1
|
Li F, Sayama T, Yokota Y, Hiraga S, Hashiguchi M, Tanaka H, Akashi R, Ishimoto M. Assessing genetic diversity and geographical differentiation in a global collection of wild soybean (Glycine soja Sieb. et Zucc.) and assigning a mini-core collection. DNA Res 2024; 31:dsae009. [PMID: 38490815 PMCID: PMC11090131 DOI: 10.1093/dnares/dsae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024] Open
Abstract
Wild soybean (Glycine soja), the ancestor of the cultivated soybean (G. max), is a crucial resource for capturing the genetic diversity of soybean species. In this study, we used a set of 78 genome-wide microsatellite markers to analyse the genetic diversity and geographic differentiation patterns in a global collection of 2,050 G. soja accessions and a mini-core collection of G. max stored in two public seed banks. We observed a notable reduction in the genetic diversity of G. max compared with G. soja and identified a close phylogenetic relationship between G. max and a G. soja subpopulation located in central China. Furthermore, we revealed substantial genetic divergence between northern and southern subpopulations, accompanied by diminished genetic diversity in the northern subpopulations. Two clusters were discovered among the accessions from north-eastern China-one genetically close to those from South Korea and Southern Japan, and another close to those from Amur Oblast, Russia. Finally, 192 accessions were assigned to a mini-core collection of G. soja, retaining 73.8% of the alleles detected in the entire collection. This mini-core collection is accessible to those who need it, facilitating efficient evaluation and utilization of G. soja genetic resources in soybean breeding initiatives.
Collapse
Affiliation(s)
- Feng Li
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8602, Japan
| | - Takashi Sayama
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8602, Japan
- Western Region Agricultural Research Center, National Agricultural and Food Research Organization (NARO), Zentsuji, Kagawa 765-8508, Japan
| | - Yuko Yokota
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8602, Japan
| | - Susumu Hiraga
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8602, Japan
| | - Masatsugu Hashiguchi
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Masao Ishimoto
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
2
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Jing M, Chen Y, Yao K, Wang Y, Huang L. Comparative phylogeography of two commensal rat species ( Rattus tanezumi and Rattus norvegicus) in China: Insights from mitochondrial DNA, microsatellite, and 2b-RAD data. Ecol Evol 2022; 12:e9409. [PMID: 36254297 PMCID: PMC9557235 DOI: 10.1002/ece3.9409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Rattus norvegicus and Rattus tanezumi are dominant species of Chinese house rats, but the colonization and demographic history of two species in China have not been thoroughly explored. Phylogenetic analyses with mitochondrial DNA including 486 individuals from 31 localities revealed that R. norvegicus is widely distributed in China, R. tanezumi is mainly distributed in southern China with currently invading northward; northeast China was the natal region of R. norvegicus, while the spread of R. tanezumi in China most likely started from the southeast coast. A total of 123 individuals from 18 localities were subjected to 2b-RAD analyses. In neighbor-joining tree, individuals of R. tanezumi grouped into geographic-specific branches, and populations from southeast coast were ancestral groups, which confirmed the colonization route from southeast coast to central and western China. However, individuals of R. norvegicus were generally grouped into two clusters instead of geographic-specific branches. One cluster comprised inland populations, and another cluster included both southeast coast and inland populations, which indicated that spread history of R. norvegicus in China was complex; in addition to on-land colonization, shipping transportation also have played great roles. ADMIXTURE and principal component analyses provided further supports for the colonization history. Demographic analyses revealed that climate changes at ~40,000 to 18,000 years ago and ~4000 years ago had led to population declines of both species; the R. norvegicus declined rapidly while the population of R. tanezumi continuously expanded since ~1500 years ago, indicating the importance of interspecies' competition in their population size changes. Our study provided a valuable framework for further investigation on phylogeography of two species in China.
