1
|
Wang Z, Song M, Lyu Q, Ying J, Wu Q, Song F, Wang X, Jiang L, Zhou Y, Sun C, Wang S, Yao H, Zhang Z, Song X, Luo H. Development and evaluation of a panel of newly screened Y chromosome InDels for inferring paternal ancestry information in Southwest China. Int J Legal Med 2024:10.1007/s00414-024-03344-7. [PMID: 39377930 DOI: 10.1007/s00414-024-03344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Y-InDels (insertions/deletions) are genetic markers which are extremely understudied. It is unknown whether this type of markers can be utilized for genetic ancestry inference. We have developed an innovative Y chromosome ancestry inference system tailored for forensic applications. This panel amplifies 21 Y chromosome loci, encompassing Y-InDels and Y-SNPs (Single Nucleotide Polymorphism), utilizing the capillary electrophoresis (CE) platform. The system performed well at DNA concentrations greater than 0.125 ng/ul and produced accurate results at a 1:100 mixing ratio of male and female DNA. The Cumulative probability of matching (CPM) was between 0.95 and 0.97 in the experimental population. The system's efficacy in inferring ancestral origins was demonstrated through intercontinental population discrimination, revealing high discrimination power between African and East Asian populations. Population genetic analyses conducted on Han, Qiang and Hui populations in Southwest China, where the smallest FST value was 0.0002 between Han Chinese in Beijing (from 1000 Genomes Project) and Qiang Chinese from Sichuan (CQSC). Phylogenetic tree construction further illuminated distinct haplotypes among populations, with ethnically unique haplotypes observed in 34.6% of Hui and 7.1% of Qiang populations. K-fold cross-validation show the system's inference abilities at the intercontinental level. In addition, our investigations identified potential associations between the Y-InDel locus Y: 15,385,547 (GRCh37) and haplogroup R1a1a1b2a2- Z2124, as well as locus Y: 13,990,180 (GRCh37) and haplogroup F-M89. In conclusion, we have established a Y-chromosome inference system tailored for grassroots-level application, underscoring the value of incorporating Y-InDel markers in forensic analyses.
Collapse
Affiliation(s)
- Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Qiang Lyu
- Department of Clinical Laboratory, People's Hospital of Beichuan Qiang Autonomous County, Beichuan, Sichuan, 622750, China
| | - Jun Ying
- Department of Clinical Laboratory, Santai People's Hospital, Santai, Sichuan, 621100, China
| | - Qian Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - XinDi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Chaoran Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Zhirui Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Padilla-Iglesias C, Derkx I. Hunter-gatherer genetics research: Importance and avenues. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e15. [PMID: 38516374 PMCID: PMC10955370 DOI: 10.1017/ehs.2024.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Major developments in the field of genetics in the past few decades have revolutionised notions of what it means to be human. Although currently only a few populations around the world practise a hunting and gathering lifestyle, this mode of subsistence has characterised members of our species since its very origins and allowed us to migrate across the planet. Therefore, the geographical distribution of hunter-gatherer populations, dependence on local ecosystems and connections to past populations and neighbouring groups have provided unique insights into our evolutionary origins. However, given the vulnerable status of hunter-gatherers worldwide, the development of the field of anthropological genetics requires that we reevaluate how we conduct research with these communities. Here, we review how the inclusion of hunter-gatherer populations in genetics studies has advanced our understanding of human origins, ancient population migrations and interactions as well as phenotypic adaptations and adaptability to different environments, and the important scientific and medical applications of these advancements. At the same time, we highlight the necessity to address yet unresolved questions and identify areas in which the field may benefit from improvements.
Collapse
Affiliation(s)
| | - Inez Derkx
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Dai SS, Sulaiman X, Isakova J, Xu WF, Abdulloevich NT, Afanasevna ME, Ibrohimovich KB, Chen X, Yang WK, Wang MS, Shen QK, Yang XY, Yao YG, Aldashev AA, Saidov A, Chen W, Cheng LF, Peng MS, Zhang YP. The genetic echo of the Tarim mummies in modern Central Asians. Mol Biol Evol 2022; 39:6675590. [PMID: 36006373 PMCID: PMC9469894 DOI: 10.1093/molbev/msac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria–Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian–related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.
Collapse
Affiliation(s)
- Shan Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xierzhatijiang Sulaiman
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Jainagul Isakova
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Wei Fang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Najmudinov Tojiddin Abdulloevich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Manilova Elena Afanasevna
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Khudoidodov Behruz Ibrohimovich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wei Kang Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ming Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Quan Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xing Yan Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resource, Yunnan Minzu University, Kunming 650504, China.,School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, China
| | - Yong Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Almaz A Aldashev
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Abdusattor Saidov
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Wei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650224, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650224, China
| | - Lu Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Min Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
de Knijff P. On the Forensic Use of Y-Chromosome Polymorphisms. Genes (Basel) 2022; 13:genes13050898. [PMID: 35627283 PMCID: PMC9141910 DOI: 10.3390/genes13050898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the use of Y-chromosome polymorphisms forms an essential part of many forensic DNA investigations. However, this was not always the case. Only since 1992 have we seen that some forensic scientists started to have an interest in this chromosome. In this review, I will sketch a brief history focusing on the forensic use of Y-chromosome polymorphisms. Before describing the various applications of short-tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) on the Y-chromosome, I will discuss a few often ignored aspects influencing proper use and interpretation of Y-chromosome information: (i) genotyping Y-SNPs and Y-STRs, (ii) Y-STR haplotypes shared identical by state (IBS) or identical by descent (IBD), and (iii) Y-haplotype database frequencies.
Collapse
Affiliation(s)
- Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
5
|
Reyes-Madrid M, Flores-Alvarado S, Pezo-Valderrama P, Orellana-Soto M, Apata M, Moraga M, de Saint Pierre M. An approach on the migratory processes in the north of Chile based on Y chromosome analysis. Am J Hum Biol 2022; 34:e23736. [PMID: 35263492 DOI: 10.1002/ajhb.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Northern Chile is an area characterized by a complex cultural and demographic trajectory. During the last few centuries, this complex trajectory has become the destination of intra- and intercontinental migratory waves. In this study, we analyzed the Y chromosome to evaluate how migratory and admixture patterns have affected the genetic composition of the populations in northern Chile compared with other populations of the country. METHODS A total of 311 people from urban (Antofagasta and Calama), rural (Azapa and Camarones), and Native (Aymara and Atacameño) populations from northern Chile were characterized by 26 SNPs and the STR DYS393 of the Y chromosome, along with 69 individuals from Native populations (Mapuche, Pehuenche, and Huilliche) from southern Chile. In addition to characterizing the paternal lineages, multivariate analyses were performed to compare with published data from other Chilean populations. RESULTS Both the Antofagasta and Calama populations show differences compared with the rest of the Chilean population. On one side, Antofagasta shows a high diversity of non-Amerindian lineages, including the highest value for haplogroup I (12%) for all Chileans populations. Otherwise, Calama has the highest value of any Chilean urban population (31.9%) for Amerindian lineages, including the only Q-M3 sub-lineage detected in the entire sample. Regarding the Native population, Aymara presents the highest percentage of Q-M3 (94.4%). CONCLUSIONS The Y chromosome haplogroup distribution allowed us to identify recent migratory processes typical of the northern populations studied. These have shaped the demographic and cultural dynamics of local and migrant groups in the territory.
