone deficiency. Rev Endocr Metab Disord 2021; 22:3-16. [PMID: 33033978 DOI: 10.1007/s11154-020-09601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA.
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| | - Reetobrata Basu
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Jackson Krejsa
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Elizabeth A Jensen
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
10
|
Sharma R, Kopchick JJ, Puri V, Sharma VM. Effect of growth hormone on insulin signaling. Mol Cell Endocrinol 2020; 518:111038. [PMID: 32966863 PMCID: PMC7606590 DOI: 10.1016/j.mce.2020.111038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes, including effects on bone, muscle, and fat, ultimately resulting in growth. Metabolically, GH promotes anabolic action in most tissues except adipose, where its catabolic action causes the breakdown of stored triglycerides into free fatty acids (FFA). GH antagonizes insulin action via various molecular pathways. Chronic GH secretion suppresses the anti-lipolytic action of insulin and increases FFA flux into the systemic circulation; thus, promoting lipotoxicity, which causes pathophysiological problems, including insulin resistance. In this review, we will provide an update on GH-stimulated adipose lipolysis and its consequences on insulin signaling in liver, skeletal muscle, and adipose tissue. Furthermore, we will discuss the mechanisms that contribute to the diabetogenic action of GH.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
11
|
McRae HM, Eccles S, Whitehead L, Alexander WS, Gécz J, Thomas T, Voss AK. Downregulation of the GHRH/GH/IGF1 axis in a mouse model of Börjeson-Forssman-Lehman syndrome. Development 2020; 147:dev.187021. [PMID: 32994169 DOI: 10.1242/dev.187021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
Abstract
Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6 - /Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.
Collapse
Affiliation(s)
- Helen M McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Victoria 3052, Australia
| | - Samantha Eccles
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Victoria 3052, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Victoria 3052, Australia
| | - Jozef Gécz
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia .,Department of Medical Biology, The University of Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia .,Department of Medical Biology, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
12
|
Zhou F, Zhang H, Cong Z, Zhao LH, Zhou Q, Mao C, Cheng X, Shen DD, Cai X, Ma C, Wang Y, Dai A, Zhou Y, Sun W, Zhao F, Zhao S, Jiang H, Jiang Y, Yang D, Eric Xu H, Zhang Y, Wang MW. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun 2020; 11:5205. [PMID: 33060564 PMCID: PMC7567103 DOI: 10.1038/s41467-020-18945-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) regulates the secretion of growth hormone that virtually controls metabolism and growth of every tissue through its binding to the cognate receptor (GHRHR). Malfunction in GHRHR signaling is associated with abnormal growth, making GHRHR an attractive therapeutic target against dwarfism (e.g., isolated growth hormone deficiency, IGHD), gigantism, lipodystrophy and certain cancers. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein at 2.6 Å. This high-resolution structure reveals a characteristic hormone recognition pattern of GHRH by GHRHR, where the α-helical GHRH forms an extensive and continuous network of interactions involving all the extracellular loops (ECLs), all the transmembrane (TM) helices except TM4, and the extracellular domain (ECD) of GHRHR, especially the N-terminus of GHRH that engages a broad set of specific interactions with the receptor. Mutagenesis and molecular dynamics (MD) simulations uncover detailed mechanisms by which IGHD-causing mutations lead to the impairment of GHRHR function. Our findings provide insights into the molecular basis of peptide recognition and receptor activation, thereby facilitating the development of structure-based drug discovery and precision medicine. Growth hormone-releasing hormone (GHRH) controls metabolism and tissue growth through binding to the cognate receptor (GHRHR). Here authors report the structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein which reveals a characteristic hormone recognition pattern of GHRH by GHRHR.
Collapse
Affiliation(s)
- Fulai Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Huibing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhaotong Cong
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Cheng Ma
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuzhe Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yan Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Wen Sun
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
13
|
Harris MP, Daane JM, Lanni J. Through veiled mirrors: Fish fins giving insight into size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e381. [PMID: 32323915 DOI: 10.1002/wdev.381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022]
Abstract
Faithful establishment and maintenance of proportion is seen across biological systems and provides a glimpse at fundamental rules of scaling that underlie development and evolution. Dysregulation of proportion is observed in a range of human diseases and growth disorders, indicating that proper scaling is an essential component of normal anatomy and physiology. However, when viewed through an evolutionary lens, shifts in the regulation of relative proportion are one of the most striking sources of morphological diversity among organisms. To date, the mechanisms via which relative proportion is specified and maintained remain unclear. Through the application of powerful experimental, genetic and molecular approaches, the teleost fin has provided an effective model to investigate the regulation of scaling, size, and relative growth in vertebrate organisms. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
- Matthew P Harris
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Daane
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Cohen E, Belkacem S, Fedala S, Collot N, Khallouf E, Dastot F, Polak M, Duquesnoy P, Brioude F, Rose S, Viot G, Soleyan A, Carel JC, Sobrier ML, Chanson P, Gatelais F, Heinrichs C, Kaffel N, Coutant R, Savaş Erdeve Ş, Kurnaz E, Aycan Z, Thalassinos C, Lyonnet S, Şıklar Z, Berberoglu M, Brachet C, Amselem S, Legendre M. Contribution of functionally assessed GHRHR mutations to idiopathic isolated growth hormone deficiency in patients without GH1 mutations. Hum Mutat 2019; 40:2033-2043. [PMID: 31231873 DOI: 10.1002/humu.23847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Isolated growth hormone deficiency (IGHD) is a rare condition mainly caused by mutations in GH1. The aim of this study was to assess the contribution of GHRHR mutations to IGHD in an unusually large group of patients. All GHRHR coding exons and flanking intronic regions were sequenced in 312 unrelated patients with nonsyndromic IGHD. Functional consequences of all newly identified missense variants were assessed in vitro (i.e., study of the expression of recombinant GHRHRs and their ability to activate the cyclic adenosine monophosphate (cAMP) signaling pathway). Genotype-phenotype correlation analyses were performed according to the nature of the identified mutation. We identified 20 different disease-causing GHRHR mutations (truncating and missense loss-of-function mutations), among which 15 are novel, in 24 unrelated patients. Of note, about half (13/24) of those patients represent sporadic cases. The clinical phenotype of patients with at least one missense GHRHR mutation was found to be indistinguishable from that of patients with bi-allelic truncating mutations. This study, which unveils disease-causing GHRHR mutations in 8% (24/312) of IGHD cases, identifies GHRHR as the second IGHD gene most frequently involved after GH1. The finding that 8% of IGHD cases without GH1 mutations are explained by GHRHR molecular defects (including missense mutations), together with the high proportion of sporadic cases among those patients, has important implications for genetic counseling.