Collapse
Affiliation(s)
- Meidong Jing
- School of Life SciencesNantong UniversityNantongChina
| | - Yingjie Chen
- School of Life SciencesNantong UniversityNantongChina
| | - Keying Yao
- School of Life SciencesNantong UniversityNantongChina
| | - Youming Wang
- School of Life SciencesNantong UniversityNantongChina
| | - Ling Huang
- School of Life SciencesNantong UniversityNantongChina
| |
Collapse
|
4
|
Viruel J, Haguenauer A, Juin M, Mirleau F, Bouteiller D, Boudagher‐Kharrat M, Ouahmane L, La Malfa S, Médail F, Sanguin H, Nieto Feliner G, Baumel A. Advances in genotyping microsatellite markers through sequencing and consequences of scoring methods for Ceratonia siliqua (Leguminosae). APPLICATIONS IN PLANT SCIENCES 2018; 6:e01201. [PMID: 30598859 PMCID: PMC6303155 DOI: 10.1002/aps3.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/28/2018] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Simple sequence repeat (SSR) or microsatellite markers have been used in a broad range of studies mostly scoring alleles on the basis of amplicon size as a proxy for the number of repeat units of an SSR motif. However, additional sources of variation within the SSR or in the flanking regions have largely remained undetected. METHODS In this study, we implemented a next-generation sequencing-based genotyping approach in a newly characterized set of 18 nuclear SSR markers for the carob tree, Ceratonia siliqua. Our aim was to evaluate the effect of three different methods of scoring molecular variation present within microsatellite markers on the genetic diversity and structure results. RESULTS The analysis of the sequences of 77 multilocus genotypes from four populations revealed SSR variation and additional sources of polymorphism in 87% of the loci analyzed (42 single-nucleotide polymorphisms and five insertion/deletion polymorphisms), as well as divergent paralog copies in two loci. Ignoring sequence variation under standard amplicon size genotyping resulted in incorrect identification of 69% of the alleles, with important effects on the genetic diversity and structure estimates. DISCUSSION Next-generation sequencing allows the detection and scoring of SSRs, single-nucleotide polymorphisms, and insertion/deletion polymorphisms to increase the resolution of population genetic studies.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Anne Haguenauer
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Marianick Juin
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Fatma Mirleau
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Delphine Bouteiller
- Institut du Cerveau et de la Moelle épinière (ICM)Hôpital Pitié Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
| | - Magda Boudagher‐Kharrat
- Laboratoire Caractérisation Génétique des PlantesFaculté des sciencesUniversité Saint‐JosephB.P. 11‐514 Riad El SolhBeirut1107 2050Lebanon
| | - Lahcen Ouahmane
- Laboratoire d'Ecologie et EnvironnementFaculté des Sciences SemlaliaUniversité Cadi AyyadMarrakeshMorocco
| | - Stefano La Malfa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A)Università degli Studi di CataniaVia Valdisavoia 595123CataniaItaly
| | - Frédéric Médail
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Hervé Sanguin
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD)Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)MontpellierFrance
- LSTM [LSTM is sponsored by University of Montpellier, CIRAD, IRD, INRA, Montpellier SupAgro]TA A‐82/J Campus International de BaillarguetFR‐34398Montpellier CEDEX 5France
| | | | - Alex Baumel
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| |
Collapse
|
5
|
Ortega-Del Vecchyo D, Piñero D, Jardón-Barbolla L, van Heerwaarden J. Appropriate homoplasy metrics in linked SSRs to predict an underestimation of demographic expansion times. BMC Evol Biol 2017; 17:213. [PMID: 28893173 PMCID: PMC5594565 DOI: 10.1186/s12862-017-1046-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homoplasy affects demographic inference estimates. This effect has been recognized and corrective methods have been developed. However, no studies so far have defined what homoplasy metrics best describe the effects on demographic inference, or have attempted to estimate such metrics in real data. Here we study how homoplasy in chloroplast microsatellites (cpSSR) affects inference of population expansion time. cpSSRs are popular markers for inferring historical demography in plants due to their high mutation rate and limited recombination. RESULTS In cpSSRs, homoplasy is usually quantified as the probability that two markers or haplotypes that are identical by state are not identical by descent (Homoplasy index, P). Here we propose a new measure of multi-locus homoplasy in linked SSR called Distance Homoplasy (DH), which measures the proportion of pairwise differences not observed due to homoplasy, and we compare it to P and its per cpSSR locus average, which we call Mean Size Homoplasy (MSH). We use simulations and analytical derivations to show that, out of the three homoplasy metrics analyzed, MSH and DH are more correlated to changes in the population expansion time and to the underestimation of that demographic parameter using cpSSR. We perform simulations to show that Approximate Bayesian Computation (ABC) can be used to obtain reasonable estimates of MSH and DH. Finally, we use ABC to estimate the expansion time, MSH and DH from a chloroplast SSR dataset in Pinus caribaea. To our knowledge, this is the first time that homoplasy has been estimated in population genetic data. CONCLUSIONS We show that MSH and DH should be used to quantify how homoplasy affects estimates of population expansion time. We also demonstrate how ABC provides a methodology to estimate homoplasy in population genetic data.
