1
|
Bou Dagher L, Madern D, Malbos P, Brochier-Armanet C. Persistent homology reveals strong phylogenetic signal in 3D protein structures. PNAS NEXUS 2024; 3:pgae158. [PMID: 38689707 PMCID: PMC11058471 DOI: 10.1093/pnasnexus/pgae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Changes that occur in proteins over time provide a phylogenetic signal that can be used to decipher their evolutionary history and the relationships between organisms. Sequence comparison is the most common way to access this phylogenetic signal, while those based on 3D structure comparisons are still in their infancy. In this study, we propose an effective approach based on Persistent Homology Theory (PH) to extract the phylogenetic information contained in protein structures. PH provides efficient and robust algorithms for extracting and comparing geometric features from noisy datasets at different spatial resolutions. PH has a growing number of applications in the life sciences, including the study of proteins (e.g. classification, folding). However, it has never been used to study the phylogenetic signal they may contain. Here, using 518 protein families, representing 22,940 protein sequences and structures, from 10 major taxonomic groups, we show that distances calculated with PH from protein structures correlate strongly with phylogenetic distances calculated from protein sequences, at both small and large evolutionary scales. We test several methods for calculating PH distances and propose some refinements to improve their relevance for addressing evolutionary questions. This work opens up new perspectives in evolutionary biology by proposing an efficient way to access the phylogenetic signal contained in protein structures, as well as future developments of topological analysis in the life sciences.
Collapse
Affiliation(s)
- Léa Bou Dagher
- Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et BiologieÉvolutive, UMR5558, F-69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, UMR5208, F-69622 Villeurbanne, France
- Université Libanaise, Laboratoire de Mathématiques, École Doctorale en Science et Technologie, PO BOX 5 Hadath, Liban
| | - Dominique Madern
- University Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Philippe Malbos
- Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, UMR5208, F-69622 Villeurbanne, France
| | - Céline Brochier-Armanet
- Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et BiologieÉvolutive, UMR5558, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Tekucheva DN, Nikolayeva VM, Karpov MV, Timakova TA, Shutov AV, Donova MV. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: "one-pot", two modes. BIORESOUR BIOPROCESS 2022; 9:116. [PMID: 38647765 PMCID: PMC10992188 DOI: 10.1186/s40643-022-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The main male hormone, testosterone is obtained from cheap and readily available phytosterol using the strains of Mycolicibacterium neoaurum VKM Ac-1815D, or Ac-1816D. During the first "oxidative" stage, phytosterol (5-10 g/L) was aerobically converted by Ac-1815D, or Ac-1816D to form 17-ketoandrostanes: androstenedione, or androstadienedione, respectively. At the same bioreactor, the 17-ketoandrostanes were further transformed to testosterone due to the presence of 17β-hydroxysteroid dehydrogenase activity in the strains ("reductive" mode). The conditions favorable for "oxidative" and "reductive" stages have been revealed to increase the final testosterone yield. Glucose supplement and microaerophilic conditions during the "reductive" mode ensured increased testosterone production by mycolicibacteria cells. Both strains effectively produced testosterone from phytosterol, but highest ever reported testosterone yield was achieved using M. neoaurum VKM Ac-1815D: 4.59 g/l testosterone was reached from 10 g/l phytosterol thus corresponding to the molar yield of over 66%. The results contribute to the knowledge on phytosterol bioconversion by mycolicibacteria, and are of significance for one-pot testosterone bioproduction from phytosterol bypassing the intermediate isolation of the 17-ketoandrostanes.