Collapse
Affiliation(s)
- Enzo Cohen
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Sabrina Belkacem
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Soumeya Fedala
- Endocrinology Department, Hôpital Lamine Debaghine, CHU Bab El Oued, Bab El Oued, Algeria
| | - Nathalie Collot
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Eliane Khallouf
- Pediatric Endocrinology and Diabetology, Hôtel Dieu de France, Beyrouth, Lebanon
| | - Florence Dastot
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Michel Polak
- Pediatric Endocrinology Department, Hôpital Necker, AP-HP, Paris, France
| | - Philippe Duquesnoy
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Frederic Brioude
- Endocrine Investigation Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Sophie Rose
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Géraldine Viot
- Prenatal Diagnosis and Foetal Medicine Unit, CHU Paris Centre, AP-HP, Paris, France
| | - Aude Soleyan
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Jean-Claude Carel
- Pediatric Endocrinology Department, Hôpital Robert Debré, AP-HP, Paris, France
| | - Marie-Laure Sobrier
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Philippe Chanson
- Endocrinology and Reproductive Medicine Department and Rare Pituitary Disorder Reference Center, Hôpital de Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,UMR_S1885, Faculté de Médecine Paris-Sud, Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Claudine Heinrichs
- Endocrinology Department, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Noureddine Kaffel
- Endocrinology Department, Dar Attabib, Complexe Médical Multidisciplinaire, Sfax, Tunisia
| | - Regis Coutant
- Diabetology and Nutrition Unit, CHU d'Angers, Angers, France
| | - Şenay Savaş Erdeve
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | - Erdal Kurnaz
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | - Zehra Aycan
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | | | - Stanislas Lyonnet
- Genetics Department and Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Zeynep Şıklar
- Department of Pediatric Endocrinology, Medical School of Ankara University, Ankara, Turkey
| | - Merih Berberoglu
- Department of Pediatric Endocrinology, Medical School of Ankara University, Ankara, Turkey
| | - Cécile Brachet
- Endocrinology Department, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Serge Amselem
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Marie Legendre
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| |
Collapse
|
16
|
Ford ZK, Dourson AJ, Liu X, Lu P, Green KJ, Hudgins RC, Jankowski MP. Systemic growth hormone deficiency causes mechanical and thermal hypersensitivity during early postnatal development. IBRO Rep 2019; 6:111-121. [PMID: 30815617 PMCID: PMC6378845 DOI: 10.1016/j.ibror.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022] Open
Abstract
Systemic GHD causes behavioral hypersensitivity at P7 and P14, but not P21. Primary afferent sensitization is observed in GHRHr KOs. Knockout of GHRHr changes DRG gene expression that is observed throughout development.
Injury during early postnatal life causes acute alterations in afferent function and DRG gene expression, which in addition to producing short-term sensitivity has the potential to influence nociceptive responses in adulthood. We recently discovered that growth hormone (GH) is a key regulator of afferent sensitization and pain-related behaviors during developmental inflammation of the skin. Peripheral injury caused a significant reduction in cutaneous GH levels, which corresponded with the observed hypersensitivity. However, it has yet to be determined whether GH deficiency (GHD) is sufficient to drive peripheral sensitization in uninjured animals. Here, we found that systemic GHD, induced by knockout of the GH release hormone receptor (GHRHr), was able to induce behavioral and afferent hypersensitivity to peripheral stimuli specifically during early developmental stages. GHD also produced an upregulation of many receptors and channels linked to nociceptive processing in the DRGs at these early postnatal ages (P7 and P14). Surprisingly, P21 GHRHr knockouts also displayed significant alterations in DRG gene expression even though behavioral and afferent hypersensitivity resolved. These data support previous findings that GH is a key modulator of neonatal hypersensitivity. Results may provide insight into whether GH treatment may be a therapeutic strategy for pediatric pain.