Collapse
Affiliation(s)
- Diego Ortega-Del Vecchyo
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Department of Integrative Biology, University of California, Berkeley, USA.
| | - Daniel Piñero
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lev Jardón-Barbolla
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Joost van Heerwaarden
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Plant Production Systems, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Jensen EL, Mooers AØ, Caccone A, Russello MA. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ 2016; 4:e2350. [PMID: 27635324 PMCID: PMC5012326 DOI: 10.7717/peerj.2350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| | - Arne Ø Mooers
- Biological Sciences, Simon Fraser University , Burnaby , BC , Canada
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University , New Haven , CT , United States
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| |
Collapse
|
7
|
Jeffries DL, Copp GH, Lawson Handley L, Olsén KH, Sayer CD, Hänfling B. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol 2016; 25:2997-3018. [PMID: 26971882 DOI: 10.1111/mec.13613] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022]
Abstract
The conservation of threatened species must be underpinned by phylogeographic knowledge. This need is epitomized by the freshwater fish Carassius carassius, which is in decline across much of its European range. Restriction site-associated DNA sequencing (RADseq) is increasingly used for such applications; however, RADseq is expensive, and limitations on sample number must be weighed against the benefit of large numbers of markers. This trade-off has previously been examined using simulation studies; however, empirical comparisons between these markers, especially in a phylogeographic context, are lacking. Here, we compare the results from microsatellites and RADseq for the phylogeography of C. carassius to test whether it is more advantageous to genotype fewer markers (microsatellites) in many samples, or many markers (SNPs) in fewer samples. These data sets, along with data from the mitochondrial cytochrome b gene, agree on broad phylogeographic patterns, showing the existence of two previously unidentified C. carassius lineages in Europe: one found throughout northern and central-eastern European drainages and a second almost exclusively confined to the Danubian catchment. These lineages have been isolated for approximately 2.15 m years and should be considered separate conservation units. RADseq recovered finer population structure and stronger patterns of IBD than microsatellites, despite including only 17.6% of samples (38% of populations and 52% of samples per population). RADseq was also used along with approximate Bayesian computation to show that the postglacial colonization routes of C. carassius differ from the general patterns of freshwater fish in Europe, likely as a result of their distinctive ecology.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building, Hull, HU6 7RX, UK.,Salmon & Freshwater Team, Cefas, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Gordon H Copp
- Salmon & Freshwater Team, Cefas, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK.,Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Lori Lawson Handley
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building, Hull, HU6 7RX, UK
| | - K Håkan Olsén
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, Flemingsberg, Huddinge, 141 89, Sweden
| | - Carl D Sayer
- Environmental Change Research Centre, Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, UK
| | - Bernd Hänfling
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building, Hull, HU6 7RX, UK
| |
Collapse
|
8
|
Henriques R, von der Heyden S, Matthee CA. When homoplasy mimics hybridization: a case study of Cape hakes (Merluccius capensis and M. paradoxus). PeerJ 2016; 4:e1827. [PMID: 27069785 PMCID: PMC4824878 DOI: 10.7717/peerj.1827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
In the marine environment, an increasing number of studies have documented introgression and hybridization using genetic markers. Hybridization appears to occur preferentially between sister-species, with the probability of introgression decreasing with an increase in evolutionary divergence. Exceptions to this pattern were reported for the Cape hakes (Merluccius capensis and M. paradoxus), two distantly related Merluciidae species that diverged 3-4.2 million years ago. Yet, it is expected that contemporary hybridization between such divergent species would result in reduced hybrid fitness. We analysed 1,137 hake individuals using nine microsatellite markers and control region mtDNA data to assess the validity of the described hybridization event. To distinguish between interbreeding, ancestral polymorphism and homplasy we sequenced the flanking region of the most divergent microsatellite marker. Simulation and empirical analyses showed that hybrid identification significantly varied with the number of markers, model and approach used. Phylogenetic analyses based on the sequences of the flanking region of Mmerhk-3b, combined with the absence of mito-nuclear discordance, suggest that previously reported hybridization between M. paradoxus and M. capensis cannot be substantiated. Our findings highlight the need to conduct a priori simulation studies to establish the suitability of a particular set of microsatellite loci for detecting multiple hybridization events. In our example, the identification of hybrids was severely influenced by the number of loci and their variability, as well as the different models employed. More importantly, we provide quantifiable evidence showing that homoplasy mimics the effects of heterospecific crossings which can lead to the incorrect identification of hybridization.