Collapse
Affiliation(s)
- Daria N Tekucheva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Vera M Nikolayeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Mikhail V Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Tatiana A Timakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Abstract
For evaluating the deepest evolutionary relationships among proteins, sequence similarity is too low for application of sequence-based homology search or phylogenetic methods. In such cases, comparison of protein structures, which are often better conserved than sequences, may provide an alternative means of uncovering deep evolutionary signal. Although major protein structure databases such as SCOP and CATH hierarchically group protein structures, they do not describe the specific evolutionary relationships within a hierarchical level. Structural phylogenies have the potential to fill this gap. However, it is difficult to assess evolutionary relationships derived from structural phylogenies without some means of assessing confidence in such trees. We therefore address two shortcomings in the application of structural data to deep phylogeny. First, we examine whether phylogenies derived from pairwise structural comparisons are sensitive to differences in protein length and shape. We find that structural phylogenetics is best employed where structures have very similar lengths, and that shape fluctuations generated during molecular dynamics simulations impact pairwise comparisons, but not so drastically as to eliminate evolutionary signal. Second, we address the absence of statistical support for structural phylogeny. We present a method for assessing confidence in a structural phylogeny using shape fluctuations generated via molecular dynamics or Monte Carlo simulations of proteins. Our approach will aid the evolutionary reconstruction of relationships across structurally defined protein superfamilies. With the Protein Data Bank now containing in excess of 158,000 entries (December 2019), we predict that structural phylogenetics will become a useful tool for ordering the protein universe.
Collapse
Affiliation(s)
- Ashar J Malik
- Centre for Theoretical Chemistry and Physics, School of Natural and Computational Sciences, Massey University Auckland, Auckland, New Zealand.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Anthony M Poole
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Digital Life Institute, University of Auckland, Auckland, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Jane R Allison
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Digital Life Institute, University of Auckland, Auckland, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Lundin D, Berggren G, Logan DT, Sjöberg BM. The origin and evolution of ribonucleotide reduction. Life (Basel) 2015; 5:604-36. [PMID: 25734234 PMCID: PMC4390871 DOI: 10.3390/life5010604] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022] Open
Abstract
Ribonucleotide reduction is the only pathway for de novo synthesis of deoxyribonucleotides in extant organisms. This chemically demanding reaction, which proceeds via a carbon-centered free radical, is catalyzed by ribonucleotide reductase (RNR). The mechanism has been deemed unlikely to be catalyzed by a ribozyme, creating an enigma regarding how the building blocks for DNA were synthesized at the transition from RNA- to DNA-encoded genomes. While it is entirely possible that a different pathway was later replaced with the modern mechanism, here we explore the evolutionary and biochemical limits for an origin of the mechanism in the RNA + protein world and suggest a model for a prototypical ribonucleotide reductase (protoRNR). From the protoRNR evolved the ancestor to modern RNRs, the urRNR, which diversified into the modern three classes. Since the initial radical generation differs between the three modern classes, it is difficult to establish how it was generated in the urRNR. Here we suggest a model that is similar to the B12-dependent mechanism in modern class II RNRs.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Gustav Berggren
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Bhatia C, Oerum S, Bray J, Kavanagh KL, Shafqat N, Yue W, Oppermann U. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chem Biol Interact 2014; 234:114-25. [PMID: 25526675 DOI: 10.1016/j.cbi.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/15/2014] [Accepted: 12/04/2014] [Indexed: 01/26/2023]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles.
Collapse
Affiliation(s)
- Chitra Bhatia
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephanie Oerum
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - James Bray
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Kathryn L Kavanagh
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Naeem Shafqat
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wyatt Yue
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
6
|
Lundin D, Poole AM, Sjöberg BM, Högbom M. Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J Biol Chem 2012; 287:20565-75. [PMID: 22535960 PMCID: PMC3370241 DOI: 10.1074/jbc.m112.367458] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/23/2012] [Indexed: 11/06/2022] Open
Abstract
In the postgenomic era, bioinformatic analysis of sequence similarity is an immensely powerful tool to gain insight into evolution and protein function. Over long evolutionary distances, however, sequence-based methods fail as the similarities become too low for phylogenetic analysis. Macromolecular structure generally appears better conserved than sequence, but clear models for how structure evolves over time are lacking. The exponential growth of three-dimensional structural information may allow novel structure-based methods to drastically extend the evolutionary time scales amenable to phylogenetics and functional classification of proteins. To this end, we analyzed 80 structures from the functionally diverse ferritin-like superfamily. Using evolutionary networks, we demonstrate that structural comparisons can delineate and discover groups of proteins beyond the "twilight zone" where sequence similarity does not allow evolutionary analysis, suggesting that considerable and useful evolutionary signal is preserved in three-dimensional structures.