Collapse
Affiliation(s)
- Zachary K. Ford
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Xiaohua Liu
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Peilin Lu
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Kathryn J. Green
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Renita C. Hudgins
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, United States
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati OH 45229, United States
- Corresponding author at: Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH 45229, United States.
| |
Collapse
|
17
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
18
|
Abstract
Growth hormone (GH) is a peptide hormone released from pituitary somatotrope cells that promotes growth, cell division and regeneration by acting directly through the GH receptor (GHR), or indirectly via hepatic insulin-like growth factor 1 (IGF1) production. GH deficiency (GHD) can cause severe consequences, such as growth failure, changes in body composition and altered insulin sensitivity, depending of the origin, time of onset (childhood or adulthood) or duration of GHD. The highly variable clinical phenotypes of GHD can now be better understood through research on transgenic and naturally-occurring animal models, which are widely employed to investigate the origin, phenotype, and consequences of GHD, and particularly the underlying mechanisms of metabolic disorders associated to GHD. Here, we reviewed the most salient aspects of GH biology, from somatotrope development to GH actions, linked to certain GHD types, as well as the animal models employed to reproduce these GHD-associated alterations.
Collapse
Affiliation(s)
- Manuel D Gahete
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| | - Raul M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| | - Justo P Castaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| |
Collapse
|
19
|
Crosstalk of HNF4 α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm Sin B 2016; 6:393-408. [PMID: 27709008 PMCID: PMC5045537 DOI: 10.1016/j.apsb.2016.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis. Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs), lipids, and glucose provide key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α) plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics, metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation, and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and intracellular signaling pathways to regulate genes essential in liver pathophysiology.
Collapse
|
20
|
Abstract
Aging is an inevitable outcome of life, characterized by progressive decline in tissue and organ function and increased risk of mortality. Accumulating evidence links aging to genetic and epigenetic alterations. Given the reversible nature of epigenetic mechanisms, these pathways provide promising avenues for therapeutics against age-related decline and disease. In this review, we provide a comprehensive overview of epigenetic studies from invertebrate organisms, vertebrate models, tissues, and in vitro systems. We establish links between common operative aging pathways and hallmark chromatin signatures that can be used to identify "druggable" targets to counter human aging and age-related disease.
Collapse
Affiliation(s)
- Payel Sen
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Parisha P Shah
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Raffaella Nativio
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Shelley L Berger
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA.
| |
Collapse
|
21
|
Higuti E, Cecchi CR, Oliveira NAJ, Lima ER, Vieira DP, Aagaard L, Jensen TG, Jorge AAL, Bartolini P, Peroni CN. Partial correction of the dwarf phenotype by non-viral transfer of the growth hormone gene in mice: Treatment age is critical. Growth Horm IGF Res 2016; 26:1-7. [PMID: 26774398 DOI: 10.1016/j.ghir.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Non-viral transfer of the growth hormone gene to different muscles of immunodeficient dwarf (lit/scid) mice is under study with the objective of improving phenotypic correction via this particular gene therapy approach. Plasmid DNA was administered into the exposed quadriceps or non-exposed tibialis cranialis muscle of lit/scid mice followed by electroporation, monitoring several growth parameters. In a 6-month bioassay, 50μg DNA were injected three times into the quadriceps muscle of 80-day old mice. A 50% weight increase, with a catch-up growth of 21%, together with a 16% increase for nose-to-tail and tail lengths (catch-up=19-21%) and a 24-28% increase for femur length (catch-up=53-60%), were obtained. mIGF1 serum levels were ~7-fold higher than the basal levels for untreated mice, but still ~2-fold lower than in non-dwarf scid mice. Since treatment age was found to be particularly important in a second bioassay utilizing 40-day old mice, these pubertal mice were compared in a third bioassay with adult (80-day old) mice, all treated twice with 50μg DNA injected into each tibialis cranialis muscle, via a less invasive approach. mIGF1 concentrations at the same level as co-aged scid mice were obtained 15days after administration in pubertal mice. Catch-up growth, based on femur length (77%), nose-to-tail (36%) and tail length (39%) increases was 40 to 95% higher than those obtained upon treating adult mice. These data pave the way for the development of more effective pre-clinical assays in pubertal dwarf mice for the treatment of GH deficiency via plasmid-DNA muscular administration.
Collapse
Affiliation(s)
- Eliza Higuti
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil
| | - Cláudia R Cecchi
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nélio A J Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Eliana R Lima
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil
| | - Daniel P Vieira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Thomas G Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Alexander A L Jorge
- Genetic-Endocrinology Unit (LIM25), Endocrinology Department, University of São Paulo School of Medicine (FMUSP), São Paulo, SP, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil
| | - Cibele N Peroni
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Abstract
The somatotropic signaling pathway has been implicated in aging and longevity studies in mice and other species. The physiology and lifespans of a variety of mutant mice, both spontaneous and genetically engineered, have contributed to our current understanding of the role of growth hormone and insulin-like growth factor I on aging-related processes. Several other mice discovered to live longer than their wild-type control counterparts also exhibit differences in growth factor levels; however, the complex nature of the phenotypic changes in these animals may also impact lifespan. The somatotropic axis impacts several pathways that dictate insulin sensitivity, nutrient sensing, mitochondrial function, and stress resistance as well as others that are thought to be involved in lifespan regulation.