Collapse
Affiliation(s)
- Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
9
|
Li B, Jackson SA, Gangiredla J, Wang W, Liu H, Tall BD, Beaubrun JJG, Jay-Russell M, Vellidis G, Elkins CA. Genomic evidence reveals numerous Salmonella enterica serovar Newport reintroduction events in Suwannee watershed irrigation ponds. Appl Environ Microbiol 2015; 81:8243-53. [PMID: 26386063 PMCID: PMC4644655 DOI: 10.1128/aem.02179-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/29/2015] [Indexed: 11/20/2022] Open
Abstract
Our previous work indicated a predominance (56.8%) of Salmonella enterica serovar Newport among isolates recovered from irrigation ponds used in produce farms over a 2-year period (B. Li et al., Appl Environ Microbiol 80:6355-6365, http://dx.doi.org/10.1128/AEM.02063-14). This observation provided a valuable set of metrics to explore an underaddressed issue of environmental survival of Salmonella by DNA microarray. Microarray analysis correctly identified all the isolates (n = 53) and differentiated the S. Newport isolates into two phylogenetic lineages (S. Newport II and S. Newport III). Serovar distribution analysis showed no instances where the same serovar was recovered from a pond for more than a month. Furthermore, during the study, numerous isolates with an indistinguishable genotype were recovered from different ponds as far as 180 km apart for time intervals as long as 2 years. Although isolates within either lineage were phylogenetically related as determined by microarray analysis, subtle genotypic differences were detected within the lineages, suggesting that isolates in either lineage could have come from several unique hosts. For example, strains in four different subgroups (A, B, C, and D) possessed an indistinguishable genotype within their subgroups as measured by gene differences, suggesting that strains in each subgroup shared a common host. Based on this comparative genomic evidence and the spatial and temporal factors, we speculated that the presence of Salmonella in the ponds was likely due to numerous punctuated reintroduction events associated with several different but common hosts in the environment. These findings may have implications for the development of strategies for efficient and safe irrigation to minimize the risk of Salmonella outbreaks associated with fresh produce.
Collapse
Affiliation(s)
- Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Scott A Jackson
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Weimin Wang
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Huanli Liu
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Ben D Tall
- Division of Virulence Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Junia Jean-Gilles Beaubrun
- Division of Virulence Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| | - Michele Jay-Russell
- University of California, Davis Western Center for Food Safety, Davis, California, USA
| | | | - Christopher A Elkins
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland, USA
| |
Collapse
|
10
|
Igawa T, Watanabe A, Suzuki A, Kashiwagi A, Kashiwagi K, Noble A, Guille M, Simpson DE, Horb ME, Fujii T, Sumida M. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis. PLoS One 2015. [PMID: 26222540 PMCID: PMC4519292 DOI: 10.1371/journal.pone.0133963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts.