Collapse
Affiliation(s)
- Daniel Lundin
- From the Department of Biochemistry and Biophysics, Stockholm University Stockholm, 106 91 Stockholm, Sweden
- the Science for Life Laboratory, Royal Institute of Technology, Box 1031, 171 21 Solna, Sweden, and
| | - Anthony M. Poole
- the School of Biological Sciences and
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Britt-Marie Sjöberg
- From the Department of Biochemistry and Biophysics, Stockholm University Stockholm, 106 91 Stockholm, Sweden
| | - Martin Högbom
- From the Department of Biochemistry and Biophysics, Stockholm University Stockholm, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M. The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol 2012; 212:27-40. [PMID: 22045753 DOI: 10.1530/joe-11-0315] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disturbed action of sex steroid hormones, i.e. androgens and estrogens, is involved in the pathogenesis of various severe diseases in humans. Interestingly, recent studies have provided data further supporting the hypothesis that the circulating hormone concentrations do not explain all physiological and pathological processes observed in hormone-dependent tissues, while the intratissue sex steroid concentrations are determined by the expression of steroid metabolising enzymes in the neighbouring cells (paracrine action) and/or by target cells themselves (intracrine action). This local sex steroid production is also a valuable treatment option for developing novel therapies against hormonal diseases. Hydroxysteroid (17β) dehydrogenases (HSD17Bs) compose a family of 14 enzymes that catalyse the conversion between the low-active 17-keto steroids and the highly active 17β-hydroxy steroids. The enzymes frequently expressed in sex steroid target tissues are, thus, potential drug targets in order to lower the local sex steroid concentrations. The present review summarises the recent data obtained for the role of HSD17B1, HSD17B2, HSD17B7 and HSD17B12 enzymes in various metabolic pathways and their physiological and pathophysiological roles as revealed by the recently generated genetically modified mouse models. Our data, together with that provided by others, show that, in addition to having a role in sex steroid metabolism, several of these HSD17B enzymes possess key roles in other metabolic processes: for example, HD17B7 is essential for cholesterol biosynthesis and HSD17B12 is involved in elongation of fatty acids. Additional studies in vitro and in vivo are to be carried out in order to fully define the metabolic role of the HSD17B enzymes and to evaluate their value as drug targets.
Collapse
Affiliation(s)
- Taija Saloniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
8
|
Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC. Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 2009; 4:e7123. [PMID: 19771161 PMCID: PMC2740830 DOI: 10.1371/journal.pone.0007123] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/24/2009] [Indexed: 02/06/2023] Open
Abstract
Background Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD) axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules. Methodology/Principal Findings With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum. Conclusions/Significance The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene.
Collapse
Affiliation(s)
- Acely Garza-Garcia
- Division of Molecular Structure, MRC National Institute for Medical Research, London, United Kingdom
| | - Richard Harris
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Diego Esposito
- Division of Molecular Structure, MRC National Institute for Medical Research, London, United Kingdom
| | - Phillip B. Gates
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Paul C. Driscoll
- Division of Molecular Structure, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Vicker N, Sharland CM, Heaton WB, Gonzalez AMR, Bailey HV, Smith A, Springall JS, Day JM, Tutill HJ, Reed MJ, Purohit A, Potter BVL. The design of novel 17beta-hydroxysteroid dehydrogenase type 3 inhibitors. Mol Cell Endocrinol 2009; 301:259-65. [PMID: 18775469 DOI: 10.1016/j.mce.2008.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 11/17/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.
Collapse
Affiliation(s)
- Nigel Vicker
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd., University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Contemporary protein architectures can be regarded as molecular fossils, historical imprints that mark important milestones in the history of life. Whereas sequences change at a considerable pace, higher-order structures are constrained by the energetic landscape of protein folding, the exploration of sequence and structure space, and complex interactions mediated by the proteostasis and proteolytic machineries of the cell. The survey of architectures in the living world that was fuelled by recent structural genomic initiatives has been summarized in protein classification schemes, and the overall structure of fold space explored with novel bioinformatic approaches. However, metrics of general structural comparison have not yet unified architectural complexity using the 'shared and derived' tenet of evolutionary analysis. In contrast, a shift of focus from molecules to proteomes and a census of protein structure in fully sequenced genomes were able to uncover global evolutionary patterns in the structure of proteins. Timelines of discovery of architectures and functions unfolded episodes of specialization, reductive evolutionary tendencies of architectural repertoires in proteomes and the rise of modularity in the protein world. They revealed a biologically complex ancestral proteome and the early origin of the archaeal lineage. Studies also identified an origin of the protein world in enzymes of nucleotide metabolism harbouring the P-loop-containing triphosphate hydrolase fold and the explosive discovery of metabolic functions that recapitulated well-defined prebiotic shells and involved the recruitment of structures and functions. These observations have important implications for origins of modern biochemistry and diversification of life.