Collapse
Affiliation(s)
- H M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
23
|
Oberley CC, Bilger A, Drinkwater NR. Genetic background determines if Stat5b suppresses or enhances murine hepatocarcinogenesis. Mol Carcinog 2014; 54:959-70. [PMID: 24838184 DOI: 10.1002/mc.22165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 12/23/2022]
Abstract
Murine hepatocarcinogenesis requires growth hormone (GH). To determine if the GH-responsive transcription factor STAT5b (signal transducer and activator of transcription 5b) is also required, we compared the hepatic gene expression profiles of global Stat5b null mice to cancer-resistant mice mutant in the GH pathway-GH-deficient little and androgen receptor-null Tfm males. We found a high degree of overlap among Tfm, little, and Stat5b null males. The liver cancer susceptibility of global Stat5b null mice was assessed on three distinct genetic backgrounds: BALB/cJ (BALB), C57BL/6J (B6), and C3H/HeJ (C3H). The effect of Stat5b on hepatocarcinogenesis depended on the genetic background. B6 Stat5b null congenic males and females developed 2.4 times as many tumors as wild-type (WT) controls (P < 0.002) and the tumors were larger (P < 0.003). In BALB/c congenics, loss of STAT5b had no effect on either sex. C3H Stat5b null congenic males and females were resistant to liver cancer, developing 2.7- and 6-fold fewer tumors, respectively (P < 0.02, 0.01). These results provide the first example of a single gene behaving as both oncogene and tumor suppressor in a given tissue, depending only on the endogenous modifier alleles carried by different genetic backgrounds.
Collapse
Affiliation(s)
- Christopher C Oberley
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Norman R Drinkwater
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
24
|
Sun LY, Spong A, Swindell WR, Fang Y, Hill C, Huber JA, Boehm JD, Westbrook R, Salvatori R, Bartke A. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. eLife 2013; 2:e01098. [PMID: 24175087 PMCID: PMC3810783 DOI: 10.7554/elife.01098] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022] Open
Abstract
We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI:http://dx.doi.org/10.7554/eLife.01098.001 There is increasing evidence that the hormonal systems involved in growth, the metabolism of glucose, and the processes that balance energy intake and expenditure might also be involved in the aging process. In rodents, mutations in genes involved in these hormone-signaling pathways can substantially increase lifespan, as can a diet that is low in calories but which avoids malnutrition. As well as living longer, such mice also show reductions in age-related conditions such as diabetes, memory loss and cancer. Many of these effects appear to involve the actions of growth hormone. Mice with mutations that disrupt the development of the pituitary gland, which produces growth hormone, show increased longevity, as do mice that lack the receptor for growth hormone. However, these animals also show changes in a number of other hormones, making it difficult to be sure that the reduction in growth hormone signaling is responsible for their increased lifespan. Now, Sun et al. have studied mutant mice that lack a gene called GHRH, which promotes the release of growth hormone. These mice, which have normal levels of all other pituitary hormones, lived for up to 50% longer than their wild-type littermates. They were more active than normal mice and had more body fat, and showed greatly increased sensitivity to insulin. Some of the changes in these mutant mice resembled those seen in animals with a restricted calorie intake, suggesting that the same mechanisms may be implicated in both. However, Sun et al. found that caloric restriction further increased the lifespans of their GHRH knockout mice, indicating that at least some of the effects of caloric restriction are independent of disrupted growth hormone signaling. The results of this study are an important step forward for understanding how growth hormone signaling and caloric restriction regulate aging, both individually and in combination. The GHRH knockout mice are likely to become an important model system for studying these processes and for understanding the complex interactions between diet and hormonal pathways. DOI:http://dx.doi.org/10.7554/eLife.01098.002
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Internal Medicine , Southern Illinois University School of Medicine , Springfield , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the 'somatopause', has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans.
Collapse
Affiliation(s)
- Riia K Junnila
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John W Murrey
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| |
Collapse
|
26
|
Reddy AK, Hartley CJ, Pham TT, Darlington G, Entman ML, Taffet GE. Young little mice express a premature cardiovascular aging phenotype. J Gerontol A Biol Sci Med Sci 2013; 69:152-9. [PMID: 23682160 DOI: 10.1093/gerona/glt055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of growth hormone and insulin-like growth factor 1 deficiency on the aging mouse arterial system, we compared the hemodynamics in young (4 months) and old (30 months) growth hormone-releasing hormone receptor null dwarf (Little) mice and their wild-type littermates. Young Little mice had significantly lower peak and mean aortic velocity and significantly higher aortic impedance than young wild-type mice. However, unlike the wild-type mice, there were no significant changes in arterial function with age in the Little mice. Aortic pulse wave velocity estimated using characteristic impedance increased with age in the wild-type mice, but it changed minimally in the Little mouse. We therefore conclude that arterial function in Little mice expresses a premature aging phenotype at young age and may neither enhance nor reduce their longevity.
Collapse
Affiliation(s)
- Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS BCM620, Houston, TX 77030.
| | | | | | | | | | | |
Collapse
|
27
|
Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 2013; 93:571-98. [PMID: 23589828 PMCID: PMC3768106 DOI: 10.1152/physrev.00006.2012] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the "healthspan" is also extended with delays in cognitive decline and in the onset of age-related disease. The role of hormones homologous to insulin-like growth factor (IGF, an important mediator of GH actions) in the control of aging and lifespan is evolutionarily conserved from worms to mammals with some homologies extending to unicellular yeast. The combination of reduced GH, IGF-I, and insulin signaling likely contributes to extended longevity in GH or GH receptor-deficient organisms. Diminutive body size and reduced fecundity of GH-deficient and GH-resistant mice can be viewed as trade-offs for extended longevity. Mechanisms responsible for delayed aging of GH-related mutants include enhanced stress resistance and xenobiotic metabolism, reduced inflammation, improved insulin signaling, and various metabolic adjustments. Pathological excess of GH reduces life expectancy in men as well as in mice, and GH resistance or deficiency provides protection from major age-related diseases, including diabetes and cancer, in both species. However, there is yet no evidence of increased longevity in GH-resistant or GH-deficient humans, possibly due to non-age-related deaths. Results obtained in GH-related mutant mice provide striking examples of mutations of a single gene delaying aging, reducing age-related disease, and extending lifespan in a mammal and providing novel experimental systems for the study of mechanisms of aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Geriatric Research, Springfield, Illinois 62703, USA.
| | | | | |
Collapse
|
28
|
The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 2013; 12:8-21. [PMID: 22543101 DOI: 10.1016/j.arr.2012.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/29/2022]
Abstract
The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging.