Collapse
Affiliation(s)
- Margarita Reyes-Madrid
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Sandra Flores-Alvarado
- Programa de Bioestadística, Instituto de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Michael Orellana-Soto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Apata
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Moraga
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Lassen O, Tabares S, Bertolotto P, Ojeda S, Sembaj A. Preliminary study between Y chromosome haplogroups and chagasic cardiomyopathy manifestations in patients with Chagas disease. Rev Soc Bras Med Trop 2020; 53:e20190566. [PMID: 33174952 PMCID: PMC7670740 DOI: 10.1590/0037-8682-0566-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Among patients with Chagas disease, men have a higher risk of worse pathological symptoms than women. We aimed to explore the role of the Y chromosome in men diagnosed with Chagas disease and assess the relationship between their ancestry and disease status. METHODS In this comparative study, we analyzed 150 men with unrelated non-chagasic disease (nCD) and 150 men with unrelated chagasic disease (CD). We assessed the serological diagnosis of Chagas disease, biochemical parameters, thoracic X-rays, electrocardiogram, and transthoracic echocardiography and determined the haplogroup by analyzing a set of 17 microsatellites from the Y chromosome. We examined the associations between common Y chromosome haplogroups and the clinical parameters of risk by logistic regression. RESULTS For all patients, the most common haplogroups were R1b (43%), G2a (9%), and E1b1b (9%). The R1b and G2a haplogroup was more frequent in men with nCD and CD, respectively. As expected, we observed a high proportion of symptomatic patients in the CD group independent of the haplogroups. Men from both groups classified as having the R1b haplogroup showed less clinical evidence of disease. Multivariate analysis showed that CD patients without R1b were about five times more likely to have a cardio-thorax index >0.5% (OR [odds ratio] = 5.1, 95% CI [confidence interval] = 3.31-8.17). Men without the R1b haplogroup were 2.5 times more likely to show EcoCG alterations (OR = 2.50, 95% CI = 0.16-3.94). CONCLUSIONS Our results provided evidence that the R1b haplogroup may have a potential protective cardiovascular effect for its carriers.
Collapse
Affiliation(s)
- Oscar Lassen
- Cordoba Hospital, Semiology Department UHMI 3, Chagas and Hypertension Office, Córdoba, Argentina
| | - Sandra Tabares
- School of Medicine, Biochemistry and Molecular Biology Department, UNC, Cordoba, Argentina
| | | | - Silvia Ojeda
- School of Mathematics, Astronomy and Physics, UNC, Córdoba, Argentina
| | - Adela Sembaj
- School of Medicine, Biochemistry and Molecular Biology Department, UNC, Cordoba, Argentina
| |
Collapse
|
7
|
García-Fernández C, Font-Porterias N, Kučinskas V, Sukarova-Stefanovska E, Pamjav H, Makukh H, Dobon B, Bertranpetit J, Netea MG, Calafell F, Comas D. Sex-biased patterns shaped the genetic history of Roma. Sci Rep 2020; 10:14464. [PMID: 32879340 PMCID: PMC7468237 DOI: 10.1038/s41598-020-71066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The Roma population is a European ethnic minority characterized by recent and multiple dispersals and founder effects. After their origin in South Asia around 1,500 years ago, they migrated West. In Europe, they diverged into ethnolinguistically distinct migrant groups that spread across the continent. Previous genetic studies based on genome-wide data and uniparental markers detected Roma founder events and West-Eurasian gene flow. However, to the best of our knowledge, it has not been assessed whether these demographic processes have equally affected both sexes in the population. The present study uses the largest and most comprehensive dataset of complete mitochondrial and Y chromosome Roma sequences to unravel the sex-biased patterns that have shaped their genetic history. The results show that the Roma maternal genetic pool carries a higher lineage diversity from South Asia, as opposed to a single paternal South Asian lineage. Nonetheless, the European gene flow events mainly occurred through the maternal lineages; however, a signal of this gene flow is also traceable in the paternal lineages. We also detect a higher female migration rate among European Roma groups. Altogether, these results suggest that sociocultural factors influenced the emergence of sex-biased genetic patterns at global and local scales in the Roma population through time.
Collapse
Affiliation(s)
- C García-Fernández
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Biomedical Science Institute, Vilnius University, Vilnius, Lithuania
| | - E Sukarova-Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Academy of Sciences and Arts of the Republic of North Macedonia - MASA, Skopje, Republic of North Macedonia
| | - H Pamjav
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - H Makukh
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - B Dobon
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.,Department of Human Genetics, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - F Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - D Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Naidoo T, Xu J, Vicente M, Malmström H, Soodyall H, Jakobsson M, Schlebusch CM. Y-Chromosome Variation in Southern African Khoe-San Populations Based on Whole-Genome Sequences. Genome Biol Evol 2020; 12:1031-1039. [PMID: 32697300 PMCID: PMC7375190 DOI: 10.1093/gbe/evaa098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
Although the human Y chromosome has effectively shown utility in uncovering facets of human evolution and population histories, the ascertainment bias present in early Y-chromosome variant data sets limited the accuracy of diversity and TMRCA estimates obtained from them. The advent of next-generation sequencing, however, has removed this bias and allowed for the discovery of thousands of new variants for use in improving the Y-chromosome phylogeny and computing estimates that are more accurate. Here, we describe the high-coverage sequencing of the whole Y chromosome in a data set of 19 male Khoe-San individuals in comparison with existing whole Y-chromosome sequence data. Due to the increased resolution, we potentially resolve the source of haplogroup B-P70 in the Khoe-San, and reconcile recently published haplogroup A-M51 data with the most recent version of the ISOGG Y-chromosome phylogeny. Our results also improve the positioning of tentatively placed new branches of the ISOGG Y-chromosome phylogeny. The distribution of major Y-chromosome haplogroups in the Khoe-San and other African groups coincide with the emerging picture of African demographic history; with E-M2 linked to the agriculturalist Bantu expansion, E-M35 linked to pastoralist eastern African migrations, B-M112 linked to earlier east-south gene flow, A-M14 linked to shared ancestry with central African rainforest hunter-gatherers, and A-M51 potentially unique to the Khoe-San.