Collapse
|
11
|
Jiang H, Blouin C. Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions. BMC Bioinformatics 2007; 8:444. [PMID: 18005425 PMCID: PMC2225427 DOI: 10.1186/1471-2105-8-444] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In protein evolution, the mechanism of the emergence of novel protein domain is still an open question. The incremental growth of protein variable regions, which was produced by stochastic insertions, has the potential to generate large and complex sub-structures. In this study, a deterministic methodology is proposed to reconstruct phylogenies from protein structures, and to infer insertion events in protein evolution. The analysis was performed on a broad range of SCOP domain families. RESULTS Phylogenies were reconstructed from protein 3D structural data. The phylogenetic trees were used to infer ancestral structures with a consensus method. From these ancestral reconstructions, 42.7% of the observed insertions are nested insertions, which locate in previous insert regions. The average size of inserts tends to increase with the insert rank or total number of insertions in the variable regions. We found that the structures of some nested inserts show complex or even domain-like fold patterns with helices, strands and loops. Furthermore, a basal level of structural innovation was found in inserts which displayed a significant structural similarity exclusively to themselves. The beta-Lactamase/D-ala carboxypeptidase domain family is provided as an example to illustrate the inference of insertion events, and how the incremental growth of a variable region is capable to generate novel structural patterns. CONCLUSION Using 3D data, we proposed a method to reconstruct phylogenies. We applied the method to reconstruct the sequences of insertion events leading to the emergence of potentially novel structural elements within existing protein domains. The results suggest that structural innovation is possible via the stochastic process of insertions and rapid evolution within variable regions where inserts tend to be nested. We also demonstrate that the structure-based phylogeny enables the study of new questions relating to the evolution of protein domain and biological function.
Collapse
Affiliation(s)
- Haiyan Jiang
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 1W5, Canada.
| | | |
Collapse
|
12
|
Abstract
The presence of sex steroids and their receptors has been demonstrated in all vertebrate groups from Agnatha to Mammalia but not in invertebrates. In genomic analyses of urochordates, cytochrome P450 (CYP) genes important for biosynthesis of sex steroids are absent. In the present study, we confirmed the presence of estrogen, androgen, and progesterone by using radioimmunoassay in gonads of amphioxus, Branchiostoma belcheri, which is considered to be evolutionarily closer to vertebrates than other invertebrates. Furthermore, CYP genes encoding CYP11A, CYP17, and CYP19 and transcripts for 17beta-hydroxysteroid dehydrogenase were cloned from amphioxus ovaries. Among invertebrates, the presence of hydroxysteroid dehydrogenase enzymes and metabolized steroids was shown in paracytic Taenia and corals. However, CYPs metabolizing sex steroids have not been demonstrated in invertebrates, nor has an attempt been made to consider the entire pathway from cholesterol to estrogen. This study is the first evidence to suggest the presence of CYP enzymes in sex steroid production in invertebrates.