Collapse
|
29
|
Kristensen E, Hallgrímsson B, Morck DW, Boyd SK. Microarchitecture, but not bone mechanical properties, is rescued with growth hormone treatment in a mouse model of growth hormone deficiency. Int J Endocrinol 2012; 2012:294965. [PMID: 22505889 PMCID: PMC3312192 DOI: 10.1155/2012/294965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/02/2012] [Indexed: 11/25/2022] Open
Abstract
Growth hormone (GH) deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD) mouse model undergoing GH treatment commencing at an early (prepubertal) or late (postpubertal) time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostructure and vertebral trabecular microarchitecture, and mechanical properties were determined using finite element analyses. In the GHD animals, bone macrostructure was 25 to 43% smaller as compared to the GH-sufficient (GHS) controls (P < 0.001). GHD animals had 20% and 19% reductions in bone volume ratio (BV/TV) and trabecular thickness (Tb.Th), respectively. Whole bone mechanical properties of the GHD mice were lower at the femur and vertebra (67% and 45% resp.) than the GHS controls (P < 0.001). Both early and late GH treatment partially recovered the bone macrostructure (15 to 32 % smaller than GHS controls) and the whole bone mechanical properties (24 to 43% larger than GHD animals) although there remained a sustained 27-52% net deficit compared to normal mice (P < 0.05). Importantly, early treatment with GH led to a recovery of BV/TV and Tb.Th with a concomitant improvement of trabecular mechanical properties. Therefore, the results suggest that GH treatment should start early, and that measurements of microarchitecture should be considered in the management of GHD.
Collapse
Affiliation(s)
- Erika Kristensen
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Douglas W. Morck
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Steven K. Boyd
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada T2N 4N1
- *Steven K. Boyd:
| |
Collapse
|
30
|
Abstract
The somatotropic axis – consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs – has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.
Collapse
|
31
|
Sos BC, Harris C, Nordstrom SM, Tran JL, Balázs M, Caplazi P, Febbraio M, Applegate MAB, Wagner KU, Weiss EJ. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 2011; 121:1412-23. [PMID: 21364286 DOI: 10.1172/jci42894] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 01/05/2011] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease is associated with multiple comorbid conditions, including diabetes, obesity, infection, and malnutrition. Mice with hepatocyte-specific disruption of growth hormone (GH) signaling develop fatty liver (FL), although the precise mechanism underlying this finding remains unknown. Because GH signals through JAK2, we developed mice bearing hepatocyte-specific deletion of JAK2 (referred to herein as JAK2L mice). These mice were lean, but displayed markedly elevated levels of GH, liver triglycerides (TGs), and plasma FFAs. Because GH is known to promote lipolysis, we crossed GH-deficient little mice to JAK2L mice, and this rescued the FL phenotype. Expression of the fatty acid transporter CD36 was dramatically increased in livers of JAK2L mice, as was expression of Pparg. Since GH signaling represses PPARγ expression and Cd36 is a known transcriptional target of PPARγ, we treated JAK2L mice with the PPARγ-specific antagonist GW9662. This resulted in reduced expression of liver Cd36 and decreased liver TG content. These results provide a mechanism for the FL observed in mice with liver-specific disruption in GH signaling and suggest that the development of FL depends on both GH-dependent increases in plasma FFA and increased hepatic uptake of FFA, likely mediated by increased expression of CD36.
Collapse
Affiliation(s)
- Brandon C Sos
- Cardiovascular Research Institute, UCSF, San Francisco, California 94158-9001, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sos BC, Harris C, Nordstrom SM, Tran JL, Balázs M, Caplazi P, Febbraio M, Applegate MAB, Wagner KU, Weiss EJ. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 2011. [PMID: 21364286 DOI: 10.1172/jcl42894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease is associated with multiple comorbid conditions, including diabetes, obesity, infection, and malnutrition. Mice with hepatocyte-specific disruption of growth hormone (GH) signaling develop fatty liver (FL), although the precise mechanism underlying this finding remains unknown. Because GH signals through JAK2, we developed mice bearing hepatocyte-specific deletion of JAK2 (referred to herein as JAK2L mice). These mice were lean, but displayed markedly elevated levels of GH, liver triglycerides (TGs), and plasma FFAs. Because GH is known to promote lipolysis, we crossed GH-deficient little mice to JAK2L mice, and this rescued the FL phenotype. Expression of the fatty acid transporter CD36 was dramatically increased in livers of JAK2L mice, as was expression of Pparg. Since GH signaling represses PPARγ expression and Cd36 is a known transcriptional target of PPARγ, we treated JAK2L mice with the PPARγ-specific antagonist GW9662. This resulted in reduced expression of liver Cd36 and decreased liver TG content. These results provide a mechanism for the FL observed in mice with liver-specific disruption in GH signaling and suggest that the development of FL depends on both GH-dependent increases in plasma FFA and increased hepatic uptake of FFA, likely mediated by increased expression of CD36.