Collapse
Affiliation(s)
- Thijessen Naidoo
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Jingzi Xu
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
9
|
Parada R, Kawka M, Sacharczuk M, Urbański P, Jaszczak K. Cytogenetic and genetic study of a Y-linked microsatellite polymorphism in Polish Black-and-White cattle breed. Saudi J Biol Sci 2018; 25:1406-1410. [PMID: 30505189 PMCID: PMC6251987 DOI: 10.1016/j.sjbs.2017.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 11/26/2022] Open
Abstract
The aim of the current study was to characterize Polish Black-and-White cattle by morphological study of the Y chromosome. A total of 14 Y-linked microsatellites from UMN and INRA group were genotyped and assessed for polymorphism in a total 22 bulls. Cytogenetic studies in Polish Black-and-White bulls showed the existence of two morphological forms of Y chromosome. Among the 22 karyotypic analyzed bulls, 12 had submetacentric and 10 metacentric Y chromosome. The centromeric index of Y chromosome measured as percentage length of the p arm to total length ratio in the first case was 28 ± 3.97% and in the second 47 ± 7.28%, whereas the relative size of these chromosomes remained within the same range. Morphology and G- and C-banding patterns of both forms of Y chromosome were typical for other cattle breeds originating from Bos taurus. Out of a total of 14 microsatellite loci examined, 13 showed specific alleles for two forms of Y chromosome. In a pool of 62 alleles, 43 (69.3%) were common in the two groups of cattle, 19 (30.7%) can be considered as specific for the group; among them 8 were typical for metacentric group of Y chromosome and 11 for submetacentric.
Collapse
Affiliation(s)
- Rafał Parada
- Department of Genomics, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552 Magdalenka, Poland
| | - Magdalena Kawka
- Department of Genomics, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Department of Genomics, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552 Magdalenka, Poland
| | - Paweł Urbański
- Department of Genomics, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552 Magdalenka, Poland
| | - Kazimierz Jaszczak
- Department of Genomics, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
10
|
Oh S, Kim J, Park S, Kim S, Lee K, Lee YH, Lim SK, Lee H. Prediction of Y haplogroup by polymerase chain reaction-reverse blot hybridization assay. Genes Genomics 2018; 41:297-304. [PMID: 30456526 DOI: 10.1007/s13258-018-0761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The analysis of Y-SNPs from crime scene samples is helpful for investigators in narrowing down suspects by predicting biogeographical ancestry. OBJECTIVE In this study, a PCR-reverse blot hybridization assay (REBA) for predicting Y-chromosome haplogroups was employed to determine the major haplogroups worldwide, including AB, DE, C, C3, F, K, NO, O, O2, and O3 and evaluated. METHODS The REBA detects nine biallelic Y chromosome markers (M9, M89, M122, M145, M175, M214, M217, P31, and RPS4Y711) simultaneously using multiple probes. RESULTS The REBA for Y-single nucleotide polymorphisms (SNP) genotyping was performed using 40 DNA samples from Asians-14 Koreans, 10 Indonesians, six Chineses, six Thais, and four Mongolians. 40 Asian samples were identified as haplogroup O2 (40%), O3 (32.5%), C3 (17.5%), O (7.5%) and K (2.5%). These cases were confirmed by DNA sequence analysis (κ = 1.00; P < 0.001). CONCLUSION PCR-REBA is a rapid and reliable method that complements other SNP detection methods. Therefore, implementing REBA for Y-SNP testing may be a useful tool in predicting Y-chromosome haplogroups.
Collapse
Affiliation(s)
- Sehee Oh
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Seoyong Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kyungmyung Lee
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Yang-Han Lee
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea.
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
11
|
Karafet TM, Osipova LP, Savina OV, Hallmark B, Hammer MF. Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations. Am J Hum Biol 2018; 30:e23194. [PMID: 30408262 DOI: 10.1002/ajhb.23194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We examined autosomal genome-wide SNPs and Y-chromosome data from 15 Siberian and 12 reference populations to study the affinities of Siberian populations, and to address hypotheses about the origin of the Samoyed peoples. METHODS Samples were genotyped for 567 096 autosomal SNPs and 147 Y-chromosome polymorphic sites. For several analyses, we used 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples. To examine genetic relatedness among populations, we applied PCA, FST , TreeMix, and ADMIXTURE analyses. To explore the potential effect of demography and evolutionary processes, the distribution of ROH and IBD sharing within population were studied. RESULTS Analyses of autosomal and Y-chromosome data reveal high differentiation of the Siberian groups. The Siberian populations have a large proportion of their genome in ROH and IBD segments. Several populations (ie, Nganasans, Evenks, Yukagirs, and Koryaks) do not appear to have experienced admixture with other Siberian populations (ie, producing only positive f3), while for the other tested populations the composition of mixing sources always included Nganasans or Evenks. The Nganasans from the Taymyr Peninsula demonstrate the greatest level of shared shorter ROH and IBD with nearly all other Siberian populations. CONCLUSIONS Autosomal SNP and Y-chromosome data demonstrate that Samoyedic populations differ significantly in their genetic composition. Genetic relationship is observed only between Forest and Tundra Nentsi. Selkups are affiliated with the Kets from the Yenisey River, while the Nganasans are separated from their linguistic neighbors, showing closer affinities with the Evenks and Yukagirs.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, Arizona
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
13
|
De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations. Nat Commun 2018; 9:3040. [PMID: 30072691 PMCID: PMC6072799 DOI: 10.1038/s41467-018-05513-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
The human reference genome is used extensively in modern biological research. However, a single consensus representation is inadequate to provide a universal reference structure because it is a haplotype among many in the human population. Using 10× Genomics (10×G) “Linked-Read” technology, we perform whole genome sequencing (WGS) and de novo assembly on 17 individuals across five populations. We identify 1842 breakpoint-resolved non-reference unique insertions (NUIs) that, in aggregate, add up to 2.1 Mb of so far undescribed genomic content. Among these, 64% are considered ancestral to humans since they are found in non-human primate genomes. Furthermore, 37% of the NUIs can be found in the human transcriptome and 14% likely arose from Alu-recombination-mediated deletion. Our results underline the need of a set of human reference genomes that includes a comprehensive list of alternative haplotypes to depict the complete spectrum of genetic diversity across populations. The majority of the human reference genome assembly is represented as a single consensus haplotype. Here, Wong et al. analyze de novo assemblies of 17 diverse, haplotype-resolved genomes to gain insights into the structure of genetic diversity and compile a list of alternative haplotypes across populations.