Collapse
Affiliation(s)
- Takanobu Mizuta
- Center for Advanced Marine Research, Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan
| | | |
Collapse
|
13
|
Mindnich R, Adamski J. Functional aspects of 17beta-hydroxysteroid dehydrogenase 1 determined by comparison to a closely related retinol dehydrogenase. J Steroid Biochem Mol Biol 2007; 104:334-9. [PMID: 17467981 DOI: 10.1016/j.jsbmb.2007.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Determining the functional aspects of a gene or protein is a difficult and time-consuming process. De novo analysis is surely the hardest and so it is often quite useful to start with a comparison to functionally or structurally related proteins. Although 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1) can hardly be called a new protein but rather the best characterized among the family of 17beta-HSDs some aspects of structure-function relationships remain unclear. We have sought new aspects of 17beta-HSD 1 function through a comparison with its closest homolog, a photoreceptor-associated retinol dehydrogenase (prRDH). Overall amino acid identity and size of the proteins are highly conserved, but major differences occur in the C-termini, where prRDH, but not 17beta-HSD 1, harbors motifs indicative of membrane localization. To gain insight into substrate discrimination by prRDH and 17beta-HSD 1, we constructed 3D-structure models of the corresponding zebrafish enzymes. Investigation of the substrate binding site revealed a few identical amino acids, and suggested a role for G143 in zebrafish 17beta-HSD 1 and M146 and M147 in the two zebrafish paralogs prRDH 1 and prRDH 2, respectively, in substrate specificity. Activity measurements of modified proteins in transiently transfected intact HEK 293 cells hint at a putative role of these amino acids in discrimination between steroid and retinoid substrates.
Collapse
Affiliation(s)
- R Mindnich
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | |
Collapse
|
14
|
Kaiser H, Richter U, Keiner R, Brabant A, Hause B, Dräger B. Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts. PLANTA 2006; 225:127-37. [PMID: 16845528 DOI: 10.1007/s00425-006-0335-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 05/16/2006] [Indexed: 05/10/2023]
Abstract
Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells.
Collapse
Affiliation(s)
- Heike Kaiser
- Institute of Pharmaceutical Biology and Pharmacology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Blomquist CH, Lima PH, Tarrant AM, Atkinson MJ, Atkinson S. 17Beta-hydroxysteroid dehydrogenase (17beta-HSD) in scleractinian corals and zooxanthellae. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:397-403. [PMID: 16458559 DOI: 10.1016/j.cbpb.2005.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 12/12/2005] [Accepted: 12/18/2005] [Indexed: 11/19/2022]
Abstract
Steroid metabolism studies have yielded evidence of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17beta-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17Beta-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from Montipora capitata. More specifically, 17beta-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and Tubastrea coccinea (three summers, three winters) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP+/NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17beta-HSD and are consistent with the presence of more than one isoform of the enzyme.
Collapse
|
16
|
Dräger B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. PHYTOCHEMISTRY 2006; 67:327-37. [PMID: 16426652 DOI: 10.1016/j.phytochem.2005.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
Two stereospecific oxidoreductases constitute a branch point in tropane alkaloid metabolism. Products of tropane metabolism are the alkaloids hyoscyamine, scopolamine, cocaine, and polyhydroxylated nortropane alkaloids, the calystegines. Both tropinone reductases reduce the precursor tropinone to yield either tropine or pseudotropine. In Solanaceae, tropine is incorporated into hyoscyamine and scopolamine; pseudotropine is the first specific metabolite on the way to the calystegines. Isolation, cloning and heterologous expression of both tropinone reductases enabled kinetic characterisation, protein crystallisation, and structure elucidation. Stereospecificity of reduction is achieved by binding tropinone in the respective enzyme active centre in opposite orientation. Immunolocalisation of both enzyme proteins in cultured roots revealed a tissue-specific protein accumulation. Metabolite flux through both arms of the tropane alkaloid pathway appears to be regulated by the activity of both enzymes and by their access to the precursor tropinone. Both tropinone reductases are NADPH-dependent short-chain dehydrogenases with amino acid sequence similarity of more than 50% suggesting their descent from a common ancestor. Putative tropinone reductase sequences annotated in plant genomes other that Solanaceae await functional characterisation.
Collapse
Affiliation(s)
- Birgit Dräger
- Faculty of Pharmacy, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle/Saale, Germany.
| |
Collapse
|
17
|
Garau G, Di Guilmi AM, Hall BG. Structure-based phylogeny of the metallo-beta-lactamases. Antimicrob Agents Chemother 2005; 49:2778-84. [PMID: 15980349 PMCID: PMC1168685 DOI: 10.1128/aac.49.7.2778-2784.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metallo-beta-lactamases fall into two groups: Ambler class B subgroups B1 and B2 and Ambler class B subgroup B3. The two groups are so distantly related that there is no detectable sequence homology between members of the two different groups, but homology is clearly detectable at the protein structure level. The multiple structure alignment program MAPS has been used to align the structures of eight metallo-beta-lactamases and five structurally homologous proteins from the metallo-beta-lactamase superfamily, and that alignment has been used to construct a phylogenetic tree of the metallo-beta-lactamases. The presence of genes from Eubacteria, Archaebacteria, and Eukaryota on that tree is consistent with a very ancient origin of the metallo-beta-lactamase family.