Collapse
Affiliation(s)
- Takeshi Igawa
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| | - Ai Watanabe
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Suzuki
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akihiko Kashiwagi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Keiko Kashiwagi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Anna Noble
- School of Biological Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Matt Guille
- School of Biological Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - David E. Simpson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Marko E. Horb
- Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Tamotsu Fujii
- Department of Health Sciences, Faculty of Human Culture & Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masayuki Sumida
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
11
|
Conflitti IM, Shields GF, Murphy RW, Currie DC. Genetic panmixia within a narrow contact zone between chromosomally and ecologically distinct black fly sibling species (Diptera: Simuliidae). J Evol Biol 2015; 28:1625-40. [PMID: 26108141 DOI: 10.1111/jeb.12682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- I. M. Conflitti
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
- Department of Natural History; Royal Ontario Museum; Toronto ON Canada
| | - G. F. Shields
- Department of Natural Sciences; Carroll College; Helena MT USA
| | - R. W. Murphy
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
- Department of Natural History; Royal Ontario Museum; Toronto ON Canada
| | - D. C. Currie
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
- Department of Natural History; Royal Ontario Museum; Toronto ON Canada
| |
Collapse
|
12
|
Jorde PE, Søvik G, Westgaard JI, Albretsen J, André C, Hvingel C, Johansen T, Sandvik AD, Kingsley M, Jørstad KE. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor. Mol Ecol 2015; 24:1742-57. [PMID: 25782085 DOI: 10.1111/mec.13158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
Abstract
The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment.
Collapse
Affiliation(s)
- Per Erik Jorde
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, N-0316, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shirley MH, Villanova VL, Vliet KA, Austin JD. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim Conserv 2014. [DOI: 10.1111/acv.12176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M. H. Shirley
- Wildlife Ecology and Conservation; University of Florida; Gainesville FL USA
| | - V. L. Villanova
- Department of Biology; University of Florida; Gainesville FL USA
| | - K. A. Vliet
- Department of Biology; University of Florida; Gainesville FL USA
| | - J. D. Austin
- Wildlife Ecology and Conservation; University of Florida; Gainesville FL USA
| |
Collapse
|
14
|
The speciation continuum: population structure, gene flow, and maternal ancestry in the Simulium arcticum complex (Diptera: Simuliidae). Mol Phylogenet Evol 2014; 78:43-55. [PMID: 24821619 DOI: 10.1016/j.ympev.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/15/2014] [Accepted: 05/01/2014] [Indexed: 12/27/2022]
Abstract
Comparative analyses of populations at different stages of divergence can yield insights into the process of speciation. We assess population structure, gene flow, and maternal ancestry at five locations containing sympatric members of the Simulium arcticum complex at different stages of chromosome divergence. We analyze both nuclear and mitochondrial DNA markers, including 11 microsatellite loci, as well as COI, COII, cytb, and ND4 gene sequences. Simulium negativum, representing the later stages of divergence, shows both nuclear and mitochondrial differentiation when compared with allopatric and sympatric chromosomal forms, as well as both low contemporary and historical gene flow in sympatry. At intermediate stages of chromosome divergence, populations differ at nuclear, but not mitochondrial, loci in allopatry and sympatry. In one comparison of intermediate stage chromosomal forms (S. arcticum sensu stricto and S. apricarium), populations demonstrate low contemporary, but higher historical, gene flow in sympatry. In a second sympatric comparison (S. arcticum s. s. and S. brevicercum), both contemporary and historical gene flow are high. All analyses of sympatric populations at the earliest stages of chromosome divergence demonstrate panmixia; yet, some nuclear differentiation in allopatry is apparent. These findings suggest that molecular divergence is tracking chromosome divergence along a chromosomally-defined continuum of speciation in black flies.