Collapse
|
14
|
Genetic variation in populations from central Argentina based on mitochondrial and Y chromosome DNA evidence. J Hum Genet 2018; 63:493-507. [DOI: 10.1038/s10038-017-0406-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
15
|
Dingel MJ, Ostergren J, Heaney K, Koenig BA, McCormick J. "I don't have to know why it snows, I just have to shovel it!": Addiction Recovery, Genetic Frameworks, and Biological Citizenship. BIOSOCIETIES 2017; 12:568-587. [PMID: 29552089 PMCID: PMC5851475 DOI: 10.1057/s41292-017-0045-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gene has infiltrated the way citizens perceive themselves and their health. However, there is scant research that explores the ways genetic conceptions infiltrate individuals' understanding of their own health as it relates to a behavioral trait, like addiction. Do people seeking treatment for addiction ground their self-perception in biology in a way that shapes their experiences? We interviewed 63 participants in addiction treatment programs, asking how they make meaning of a genetic understanding of addiction in the context of their recovery, and in dealing with the stigma of addiction. About two-thirds of people in our sample did not find a genetic conception of addiction personally useful to them in treatment, instead believing that the cause was irrelevant to their daily struggle to remain abstinent. One-third of respondents believed that an individualized confirmation of a genetic predisposition to addiction would facilitate their dealing with feelings of shame and accept treatment. The vast majority of our sample believed that a genetic understanding of addiction would reduce the stigma associated with addiction, which demonstrates the perceived power of genetic explanations in U.S. society. Our results indicate that respondents (unevenly) ground their self-perception of themselves as an addicted individual in biology.
Collapse
Affiliation(s)
- Molly J Dingel
- University of Minnesota Rochester, 300 University Square, 111 South Broadway, Rochester, Minnesota, 55904, USA, , (507) 258-8206
| | - Jenny Ostergren
- University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, Michigan, USA,
| | - Kathleen Heaney
- Hennepin County Medical Center, 701 Park Avenue, Minneapolis, Minnesota, USA,
| | - Barbara A Koenig
- University of California, San Francisco, Institute for Health & Aging, 3333 Calif. St, Laurel Heights, San Francisco CA 94143,
| | - Jennifer McCormick
- Pennsylvania State University, 1743C Humanities, Hershey Medical Center, Hershey, PA 17033
| |
Collapse
|
16
|
The Connection of the Genetic, Cultural and Geographic Landscapes of Transoxiana. Sci Rep 2017; 7:3085. [PMID: 28596519 PMCID: PMC5465200 DOI: 10.1038/s41598-017-03176-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.
Collapse
|
17
|
Khan K, Siddiqi MH, Abbas M, Almas M, Idrees M. Forensic applications of Y chromosomal properties. Leg Med (Tokyo) 2017; 26:86-91. [DOI: 10.1016/j.legalmed.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023]
|
18
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
19
|
Piniewska D, Sanak M, Wojtas M, Polanska N. The genetic evidence for human origin of Jivaroan shrunken heads in collections from the Polish museums. Int J Legal Med 2016; 131:643-650. [PMID: 27640190 PMCID: PMC5388730 DOI: 10.1007/s00414-016-1448-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022]
Abstract
Advances in forensic identification using molecular genetics are helpful in resolving some historical mysteries. The aim of this study was to confirm the authenticity of shrunken-head artifacts exhibited by two Polish museums. Shrunken heads, known as tsantsas, were headhunting trophies of South American Indians (Jivaroan). A special preparation preserved their hair and facial appearance. However, it was quite common to offer counterfeit shrunken heads of sloths or monkeys to collectors of curiosities. We sampled small skin specimens of four shrunken-head skin from the museum collection from Warsaw and Krakow, Poland. Following genomic DNA isolation, highly polymorphic short tandem repeats were genotyped using a commercial chemistry and DNA sequencing analyzer. Haplogroups of human Y chromosome were identified. We obtained an informative genetic profile of genomic short tandem repeats from all the samples of shrunken heads. Moreover, amplification of amelogenin loci allowed for sex determination. All four studied shrunken heads were of human origin. In two ones, a shared Y-chromosome haplogroup Q characteristic for Indigenous Americans was detected. Another artifact was counterfeited because Y-chromosome haplogroup I2 was found, characteristic for the Southeastern European origin. Commercial genetic methods of identification can be applied successfully in studies on the origin and authenticity of some unusual collection items.
Collapse
Affiliation(s)
- Danuta Piniewska
- Present address: Department of Forensic Medicine, Jagiellonian University Medical College, Grzegorzecka Str. 16, 31-531, Krakow, Poland.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Wojtas
- Present address: Department of Forensic Medicine, Jagiellonian University Medical College, Grzegorzecka Str. 16, 31-531, Krakow, Poland
| | - Nina Polanska
- Present address: Department of Forensic Medicine, Jagiellonian University Medical College, Grzegorzecka Str. 16, 31-531, Krakow, Poland
| |
Collapse
|
20
|
Abstract
Rapidly mutating (RM) Y-STRs were recently identified and can help to differentiate between paternally related males in paternity and forensic casework. Normal Y-STRs are often used in casework due to their paternal inheritance, which can help to resolve kinship cases, and identify male components in male/female mixtures; however, more discriminating profiles are obtained if rapidly mutating Y-STRs are used. Previously two or three multiplex PCRs have been used to amplify 13 RM Y-STRs; here, an assay amplifying these 13 markers in a single multiplex PCR is described. Commercially available male control DNA samples have been genotyped during the validation of this assay, thus providing a tool for calibrating genotyping results. It is expected that the assay will provide a niche tool for genotyping casework samples.
Collapse
Affiliation(s)
- Sibte Hadi
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, UK.
| |
Collapse
|
21
|
Refaat AM. Pilot study for early prognosis of Azoospermia in relation to Y-STR Profiling. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Grine FE. The Late Quaternary Hominins of Africa: The Skeletal Evidence from MIS 6-2. AFRICA FROM MIS 6-2 2016. [DOI: 10.1007/978-94-017-7520-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Coevolution of genes and languages and high levels of population structure among the highland populations of Daghestan. J Hum Genet 2015; 61:181-91. [PMID: 26607180 DOI: 10.1038/jhg.2015.132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups. We found high levels of population structure in Daghestan consistent with the hypothesis of long-term isolation among populations of the highland Caucasus. Highland Daghestani populations exhibit extremely high levels of between-population diversity for all genetic systems tested, leading to some of the highest FST values observed for any region of the world. In addition, we find a significant positive correlation between gene and language diversity, suggesting that these two aspects of human diversity have coevolved as a result of historical patterns of social interaction among highland farmers at the community level. Finally, our data are consistent with the hypothesis that most Daghestanian-speaking groups descend from a common ancestral population (~6000-6500 years ago) that spread to the Caucasus by demic diffusion followed by population fragmentation and low levels of gene flow.