Collapse
Affiliation(s)
- Brandon C Sos
- Cardiovascular Research Institute, UCSF, San Francisco, California 94158-9001, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nordstrom SM, Tran JL, Sos BC, Wagner KU, Weiss EJ. Liver-derived IGF-I contributes to GH-dependent increases in lean mass and bone mineral density in mice with comparable levels of circulating GH. Mol Endocrinol 2011; 25:1223-30. [PMID: 21527499 DOI: 10.1210/me.2011-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.
Collapse
Affiliation(s)
- Sarah M Nordstrom
- University of California, San Francisco (UCSF), Cardiovascular Research Institute, San Francisco, California 94158-9001, USA
| | | | | | | | | |
Collapse
|
34
|
Takahara K, Tearle H, Ghaffari M, Gleave ME, Pollak M, Cox ME. Human prostate cancer xenografts in lit/lit mice exhibit reduced growth and androgen-independent progression. Prostate 2011; 71:525-37. [PMID: 20878948 DOI: 10.1002/pros.21268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/16/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The growth hormone/insulin-like growth factor I (GH/IGF-I) axis has been linked to prostate cancer (PCa) risk. Although previous studies indicate that human breast cancers and a murine PCa model develop more slowly in murine hosts homozygous for a missense mutation in the GH-releasing hormone receptor (lit/lit) whose "little" dwarfed phenotype is caused by suppressed GH and IGF-I production, the role of these two hormones remains controversial. METHODS To assess how the GH/IGF-I axis influences androgen-responsive, castration-resistant (CR), and androgen-independent (AI) growth of human PCa, we compared xenograft growth of the androgen-responsive human PCa cells, LNCaP, and AI human PCa cells, PC3, in intact and castrate Nod/SCID lit/lit and lit/+ mice, and in vitro growth of these cell lines in lit/lit and lit/+ serum-containing media supplemented with GH or IGF-I. RESULTS Tumor growth and PSA accumulation rates were suppressed in LNCaP tumor-bearing lit/lit mice pre- and post-castration. Growth of PC3 xenografts in lit/lit mice was also suppressed. In vitro proliferation of LNCaP and PC3 cells cultured in media containing lit/lit mouse serum was decreased as compared to growth in media containing lit/+ serum. Suppressed growth in lit/lit serum could be restored by the addition of IGF-I, and to a lesser extent, GH. Differences in growth correlated with differences in steady-state AKT and ERK1/2 activation. CONCLUSIONS This study demonstrates that circulating GH and IGF-I can promote androgen-responsive growth, CR progression, and AI expansion of PTEN-deficient human PCa cell xenografts and indicates that IGF-I can promote PCa growth in a suppressed GH environment.
Collapse
Affiliation(s)
- Kiyoshi Takahara
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
To explore the effect(s) of growth hormone signaling on thrombosis, we studied signal transduction and transcription factor 5 (STAT5)-deficient mice and found markedly reduced survival in an in vivo thrombosis model. These findings were not explained by a compensatory increase in growth hormone secretion. There was a modest increase in the activity of several procoagulant factors, but there was no difference in the rate or magnitude of thrombin generation in STAT5-deficient mice relative to control. However, thrombin-triggered clot times were markedly shorter, and fibrin polymerization occurred more rapidly in plasma from STAT5-deficient mice. Fibrinogen depletion and mixing studies indicated that the effect on fibrin polymerization was not due to intrinsic changes in fibrinogen, but resulted from changes in the concentration of a circulating plasma inhibitor. While thrombin-triggered clot times were significantly shorter in STAT5-deficient animals, reptilase-triggered clot times were unchanged. Accordingly, while the rate of thrombin-catalyzed release of fibrinopeptide A was similar, the release of fibrinopeptide B was accelerated in STAT5-deficient plasma versus control. Taken together, these studies demonstrated that the loss of STAT5 resulted in a decrease in the concentration of a plasma inhibitor affecting thrombin-triggered cleavage of fibrinopeptide B. This ultimately resulted in accelerated fibrin polymerization and greater thrombosis susceptibility in STAT5-deficient animals.
Collapse
|
37
|
Kristensen E, Hallgrímsson B, Morck DW, Boyd SK. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice. Bone 2010; 47:295-300. [PMID: 20399917 DOI: 10.1016/j.bone.2010.04.587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/20/2022]
Abstract
Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls.