Collapse
|
15
|
Dickey AM, Hall PM, Shatters RG, Mckenzie CL. Evolution and homoplasy at the Bem6 microsatellite locus in three sweetpotato whitefly (Bemisia tabaci) cryptic species. BMC Res Notes 2013; 6:249. [PMID: 23819589 PMCID: PMC3716913 DOI: 10.1186/1756-0500-6-249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within species homoplasy can lead to an underestimate of differentiation among populations and among species homoplasy can produce a misleading interpretation regarding shared alleles and hybridization. This is especially problematic with cryptic species. RESULTS By sequencing alleles from three cryptic species of the sweetpotato whitefly (Bemisia tabaci), designated MEAM1, MED, and NW, the evolution of the putatively dinucleotide Bem6 (CA₈)imp microsatellite locus is inferred as one of primarily stepwise mutation occurring at four distinct heptaucleotide tandem repeats. In two of the species this pattern yields a compound tandem repeat. Homoplasy was detected both among species and within species. CONCLUSIONS In the absence of sequencing, size homoplasious alleles at the Bem6 locus lead to an overestimate of alleles shared and hybridization among cryptic species of Bemisia tabaci. Furthermore, the compound heptanucleotide motif structure of a putative dinucleotide microsatellite has implications for the nomenclature of heptanucleotide tandem repeats with step-wise evolution.
Collapse
Affiliation(s)
- Aaron M Dickey
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
- Current address: Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA
| | - Paula M Hall
- Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA
| | - Robert G Shatters
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
| | - Cindy L Mckenzie
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
| |
Collapse
|
16
|
Kumar A, Misra P, Dube A. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites. Parasitol Res 2012; 112:457-66. [DOI: 10.1007/s00436-012-3238-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
17
|
Distefano G, Caruso M, La Malfa S, Gentile A, Wu SB. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus. PLoS One 2012; 7:e44202. [PMID: 22957003 PMCID: PMC3431301 DOI: 10.1371/journal.pone.0044202] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/30/2012] [Indexed: 01/15/2023] Open
Abstract
High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.
Collapse
Affiliation(s)
- Gaetano Distefano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania, Italy
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Marco Caruso
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania, Italy
| | - Stefano La Malfa
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania, Italy
| | - Alessandra Gentile
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania, Italy
- * E-mail: (S-BW); (AG)
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, Australia
- * E-mail: (S-BW); (AG)
| |
Collapse
|
18
|
FREELAND JOANNA, VACHON NICOLE. Repetitive sequences in phylogeographic inference: a reply to Saltonstall and Lambertini (2012). Mol Ecol Resour 2012. [DOI: 10.1111/j.1755-0998.2012.03145.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- JOANNA FREELAND
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9J 7B8
| | - NICOLE VACHON
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9J 7B8
| |
Collapse
|
19
|
Assis R, Kondrashov AS. A strong deletion bias in nonallelic gene conversion. PLoS Genet 2012; 8:e1002508. [PMID: 22359514 PMCID: PMC3280953 DOI: 10.1371/journal.pgen.1002508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic) or paralogous (nonallelic) genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs. Gene conversion is a process whereby a DNA sequence is copied from one segment of the genome (donor) to another (recipient), resulting in the replacement, insertion, or deletion of a DNA sequence in the recipient. This exchange is facilitated by the high sequence similarity of the two segments, which is due to their evolutionary relationship. Here, we study insertions and deletions produced by gene conversion between paralogs, segments related by DNA duplication events. By comparing paralog sequences in multiple species of fruit flies and primates, we find that deletions occur more than three times as frequently as insertions. We also discover that the rate of gene conversion between paralogs is quite high. The deletion bias and high rate of this process causes paralogs to shrink cooperatively and eventually be eliminated from the genome. Because of the abundance of paralogs in animal genomes, this phenomenon can lead to a significant reduction in genome size. Therefore, our finding enhances our understanding of the forces that lead to changes in genome size during evolution.
Collapse
Affiliation(s)
- Raquel Assis
- Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California, USA.
| | | |
Collapse
|
20
|
Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol 2011; 77:7877-85. [PMID: 21856826 DOI: 10.1128/aem.05527-11] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For more than 80 years, subtyping of Salmonella enterica has been routinely performed by serotyping, a method in which surface antigens are identified based on agglutination reactions with specific antibodies. The serotyping scheme, which is continuously updated as new serovars are discovered, has generated over time a data set of the utmost significance, allowing long-term epidemiological surveillance of Salmonella in the food chain and in public health control. Conceptually, serotyping provides no information regarding the phyletic relationships inside the different Salmonella enterica subspecies. In epidemiological investigations, identification and tracking of salmonellosis outbreaks require the use of methods that can fingerprint the causative strains at a taxonomic level far more specific than the one achieved by serotyping. During the last 2 decades, alternative methods that could successfully identify the serovar of a given strain by probing its DNA have emerged, and molecular biology-based methods have been made available to address phylogeny and fingerprinting issues. At the same time, accredited diagnostics have become increasingly generalized, imposing stringent methodological requirements in terms of traceability and measurability. In these new contexts, the hand-crafted character of classical serotyping is being challenged, although it is widely accepted that classification into serovars should be maintained. This review summarizes and discusses modern typing methods, with a particular focus on those having potential as alternatives for classical serotyping or for subtyping Salmonella strains at a deeper level.