Collapse
|
24
|
Pliss L, Timša L, Rootsi S, Tambets K, Pelnena I, Zole E, Puzuka A, Sabule A, Rozane S, Lace B, Kucinskas V, Krumina A, Ranka R, Baumanis V. Y-Chromosomal Lineages of Latvians in the Context of the Genetic Variation of the Eastern-Baltic Region. Ann Hum Genet 2015; 79:418-30. [PMID: 26411886 DOI: 10.1111/ahg.12130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Variations of the nonrecombining Y-chromosomal region were investigated in 159 unrelated Baltic-speaking ethnic Latvians from four different geographic regions, using 28 biallelic markers and 12 short tandem repeats. Eleven different haplogroups (hgs) were detected in a regionally homogeneous Latvian population, among which N1c, R1a, and I1 cover more than 85% of its paternal lineages. When compared its closest geographic neighbors, the composition of the Latvian Y-chromosomal gene pool was found to be very similar to those of Lithuanians and Estonians. Despite the comparable frequency distribution of hg N1c in Latvians and Lithuanians with the Finno-Ugric-speaking populations from the Eastern coast of the Baltic Sea, the observed differences in allelic variances of N1c haplotypes between these two groups are in concordance with the previously stated hypothesis of different dispersal ways of this lineage in the region. More than a third of Latvian paternal lineages belong specifically to a recently defined R1a-M558 hg, indicating an influence from a common source within Eastern Slavic populations on the formation of the present-day Latvian Y-chromosome gene pool.
Collapse
Affiliation(s)
- Liana Pliss
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Līga Timša
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Inese Pelnena
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Areta Sabule
- State Centre for Forensic Medical Examination of the Republic of Latvia, Riga, Latvia
| | - Sandra Rozane
- State Centre for Forensic Medical Examination of the Republic of Latvia, Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vaidutis Kucinskas
- Human Genome Research Centre, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | |
Collapse
|
25
|
Kwon SY, Lee HY, Lee EY, Yang WI, Shin KJ. Confirmation of Y haplogroup tree topologies with newly suggested Y-SNPs for the C2, O2b and O3a subhaplogroups. Forensic Sci Int Genet 2015; 19:42-46. [PMID: 26103100 DOI: 10.1016/j.fsigen.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Y chromosome single nucleotide polymorphisms (Y-SNPs) are useful markers for reconstructing male lineages through hierarchically arranged allelic sets known as haplogroups, and are thereby widely used in the fields such as human evolution, anthropology and forensic genetics. The Y haplogroup tree was recently revised with newly suggested Y-SNP markers for designation of several subgroups of haplogroups C2, O2b and O3a, which are predominant in Koreans. Therefore, herein we analyzed these newly suggested Y-SNPs in 545 unrelated Korean males who belong to the haplogroups C2, O2b or O3a, and investigated the reconstructed topology of the Y haplogroup tree. We were able to confirm that markers L1373, Z1338/JST002613-27, Z1300, CTS2657, Z8440 and F845 define the C2 subhaplogroups, C2b, C2e, C2e1, C2e1a, C2e1b and C2e2, respectively, and that markers F3356, L682, F11, F238/F449 and F444 define the O subhaplogroups O2b1, O2b1b, O3a1c1, O3a1c2 and O3a2c1c, respectively. Among six C2 subhaplogroups (C2b, C2e, C2e1*, C2e1a, C2e1b and C2e2), the C2e haplogroup and its subhaplogroups were found to be predominant, and among the four O2b subhaplogroups (O2b*, O2b1*, O2b1a and O2b1b), O2b1b was most frequently observed. Among the O3a subhaplogroups, O3a2c1 was predominant and it was further divided into the subhaplogroups O3a2c1a and O3a2c1c with a newly suggested marker. However, the JST002613-27 marker, which had been known to define the haplogroup C2f, was found to be an ancestral marker of the C2e haplogroup, as is the Z1338 marker. Also, the M312 marker for the O2b1 haplogroup designation was replaced by F3356, because all of the O2b1 haplotypes showed a nucleotide change at F3356, but not at M312. In addition, the F238 marker was always observed to be phylogenetically equivalent to F449, while both of the markers were assigned to the O3a1c2 haplogroup. The confirmed phylogenetic tree of this study with the newly suggested Y-SNPs could be valuable for anthropological and forensic investigations of East Asians including Koreans.
Collapse
Affiliation(s)
- So Yeun Kwon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea; Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Eun Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Woo Ick Yang
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kyoung-Jin Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea; Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea.
| |
Collapse
|
26
|
Litvinov SS, Khusnutdinova EK. Current state of research in ethnogenomics: Genome-wide analysis and uniparental markers. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Karafet TM, Bulayeva KB, Bulayev OA, Gurgenova F, Omarova J, Yepiskoposyan L, Savina OV, Veeramah KR, Hammer MF. Extensive genome-wide autozygosity in the population isolates of Daghestan. Eur J Hum Genet 2015; 23:1405-12. [PMID: 25604856 DOI: 10.1038/ejhg.2014.299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023] Open
Abstract
Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | - Kazima B Bulayeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Oleg A Bulayev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Farida Gurgenova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Jamilia Omarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Levon Yepiskoposyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | | | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Cui Y, Song L, Wei D, Pang Y, Wang N, Ning C, Li C, Feng B, Tang W, Li H, Ren Y, Zhang C, Huang Y, Hu Y, Zhou H. Identification of kinship and occupant status in Mongolian noble burials of the Yuan Dynasty through a multidisciplinary approach. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130378. [PMID: 25487330 PMCID: PMC4275886 DOI: 10.1098/rstb.2013.0378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Yuan Dynasty (AD 1271-1368) was the first dynasty in Chinese history where a minority ethnic group (Mongols) ruled. Few cemeteries containing Mongolian nobles have been found owing to their tradition of keeping burial grounds secret and their lack of historical records. Archaeological excavations at the Shuzhuanglou site in the Hebei province of China led to the discovery of 13 skeletons in six separate tombs. The style of the artefacts and burials indicate the cemetery occupants were Mongol nobles. However, the origin, relationships and status of the chief occupant (M1m) are unclear. To shed light on the identity of the principal occupant and resolve the kin relationships between individuals, a multidisciplinary approach was adopted, combining archaeological information, stable isotope data and molecular genetic data. Analysis of autosomal, mitochondrial and Y-chromosomal DNA show that some of the occupants were related. The available evidence strongly suggests that the principal occupant may have been the Mongol noble Korguz. Our study demonstrates the power of a multidisciplinary approach in elucidating information about the inhabitants of ancient historical sites.