Collapse
Affiliation(s)
- Erika Kristensen
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
38
|
Oliveira NAJ, Cecchi CR, Higuti E, Oliveira JE, Jensen TG, Bartolini P, Peroni CN. Long-term human growth hormone expression and partial phenotypic correction by plasmid-based gene therapy in an animal model of isolated growth hormone deficiency. J Gene Med 2010; 12:580-5. [DOI: 10.1002/jgm.1470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
Cannata D, Vijayakumar A, Fierz Y, LeRoith D. The GH/IGF-1 axis in growth and development: new insights derived from animal models. Adv Pediatr 2010; 57:331-51. [PMID: 21056746 DOI: 10.1016/j.yapd.2010.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dara Cannata
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Atran 4th Floor-36, PO Box 1055, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
40
|
Ohlsson C, Mohan S, Sjögren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev 2009; 30:494-535. [PMID: 19589948 PMCID: PMC2759708 DOI: 10.1210/er.2009-0010] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
Collapse
Affiliation(s)
- Claes Ohlsson
- Division of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee B, Bokryeon L, Kano K, Young J, John SWM, Nishina PM, Naggert JK, Naito K. A novel ENU-induced mutation, peewee, causes dwarfism in the mouse. Mamm Genome 2009; 20:404-13. [PMID: 19513787 DOI: 10.1007/s00335-009-9197-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/05/2009] [Indexed: 11/28/2022]
Abstract
We identified a novel fertile autosomal recessive mutation called peewee that results in dwarfing, in a region-specific ENU-induced mutagenesis. These mice at litter size were smaller those of other strains. Histological analysis revealed that the major organs appear normal, but abnormalities in cellular proliferation were observed in bone, liver, and testis. Haplotype analysis localized the peewee gene to a 3.3-Mb region between D5Mit83 and D5Mit356.3. There are 18 genes in this linkage area. We also performed in silico mapping using the PosMed(SM) program, which searches for connections among keywords and genes in an interval, but no similar phenotype descriptions were found for these genes. In the peewee mutant compared to the normal C57BL/6 J mouse, only Slc10a4 expression was lower. Our preliminary mutation analysis examining the nucleotide sequence of three exons, two introns, and an untranslated region of Slc10a4 did not find any sequence difference between the peewee mouse and the C57BL/6 J mouse. Detailed analysis of peewee mice might provide novel molecular insights into the complex mechanisms regulating body growth.
Collapse
Affiliation(s)
- Bokryeon Lee
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown-Borg HM. Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol 2009; 299:64-71. [PMID: 18674587 PMCID: PMC4390024 DOI: 10.1016/j.mce.2008.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/20/2008] [Accepted: 07/03/2008] [Indexed: 01/08/2023]
Abstract
There is a growing body of literature focusing on the somatotropic axis and regulation of aging and longevity. Many of these reports derive data from multiple endocrine mutants, those that exhibit both elevated growth hormone (GH) and insulin-like growth factor I (IGF-1) or deficiencies in one or both of these hormones. In general, both spontaneous and genetically engineered GH and IGF-1 deficiencies have lead to small body size, delayed development of sexual maturation and age-related pathology, and life span extension. In contrast, characteristics of high circulating GH included larger body sizes, early puberty and reproductive senescence, increased cancer incidence and reduced life span when compared to wild-type animals with normal plasma hormone concentrations. This information, along with that found in multiple other species, implicates this anabolic pathway as the major regulator of longevity in animals.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota School of Medicine & Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, United States.
| |
Collapse
|
43
|
Jamniczky HA, Hallgrímsson B. A comparison of covariance structure in wild and laboratory muroid crania. Evolution 2009; 63:1540-56. [PMID: 19210537 DOI: 10.1111/j.1558-5646.2009.00651.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations have the ability to produce dramatic changes to covariance structure by altering the variance of covariance-generating developmental processes. Several evolutionary mechanisms exist that may be acting interdependently to stabilize covariance structure, despite this developmental potential for variation within species. We explore covariance structure in the crania of laboratory mouse mutants exhibiting mild-to-significant developmental perturbations of the cranium, and contrast it with covariance structure in related wild muroid taxa. Phenotypic covariance structure is conserved among wild muroidea, but highly variable and mutation-dependent within the laboratory group. We show that covariance structures in natural populations of related species occupy a more restricted portion of covariance structure space than do the covariance structures resulting from single mutations of significant effect or the almost nonexistent genetic differences that separate inbred mouse strains. Our results suggest that developmental constraint is not the primary mechanism acting to stabilize covariance structure, and imply a more important role for other mechanisms.
Collapse
Affiliation(s)
- Heather A Jamniczky
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1, Canada.
| | | |
Collapse
|
44
|
Chapter 3 Diseases Associated with Growth Hormone‐Releasing Hormone Receptor (GHRHR) Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:57-84. [DOI: 10.1016/s1877-1173(09)88003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Wong JH, Dukes J, Levy RE, Sos B, Mason SE, Fong TS, Weiss EJ. Sex differences in thrombosis in mice are mediated by sex-specific growth hormone secretion patterns. J Clin Invest 2008; 118:2969-78. [PMID: 18618017 DOI: 10.1172/jci34957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/27/2008] [Indexed: 11/17/2022] Open
Abstract
Sex differences in thrombosis are well described, but their underlying mechanism(s) are not completely understood. Coagulation proteins are synthesized in the liver, and liver gene expression is sex specific and depends on sex differences in growth hormone (GH) secretion--males secrete GH in a pulsatile fashion, while females secrete GH continuously. Accordingly, we tested the hypothesis that sex-specific GH secretion patterns cause sex differences in thrombosis. Male mice were more susceptible to thrombosis than females in the thromboplastin-induced pulmonary embolism model and showed shorter clotting times ex vivo. GH-deficient little (lit) mice were protected from thrombosis, and pulsatile GH given to lit mice restored the male clotting phenotype. Moreover, pulsatile GH administration resulted in a male clotting phenotype in control female mice, while continuous GH caused a female clotting phenotype in control male mice. Expression of the coagulation inhibitors Proc, Serpinc1, Serpind1, and Serpina5 were strongly modulated by sex-specific GH patterns, and GH modulated resistance to activated protein C. These results reveal what we believe to be a novel mechanism whereby sex-specific GH patterns mediate sex differences in thrombosis through coordinated changes in the expression of coagulation inhibitor genes in the liver.