Collapse
|
21
|
Boto L, Domínguez-Domínguez O, Doadrio I. Exploring the effect of microsatellite size homoplasy on reconstruction of phylogenetic relationships of picote splitfin Zoogoneticus quitzeoensis. JOURNAL OF FISH BIOLOGY 2011; 78:673-679. [PMID: 21284645 DOI: 10.1111/j.1095-8649.2010.02877.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study explores the effects of microsatellite size homoplasies on the reconstruction of phylogenetic relationships and estimates of population parameters as the fixation index (F(ST) ) using as a case study a truncated microsatellite from the picote splitfin Zoogoneticus quitzeoensis. The results suggest that the use of imperfect microsatellites may have only a minor effect in phylogenetic and population studies.
Collapse
Affiliation(s)
- L Boto
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal 2, Madrid, Spain.
| | | | | |
Collapse
|
22
|
Matsuzaki SIS, Mabuchi K, Takamura N, Hicks BJ, Nishida M, Washitani I. Stable isotope and molecular analyses indicate that hybridization with non-native domesticated common carp influence habitat use of native carp. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18076.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
|
24
|
Matsuzaki SS, Mabuchi K, Takamura N, Nishida M, Washitani I. Behavioural and morphological differences between feral and domesticated strains of common carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2009; 75:1206-1220. [PMID: 20738609 DOI: 10.1111/j.1095-8649.2009.02345.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Morphological and behavioural traits of a feral strain of the common carp Cyprinus carpio from Lake Biwa in Japan were compared with those of two domesticated strains reared in Japan (one commercial strain and one ornamental koi). To compare genetically inherited traits, all fish were reared from eggs under similar environmental conditions. Using these fish, the following five traits were compared among the three strains: body shape, consumption rate of two types of free-swimming shrimp, medaka Oryzias latipes and bottom-dwelling chironomid larvae prey items, preference for a bottom habitat, feeding skills in detecting prey and escape response to predator attack. The feral strain of fish had more streamlined bodies, higher consumption rates for free-swimming prey, a greater preference for a bottom habitat, possessed greater skill in detecting prey and were more cautious of predator attacks, compared with the fish of the two domesticated strains. These characteristics shown by the feral fish are probably adaptive to the natural environment. A genetic analysis based on five nuclear single nucleotide polymorphism markers, however, suggested that the feral strain was relatively recently derived from domesticated stocks. Considering this, the present results appear to indicate the possibility that domesticated C. carpio could re-adapt to the wild environment during a short evolutionary period, although further research using more feral strains is required.
Collapse
Affiliation(s)
- S S Matsuzaki
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
25
|
Szövényi P, Terracciano S, Ricca M, Giordano S, Shaw AJ. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol Ecol 2009; 17:5364-77. [PMID: 19121003 DOI: 10.1111/j.1365-294x.2008.04003.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.
Collapse
Affiliation(s)
- P Szövényi
- Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA.
| | | | | | | | | |
Collapse
|
26
|
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol Biol 2008; 8:138. [PMID: 18471288 PMCID: PMC2396632 DOI: 10.1186/1471-2148-8-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/09/2008] [Indexed: 02/01/2023] Open
Abstract
Background Microsatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor). Results In a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set. Conclusion Our results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.