Collapse
Affiliation(s)
- Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, People's Republic of China
| | - Li Song
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Dong Wei
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, People's Republic of China
| | - Yuhong Pang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ning Wang
- Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| | - Chao Ning
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Chunmei Li
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Binxiao Feng
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wentao Tang
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Hongjie Li
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, People's Republic of China
| | - Yashan Ren
- Hebei Provincial Centre for Cultural Relics Protection, Shijiazhuang 050031, People's Republic of China
| | - Chunchang Zhang
- Hebei Provincial Institute of Cultural Relics, Shijiazhuang 050031, People's Republic of China
| | - Yanyi Huang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, People's Republic of China College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yaowu Hu
- Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China Department of Scientific History and Archaeometry, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Zhou
- School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
29
|
Phylogenetic reconstruction of Bantu kinship challenges Main Sequence Theory of human social evolution. Proc Natl Acad Sci U S A 2014; 111:17414-9. [PMID: 25422461 DOI: 10.1073/pnas.1415744111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinship provides the fundamental structure of human society: descent determines the inheritance pattern between generations, whereas residence rules govern the location a couple moves to after they marry. In turn, descent and residence patterns determine other key relationships such as alliance, trade, and marriage partners. Hunter-gatherer kinship patterns are viewed as flexible, whereas agricultural societies are thought to have developed much more stable kinship patterns as they expanded during the Holocene. Among the Bantu farmers of sub-Saharan Africa, the ancestral kinship patterns present at the beginning of the expansion are hotly contested, with some arguing for matrilineal and matrilocal patterns, whereas others maintain that any kind of lineality or sex-biased dispersal only emerged much later. Here, we use Bayesian phylogenetic methods to uncover the history of Bantu kinship patterns and trace the interplay between descent and residence systems. The results suggest a number of switches in both descent and residence patterns as Bantu farming spread, but that the first Bantu populations were patrilocal with patrilineal descent. Across the phylogeny, a change in descent triggered a switch away from patrifocal kinship, whereas a change in residence triggered a switch back from matrifocal kinship. These results challenge "Main Sequence Theory," which maintains that changes in residence rules precede change in other social structures. We also indicate the trajectory of kinship change, shedding new light on how this fundamental structure of society developed as farming spread across the globe during the Neolithic.
Collapse
|
30
|
Yan S, Wang CC, Zheng HX, Wang W, Qin ZD, Wei LH, Wang Y, Pan XD, Fu WQ, He YG, Xiong LJ, Jin WF, Li SL, An Y, Li H, Jin L. Y chromosomes of 40% Chinese descend from three Neolithic super-grandfathers. PLoS One 2014; 9:e105691. [PMID: 25170956 PMCID: PMC4149484 DOI: 10.1371/journal.pone.0105691] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Demographic change of human populations is one of the central questions for delving into the past of human beings. To identify major population expansions related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp of the non-recombining region, discovered >4,000 new SNPs, and identified many new clades. The relative divergence dates can be estimated much more precisely using a molecular clock. We found that all the Paleolithic divergences were binary; however, three strong star-like Neolithic expansions at ∼6 kya (thousand years ago) (assuming a constant substitution rate of 1×10(-9)/bp/year) indicates that ∼40% of modern Chinese are patrilineal descendants of only three super-grandfathers at that time. This observation suggests that the main patrilineal expansion in China occurred in the Neolithic Era and might be related to the development of agriculture.
Collapse
Affiliation(s)
- Shi Yan
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Chuan-Chao Wang
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Zhen-Dong Qin
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lan-Hai Wei
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue-Dong Pan
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Qing Fu
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Yun-Gang He
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Li-Jun Xiong
- Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wen-Fei Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Shi-Lin Li
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu An
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| |
Collapse
|
31
|
Ballantyne KN, Ralf A, Aboukhalid R, Achakzai NM, Anjos MJ, Ayub Q, Balažic J, Ballantyne J, Ballard DJ, Berger B, Bobillo C, Bouabdellah M, Burri H, Capal T, Caratti S, Cárdenas J, Cartault F, Carvalho EF, Carvalho M, Cheng B, Coble MD, Comas D, Corach D, D'Amato ME, Davison S, de Knijff P, De Ungria MCA, Decorte R, Dobosz T, Dupuy BM, Elmrghni S, Gliwiński M, Gomes SC, Grol L, Haas C, Hanson E, Henke J, Henke L, Herrera-Rodríguez F, Hill CR, Holmlund G, Honda K, Immel UD, Inokuchi S, Jobling MA, Kaddura M, Kim JS, Kim SH, Kim W, King TE, Klausriegler E, Kling D, Kovačević L, Kovatsi L, Krajewski P, Kravchenko S, Larmuseau MHD, Lee EY, Lessig R, Livshits LA, Marjanović D, Minarik M, Mizuno N, Moreira H, Morling N, Mukherjee M, Munier P, Nagaraju J, Neuhuber F, Nie S, Nilasitsataporn P, Nishi T, Oh HH, Olofsson J, Onofri V, Palo JU, Pamjav H, Parson W, Petlach M, Phillips C, Ploski R, Prasad SPR, Primorac D, Purnomo GA, Purps J, Rangel-Villalobos H, Rębała K, Rerkamnuaychoke B, Gonzalez DR, Robino C, Roewer L, Rosa A, Sajantila A, Sala A, Salvador JM, Sanz P, Schmitt C, Sharma AK, Silva DA, Shin KJ, Sijen T, Sirker M, Siváková D, Skaro V, Solano-Matamoros C, Souto L, Stenzl V, Sudoyo H, Syndercombe-Court D, Tagliabracci A, Taylor D, Tillmar A, Tsybovsky IS, Tyler-Smith C, van der Gaag KJ, Vanek D, Völgyi A, Ward D, Willemse P, Yap EPH, Yong RYY, Pajnič IZ, Kayser M. Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Hum Mutat 2014; 35:1021-32. [PMID: 24917567 PMCID: PMC4145662 DOI: 10.1002/humu.22599] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, >99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836–0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father–son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RM Y-STRs in identifying and separating unrelated and related males and provides a reference database.
Collapse
Affiliation(s)
- Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Improved phylogenetic resolution and rapid diversification of Y-chromosome haplogroup K-M526 in Southeast Asia. Eur J Hum Genet 2014; 23:369-73. [PMID: 24896152 DOI: 10.1038/ejhg.2014.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 11/09/2022] Open
Abstract
The highly structured distribution of Y-chromosome haplogroups suggests that current patterns of variation may be informative of past population processes. However, limited phylogenetic resolution, particularly of subclades within haplogroup K, has obscured the relationships of lineages that are common across Eurasia. Here we genotype 13 new highly informative single-nucleotide polymorphisms in a worldwide sample of 4413 males that carry the derived allele at M526, and reconstruct an NRY haplogroup tree with significantly higher resolution for the major clade within haplogroup K, K-M526. Although K-M526 was previously characterized by a single polytomy of eight major branches, the phylogenetic structure of haplogroup K-M526 is now resolved into four major subclades (K2a-d). The largest of these subclades, K2b, is divided into two clusters: K2b1 and K2b2. K2b1 combines the previously known haplogroups M, S, K-P60 and K-P79, whereas K2b2 comprises haplogroups P and its subhaplogroups Q and R. Interestingly, the monophyletic group formed by haplogroups R and Q, which make up the majority of paternal lineages in Europe, Central Asia and the Americas, represents the only subclade with K2b that is not geographically restricted to Southeast Asia and Oceania. Estimates of the interval times for the branching events between M9 and P295 point to an initial rapid diversification process of K-M526 that likely occurred in Southeast Asia, with subsequent westward expansions of the ancestors of haplogroups R and Q.