Collapse
Affiliation(s)
- Gianpiero Garau
- Laboratoire de Cristallographie Macromoléulaire, Institut de Biologie Structural Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France
| | | | | |
Collapse
|
18
|
|
19
|
Abstract
Human 17beta-hydroxysteroid dehydrogenase type 10 (17beta-HSD10) is a mitochondrial enzyme encoded by the SCHAD gene, which escapes chromosome X inactivation. 17Beta-HSD10/SCHAD mutations cause a spectrum of clinical conditions, from mild mental retardation to progressive infantile neurodegeneration. 17Beta-HSD10/SCHAD is essential for the metabolism of isoleucine and branched-chain fatty acids. It can inactivate 17beta-estradiol and steroid modulators of GABA(A) receptors, and convert 5alpha-androstanediol into 5alpha-dihydrotestosterone (DHT). Certain malignant prostatic epithelial cells contain high levels of 17beta-HSD10, generating 5alpha-DHT in the absence of testosterone. 17Beta-HSD10 has an affinity for amyloid-beta peptide, and might be linked to the mitochondrial dysfunction seen in Alzheimer's disease. This versatile enzyme might provide a new drug target for neuronal excitability control and for intervention in Alzheimer's disease and certain cancers.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
20
|
Pletnev VZ, Duax WL. Rational proteomics IV: modeling the primary function of the mammalian 17beta-hydroxysteroid dehydrogenase type 8. J Steroid Biochem Mol Biol 2005; 94:327-35. [PMID: 15857752 DOI: 10.1016/j.jsbmb.2004.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
Significant sequence homology has been detected between prokaryotic beta-ketoacyl-[acyl carrier protein] reductases (BKR) and eukaryotic 17beta-hydroxysteroid dehydrogenases type 8 (17beta-HSD_8). Three-dimensional models of ternary complexes of human 17beta-HSD_8 with NAD cofactor and two chemically distinct substrates, the BKR substrate {CH3-(CH2)(12)-CO-CH(2)-CO-S-[ACP]} and the HSD substrate {estradiol} have been constructed (the atomic coordinates are available on request; e-mail: pletnev@hwi.buffalo.edu). The more extensive and specific interactions of 17beta-HSD_8 with the BKR substrate compared to interactions with estradiol raise a serious question about the enzyme's primary function in vivo and suggest that it is likely to be involved in the regulation of fatty acid metabolism rather than in the steroid-dependent activity that has been demonstrated in vitro.
Collapse
Affiliation(s)
- Vladimir Z Pletnev
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, SUNY at Buffalo, NY 14203, USA.
| | | |
Collapse
|
21
|
Hoffmeister M, Piotrowski M, Nowitzki U, Martin W. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 2004; 280:4329-38. [PMID: 15569691 DOI: 10.1074/jbc.m411010200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute of Botany III, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
The serine beta-lactamases present a special problem for phylogenetics because they have diverged so much that they fall into three classes that share no detectable sequence homology among themselves. Here we offer a solution to the problem in the form of two phylogenies that are based on a protein structure alignment. In the first, structural alignments were used as a guide for aligning amino acid sequences and in the second, the average root mean square distances between the alpha carbons of the proteins were used to create a pairwise distance matrix from which a neighbor-joining phylogeny was created. From those phylogenies, we show that the Class A and Class D beta-lactamases are sister taxa and that the divergence of the Class C beta-lactamases pre-dated the divergence of the Class A and Class D beta-lactamases.