Collapse
Affiliation(s)
- Joshua H Wong
- Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, UCSF, San Francisco, California 94143-0124, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The basis of social evolution in mammals is the mother-offspring relationship. It is also the primary and most important instance of indirect genetic effects, where genetic variation in one individual affects phenotypic variation among others. This relationship is so important in mammals that often the major factor determining the life or death of newborns is the environment provided by their mother. Variations in these environments can be due to variations in maternal genotypes. In our work with the intercross of two mouse inbred strains, LG/J and SM/J, we uncovered a very severe variation in maternal performance. These females failed to nurture their offspring and showed abnormal maternal behaviors leading to loss of their litter. Rather than this being due to a single gene variant as in knockout mice, we uncovered a complex genetic basis for this trait. The effects of genes on maternal performance are entirely context dependent in our cross. They depend on the alleles present at the same or other epistatically interacting loci. Genomic locations identified in this study include locations of candidate genes whose knockouts displayed similar aberrant maternal behavior. Behaviors significantly associated with maternal performance in this study include suckling, nest building, placentophagia, pup grooming, and retrieval of pups after disturbance.
Collapse
Affiliation(s)
- Andréa C Peripato
- Department of Biology/Genetics, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
47
|
Kano K, Marín de Evsikova C, Young J, Wnek C, Maddatu TP, Nishina PM, Naggert JK. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol 2008; 22:1866-80. [PMID: 18483174 DOI: 10.1210/me.2007-0310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Smallie (slie), a spontaneous, autosomal-recessive mutation causes dwarfing and infertility in mice. The purpose of this study was to determine and characterize the underlying molecular genetic basis for its phenotype. The slie locus was mapped to chromosome 1, and fine-structure mapping narrowed the slie allele within 2 Mb between genetic markers D1Mit36 and Mpz. To pinpoint the underlying mutation quantitative real-time PCR was used to measure the relative expression levels for the genes residing within this region. Expression of one gene, Ddr2, which encodes discoidin domain receptor 2 (DDR2), was absent in slie homozygote mice. Genomic sequencing analysis detected a 150-kb deletion that extended into the Ddr2 gene transcript. Detailed phenotype analysis revealed that gonadal dysregulation underlies infertility in slie mice because all females were anovulatory and most adult males lacked spermatogenesis. The pituitary gland of prepubertal slie mice was smaller than in wild-type mice. The basal levels and gene expression for pituitary and hypothalamic hormones, and gene expression for hypothalamic-releasing hormones, were not significantly different between slie and wild-type mice. Circulating levels of IGF-1 did not differ in slie mice despite lower Igf-1 mRNA expression in the liver. After exogenous gonadotropin administration, the levels of secreted steroid hormones in both male and female adult slie mice were blunted compared to adult wild-type, but was similar to prepubertal wild-type mice. Taken together, our results indicate that the absence of DDR2 leads to growth retardation and gonadal dysfunction due to peripheral defects in hormonal-responsive pathways in slie mice.
Collapse
Affiliation(s)
- Kiyoshi Kano
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008; 3:e1709. [PMID: 18320030 PMCID: PMC2248623 DOI: 10.1371/journal.pone.0001709] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/21/2008] [Indexed: 11/30/2022] Open
Abstract
Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.
Collapse
|
49
|
Oh-Ishi M, Kodera Y, Furudate SI, Maeda T. Disease proteomics of endocrine disorders revealed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics Clin Appl 2008; 2:327-37. [DOI: 10.1002/prca.200780026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Reddy AK, Taffet GE, Hartley CJ. Aortic impedance in Little mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:1397-1398. [PMID: 19162929 PMCID: PMC3345796 DOI: 10.1109/iembs.2008.4649426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Little dwarf mouse lives 30% longer than its age-matched wild-type (WT) mouse. We determined aortic input impedance in 21 (8 Little, 13 WT) 4 month-old mice. Modulus of impedance was calculated from the Fourier transformed aortic pressure (P) and average luminal flow velocity (V(avg)) as |Z(i)| = |P|/|V(avg)|. Characteristic impedance was estimated by averaging the 2(nd)-10(th) harmonic of the impedance moduli. We found the impedance modulus |Z(i)| to be similar in the 2 groups (WT vs. Little; mean+/-SE) - peripheral resistance (10597+/-654 vs. 12932+/-1433 dyne-s/cm(3)), modulus at first harmonic (Z(1): 740+/-56 vs. 902+/-105 dyne-s/cm(3)), and characteristic impedance (Z(c): 441+/-34 vs. 470+/-60 dyne-s/cm(3)). Also, mean aortic velocity (20.1+/-1.1 vs. 16.5+/-1.8 cm/s) and mean aortic blood pressure (81.1+/-3.9 vs. 75.9+/-5.9 mmHg) were similar between the two groups. Impedance at low frequencies was slightly higher in the dwarf mice which may be due to the diminished systolic function as indicated by significant reduction in peak aortic velocity (84.0+/-3.2 vs. 70.1+/-1.2 cm/s, p<<0.01). Although modestly higher, the overall impedance in Little mice was similar to that in WT mice. This indicates that left ventricular (LV) afterload may not significantly be altered in Little mice.
Collapse
Affiliation(s)
- Anilkumar K Reddy
- Sections of Cardiovascular Sciences&Geriatrics, Dept. of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|