Collapse
|
33
|
Khitrinskaya IY, Kharkov VN, Voevoda MI, Stepanov VA. Genetic diversity and relationships of populations of northern Eurasia by polymorphic Alu insertions. Mol Biol 2014. [DOI: 10.1134/s0026893314010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Wilson Sayres MA, Lohmueller KE, Nielsen R. Natural selection reduced diversity on human y chromosomes. PLoS Genet 2014; 10:e1004064. [PMID: 24415951 PMCID: PMC3886894 DOI: 10.1371/journal.pgen.1004064] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/12/2013] [Indexed: 01/11/2023] Open
Abstract
The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. The human Y chromosome is found only in males, and exhibits surprisingly low levels of genetic diversity. This low diversity could result from neutral processes, for example, if there are fewer males successfully mating (and thus fewer Y chromosomes being inherited) relative to the number of females who successfully mate. Alternatively, natural selection may act on mutations on the Y chromosome to reduce genetic diversity. Because there is no recombination across most of the Y chromosome all sites on the Y are effectively linked together. Thus, selection acting on any one site will affect all sites on the Y indirectly. Here, studying the X, Y, autosomal and mitochondrial DNA, in combination with population genetic simulations, we show that low observed Y chromosome variability is consistent with models of purifying selection removing deleterious mutations and linked variation, although positive selection may also be acting. We further infer that the number of sites affected by selection likely includes some proportion of the highly repetitive ampliconic regions on the Y. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.
Collapse
Affiliation(s)
- Melissa A. Wilson Sayres
- Statistics Department, University of California-Berkeley, Berkeley, California, United States of America
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Kirk E. Lohmueller
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rasmus Nielsen
- Statistics Department, University of California-Berkeley, Berkeley, California, United States of America
- Integrative Biology Department, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|
35
|
van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MHD. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum Mutat 2013; 35:187-91. [PMID: 24166809 DOI: 10.1002/humu.22468] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Y-chromosome diversity in the Kalmyks at the ethnical and tribal levels. J Hum Genet 2013; 58:804-11. [DOI: 10.1038/jhg.2013.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 01/15/2023]
|
37
|
Pauro M, García A, Nores R, Demarchi DA. Analysis of Uniparental Lineages in Two Villages of Santiago del Estero, Argentina, Seat of Pueblos de Indios in Colonial Times. Hum Biol 2013; 85:699-720. [DOI: 10.3378/027.085.0504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/05/2022]
|
38
|
Cui Y, Li H, Ning C, Zhang Y, Chen L, Zhao X, Hagelberg E, Zhou H. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China. BMC Evol Biol 2013; 13:216. [PMID: 24079706 PMCID: PMC3850526 DOI: 10.1186/1471-2148-13-216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. Results 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Conclusion Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.
Collapse
Affiliation(s)
- Yinqiu Cui
- College of Life Science, Jilin University, 130023 Changchun, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guha P, Srivastava SK, Bhattacharjee S, Chaudhuri TK. Human migration, diversity and disease association: a convergent role of established and emerging DNA markers. Front Genet 2013; 4:155. [PMID: 23950760 PMCID: PMC3738866 DOI: 10.3389/fgene.2013.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/25/2013] [Indexed: 01/30/2023] Open
Abstract
With the gradual development of intelligence, human got curious to know his origin and evolutionary background. Historical statements and anthropological findings were his primary tool for solving the puzzles of his own origin, until came the golden era of molecular markers which took no time to prove it's excellence in unveiling answers to the questions regarding the migration pattern of human across different geographical regions. As a bonus these markers proved very much beneficial in solving criminal offenses and in understanding the etiology of many dreaded diseases and to design their prevention. In this review, we have aimed to throw light on some of the promising molecular markers which are very much in application now-a-days for not only understanding the evolutionary background and ancient migratory routes of humans but also in the field of forensics and human health.
Collapse
Affiliation(s)
- Pokhraj Guha
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, SiliguriWest Bengal, India
| | - Sanjeev K. Srivastava
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, SiliguriWest Bengal, India
- Department of Medical genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, LucknowUttar Pradesh, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North BengalSiliguri, West Bengal, India
| | - Tapas K. Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, SiliguriWest Bengal, India
| |
Collapse
|
40
|
Wang CC, Li H. Inferring human history in East Asia from Y chromosomes. INVESTIGATIVE GENETICS 2013; 4:11. [PMID: 23731529 PMCID: PMC3687582 DOI: 10.1186/2041-2223-4-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/19/2013] [Indexed: 02/06/2023]
Abstract
East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history.
Collapse
Affiliation(s)
- Chuan-Chao Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, China
| | - Hui Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, China
| |
Collapse
|
41
|
Verdu P, Becker NSA, Froment A, Georges M, Grugni V, Quintana-Murci L, Hombert JM, Van der Veen L, Le Bomin S, Bahuchet S, Heyer E, Austerlitz F. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies. Mol Biol Evol 2013; 30:918-37. [PMID: 23300254 DOI: 10.1093/molbev/mss328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.
Collapse
Affiliation(s)
- Paul Verdu
- Department of Biology, Stanford University, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Y-SNP miniplexes for East Asian Y-chromosomal haplogroup determination in degraded DNA. Forensic Sci Int Genet 2013; 7:75-81. [DOI: 10.1016/j.fsigen.2012.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
|
43
|
Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, Li S, De Jongh M, Singleton A, Blum MGB, Soodyall H, Jakobsson M. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 2012; 338:374-9. [PMID: 22997136 PMCID: PMC8978294 DOI: 10.1126/science.1227721] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million single-nucleotide polymorphisms in 220 southern Africans and found that the Khoe-San diverged from other populations ≥100,000 years ago, but population structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa; instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response; potential adaptive introgression of protection from ultraviolet light; and selection predating modern human diversification, involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Pontus Skoglund
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Per Sjödin
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Lucie M. Gattepaille
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Flora Jay
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sen Li
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. B. Blum
- Laboratoire TIMC-IMAG UMR 5525, Université Joseph Fourier, Centre National de la Recherche Scientifique, Grenoble, France
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Y chromosome haplogroup diversity in a Mestizo population of Nicaragua. Forensic Sci Int Genet 2012; 6:e192-5. [PMID: 22770600 DOI: 10.1016/j.fsigen.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
Y chromosome single nucleotide polymorphisms (Y-SNPs) are indispensable markers for haplogroup determination. Since Y chromosome haplogroups show a high specific geographical distribution, they play a major role in population genetics but can also benefit forensic investigations. Although haplogroup prediction methods based on Y chromosome short tandem repeats (Y-STRs) exist and are frequently used, precaution is required in this regard. In this study we determine the Y chromosome haplogroups of a Nicaraguan population using several Y-SNP multiplex reactions. Y chromosome haplogroups have been predicted before, but our results show that a confirmation with Y-SNP typings is necessary. These results have revealed a 4.8% of error in haplogroup prediction based on Y-STR haplotypes using Athey's Haplogroup Predictor. The Nicaraguan Mestizo population displays a majority of Eurasian lineages, mainly represented by haplogroup R-M207 (46.7%). Other Eurasian lineages have been observed, especially J-P209 (13.3%), followed by I-M170 (3.6%) and G-M201 (1.8%). Haplogroup E-P170 was also observed in 15.2% of the sample, particularly subhaplogroup E1b1b1-M35. Finally, the Native American haplogroup Q-M242 was found in 15.2% of the sample, with Q1a3a-M3 being the most frequent.