Collapse
Affiliation(s)
- Barry G Hall
- Biology Department, Hutchison Hall, University of Rochester, Rochester, NY 14627-0211, USA.
| | | |
Collapse
|
23
|
Mindnich R, Möller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2004; 218:7-20. [PMID: 15130507 DOI: 10.1016/j.mce.2003.12.006] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/09/2003] [Accepted: 12/15/2003] [Indexed: 11/17/2022]
Abstract
The biological activity of steroid hormones is regulated at the pre-receptor level by several enzymes including 17 beta-hydroxysteroid dehydrogenases (17 beta -HSD). The latter are present in many microorganisms, invertebrates and vertebrates. Dysfunctions in human 17 beta-hydroxysteroid dehydrogenases result in disorders of biology of reproduction and neuronal diseases, the enzymes are also involved in the pathogenesis of various cancers. 17 beta-hydroxysteroid dehydrogenases reveal a remarkable multifunctionality being able to modulate concentrations not only of steroids but as well of fatty and bile acids. Current knowledge on genetics, biochemistry and medical implications is presented in this review.
Collapse
Affiliation(s)
- R Mindnich
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
24
|
He XY, Yang YZ, Peehl DM, Lauderdale A, Schulz H, Yang SY. Oxidative 3alpha-hydroxysteroid dehydrogenase activity of human type 10 17beta-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 2003; 87:191-8. [PMID: 14672739 DOI: 10.1016/j.jsbmb.2003.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vitro enzyme assays have demonstrated that human type 10 17beta-hydroxysteroid dehydrogenase (17beta-HSD10) catalyzes the oxidation of 5alpha-androstane-3alpha,17beta-diol (adiol), an almost inactive androgen, to dihydrotestosterone (DHT) rather than androsterone or androstanedione. To further investigate the role of this steroid-metabolizing enzyme in intact cells, we produced stable transfectants expressing 17beta-HSD10 or its catalytically inactive Y168F mutant in human embryonic kidney (HEK) 293 cells. It was found that DHT levels in HEK 293 cells expressing 17beta-HSD10, but not its catalytically inactive mutant, will dramatically increase if adiol is added to culture media. Moreover, certain malignant prostatic epithelial cells have more 17beta-HSD10 than normal controls, and can generate DHT, the most potent androgen, from adiol. This event might promote prostate cancer growth. Analysis of the 17beta-HSD10 sequence shows that this enzyme does not have any ER retention signal or transmembrane segments and has not originated by divergence from a retinol dehydrogenase. The data suggest that the unique mitochondrial location of this HSD [Eur. J. Biochem. 268 (2001) 4899] does not prevent it from oxidizing the 3alpha-hydroxyl group of a C19 sterol in living cells. The experimental results lead to the conclusion that mitochondrial 17beta-HSD10 plays a significant part in a non-classical androgen synthesis pathway along with microsomal retinol dehydrogenases.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
25
|
Caetano-Anollés G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 2002; 30:2575-87. [PMID: 12034847 PMCID: PMC117177 DOI: 10.1093/nar/30.11.2575] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 03/19/2002] [Accepted: 04/02/2002] [Indexed: 11/12/2022] Open
Abstract
The elucidation of ribosomal structure has shown that the function of ribosomes is fundamentally confined to dynamic interactions established between the RNA components of the ribosomal ensemble. These findings now enable a detailed analysis of the evolution of ribosomal RNA (rRNA) structure. The origin and diversification of rRNA was studied here using phylogenetic tools directly at the structural level. A rooted universal tree was reconstructed from the combined secondary structures of large (LSU) and small (SSU) subunit rRNA using cladistic methods and considerations in statistical mechanics. The evolution of the complete repertoire of structural ribosomal characters was formally traced lineage-by-lineage in the tree, showing a tendency towards molecular simplification and a homogeneous reduction of ribosomal structural change with time. Character tracing revealed patterns of evolution in inter-subunit bridge contacts and tRNA-binding sites that were consistent with the proposed coupling of tRNA translocation and subunit movement. These patterns support the concerted evolution of tRNA-binding sites in the two subunits and the ancestral nature and common origin of certain structural ribosomal features, such as the peptidyl (P) site, the functional relay of the penultimate stem helix of SSU rRNA, and other structures participating in ribosomal dynamics. Overall results provide a rare insight into the evolution of ribosomal structure.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Laboratory of Molecular Ecology and Evolution and Division of Molecular Biology, Department of Biology, University of Oslo, N-0316 Oslo, Norway and Vital NRG, Knoxville, TN, USA
| |
Collapse
|