Collapse
|
45
|
Abstract
SUMMARYPhylogeography of parasites and microbes is a recent field. Phylogeographic studies have been performed mostly to test three major hypotheses that are not mutually exclusive on the origins and distributions of human parasites and microbes: (1) the “out of Africa” pattern where parasites are supposed to have followed the dispersal and expansion of modern humans in and out of Africa, (2) the “domestication” pattern where parasites were captured in the domestication centres and dispersed through them and (3) the “globalization” pattern, in relation to historical and more recent trade routes. With some exceptions, such studies of human protozoans, helminths and ectoparasites are quite limited. The conclusion emphasizes the need to acquire more phylogeographic data in non-Occidental countries, and particularly in Asia where all the animal domestications took place.
Collapse
|
46
|
Mitochondrial DNA and Y chromosome variation provides evidence for a recent common ancestry between Native Americans and Indigenous Altaians. Am J Hum Genet 2012; 90:229-46. [PMID: 22281367 DOI: 10.1016/j.ajhg.2011.12.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/06/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas.
Collapse
|
47
|
Mendez FL, Watkins JC, Hammer MF. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol Biol Evol 2012; 29:1513-20. [PMID: 22319157 DOI: 10.1093/molbev/msr301] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent analysis of DNA extracted from two Eurasian forms of archaic human shows that more genetic variants are shared with humans currently living in Eurasia than with anatomically modern humans in sub-Saharan Africa. Although these genome-wide average measures of genetic similarity are consistent with the hypothesis of archaic admixture in Eurasia, analyses of individual loci exhibiting the signal of archaic introgression are needed to test alternative hypotheses and investigate the admixture process. Here, we provide a detailed sequence analysis of the innate immune gene OAS1, a locus with a divergent Melanesian haplotype that is very similar to the Denisova sequence from the Altai region of Siberia. We resequenced a 7-kb region encompassing the OAS1 gene in 88 individuals from six Old World populations (San, Biaka, Mandenka, French Basque, Han Chinese, and Papua New Guineans) and discovered previously unknown and ancient genetic variation. The 5' region of this gene has unusual patterns of diversity, including 1) higher levels of nucleotide diversity in Papuans than in sub-Saharan Africans, 2) very deep ancestry with an estimated time to the most recent common ancestor of >3 myr, and 3) a basal branching pattern with Papuan individuals on either side of the rooted network. A global geographic survey of >1,500 individuals showed that the divergent Papuan haplotype is nearly restricted to populations from eastern Indonesia and Melanesia. Polymorphic sites within this haplotype are shared with the draft Denisova genome over a span of ∼90 kb and are associated with an extended block of linkage disequilibrium, supporting the hypothesis that this haplotype introgressed from an archaic source that likely lived in Eurasia.
Collapse
Affiliation(s)
- Fernando L Mendez
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | | | |
Collapse
|
48
|
Keroumi AE, Naamani K, Soummane H, Dahbi A. Seasonal dynamics of ant community structure in the Moroccan Argan Forest. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:94. [PMID: 23421815 PMCID: PMC3596938 DOI: 10.1673/031.012.9401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/01/2012] [Indexed: 06/01/2023]
Abstract
In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.
Collapse
Affiliation(s)
- Abderrahim El Keroumi
- Laboratory of Biotechnologies-Biochemistry, Valorisation and Protection of Plants (2BV2P), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Khalid Naamani
- Laboratory of Biotechnologies-Biochemistry, Valorisation and Protection of Plants (2BV2P), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Hassna Soummane
- Laboratory of Biotechnologies-Biochemistry, Valorisation and Protection of Plants (2BV2P), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdallah Dahbi
- Equipe de recherche Environnement et santé (ENSA), Département des Sciences Naturelles, Faculté Polydisciplinaire, Université Cadi Ayyad Safi, Marocco
| |
Collapse
|
49
|
Veeramah KR, Wegmann D, Woerner A, Mendez FL, Watkins JC, Destro-Bisol G, Soodyall H, Louie L, Hammer MF. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Mol Biol Evol 2011; 29:617-30. [PMID: 21890477 DOI: 10.1093/molbev/msr212] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sub-Saharan Africa has consistently been shown to be the most genetically diverse region in the world. Despite the fact that a substantial portion of this variation is partitioned between groups practicing a variety of subsistence strategies and speaking diverse languages, there is currently no consensus on the genetic relationships of sub-Saharan African populations. San (a subgroup of KhoeSan) and many Pygmy groups maintain hunter-gatherer lifestyles and cluster together in autosomal-based analysis, whereas non-Pygmy Niger-Kordofanian speakers (non-Pygmy NKs) predominantly practice agriculture and show substantial genetic homogeneity despite their wide geographic range throughout sub-Saharan Africa. However, KhoeSan, who speak a set of relatively unique click-based languages, have long been thought to be an early branch of anatomically modern humans based on phylogenetic analysis. To formally test models of divergence among the ancestors of modern African populations, we resequenced a sample of San, Eastern, and Western Pygmies and non-Pygmy NKs individuals at 40 nongenic (∼2 kb) regions and then analyzed these data within an Approximate Bayesian Computation (ABC) framework. We find substantial support for a model of an early divergence of KhoeSan ancestors from a proto-Pygmy-non-Pygmy NKs group ∼110 thousand years ago over a model incorporating a proto-KhoeSan-Pygmy hunter-gatherer divergence from the ancestors of non-Pygmy NKs. The results of our analyses are consistent with previously identified signals of a strong bottleneck in Mbuti Pygmies and a relatively recent expansion of non-Pygmy NKs. We also develop a number of methodologies that utilize "pseudo-observed" data sets to optimize our ABC-based inference. This approach is likely to prove to be an invaluable tool for demographic inference using genome-wide resequencing data.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Arizona, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cruciani F, Trombetta B, Massaia A, Destro-Bisol G, Sellitto D, Scozzari R. A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa. Am J Hum Genet 2011; 88:814-818. [PMID: 21601174 DOI: 10.1016/j.ajhg.2011.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022] Open
Abstract
To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent.
Collapse
|