Collapse
|
27
|
Identification of conservation units in the European Mergus merganser based on nuclear and mitochondrial DNA markers. CONSERV GENET 2008. [DOI: 10.1007/s10592-008-9528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Palkovacs EP, Dion KB, Post DM, Caccone A. Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Mol Ecol 2007; 17:582-97. [PMID: 18179439 DOI: 10.1111/j.1365-294x.2007.03593.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alewife, Alosa pseudoharengus, populations occur in two discrete life-history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life-history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake-resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a 'phylogenetic raceme' model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources.
Collapse
Affiliation(s)
- Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520-8106, USA.
| | | | | | | |
Collapse
|
29
|
Lia VV, Bracco M, Gottlieb AM, Poggio L, Confalonieri VA. Complex mutational patterns and size homoplasy at maize microsatellite loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:981-91. [PMID: 17712542 DOI: 10.1007/s00122-007-0625-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/31/2007] [Indexed: 05/16/2023]
Abstract
Microsatellite markers have become one of the most popular tools for germplasm characterization, population genetics and evolutionary studies. To investigate the mutational mechanisms of maize microsatellites, nucleotide sequence information was obtained for ten loci. In addition, Single-Strand Conformation Polymorphism (SSCP) analysis was conducted to assess the occurrence of size homoplasy. Sequence analysis of 54 alleles revealed a complex pattern of mutation at 8/10 loci, with only 2 loci showing allele variation strictly consistent with stepwise mutations. The overall allelic diversity resulted from changes in the number of repeat units, base substitutions, and indels within repetitive and non-repetitive segments. Thirty-one electromorphs sampled from six maize landraces were considered for SSCP analysis. The number of conformers per electromorph ranged from 1 to 7, with 74.2% of the electromorphs showing more than one conformer. Size homoplasy was apparent within landraces and populations. Variation in the amount of size homoplasy was observed within and between loci, although no differences were detected among populations. The results of the present study provide useful information on the interpretation of genetic data derived from microsatellite markers. Further efforts are still needed to determine the impact of these findings on the estimation of population parameters and on the inference of phylogenetic relationships in maize investigations.
Collapse
Affiliation(s)
- V V Lia
- Laboratorio de Genética, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
30
|
ROSSITER STEPHENJ, BENDA PETR, DIETZ CHRISTIAN, ZHANG SHUYI, JONES GARETH. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Mol Ecol 2007; 16:4699-714. [DOI: 10.1111/j.1365-294x.2007.03546.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Shedlock AM, Takahashi K, Okada N. SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 2007; 19:545-53. [PMID: 16701320 DOI: 10.1016/j.tree.2004.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The value of short interspersed elements (SINEs) for diagnosing common ancestry is being expanded to examine the differential sorting of lineages through the course of speciation events. Because most SINEs are neutral markers of identical descent, are not precisely excised from the genome and have a known ancestral condition, they are advantageous for reconciling gene trees and species trees with minimal phylogenetic error. A population perspective on SINE evolution combined with coalescence theory provides a context for investigating the phenomenon of ancestral polymorphism and its role in producing incongruent SINE insertion patterns among multiple loci. Studies of human Alu repeats demonstrate the value of young polymorphic SINEs for assessing human genomic diversity and tracking ancient demographics of human populations, whereas incongruent insertion patterns revealed by older fixed SINE loci, such as those in African cichlid fishes, contain information that might help identify ancient radiations that are otherwise obscured by accumulated mutations in sequence data. Here, we review the utility of retroposons for inferring common ancestry, discuss limits to the method, and clarify confusion by providing examples from the literature that illustrate how discordant multi-locus insertion patterns of retroelements can indicate lineage-sorting events that should not be misinterpreted as phylogenetic noise.
Collapse
Affiliation(s)
- Andrew M Shedlock
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
32
|
Demographic changes and marker properties affect detection of human population differentiation. BMC Genet 2007; 8:21. [PMID: 17498298 PMCID: PMC1876243 DOI: 10.1186/1471-2156-8-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 05/11/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Differentiating genetically between populations is valuable for admixture and population stratification detection and in understanding population history. This is easy to achieve for major continental populations, but not for closely related populations. It has been claimed that a large marker panel is necessary to reliably distinguish populations within a continent. We investigated whether empirical genetic differentiation could be accomplished efficiently among three Asian populations (Hmong, Thai, and Chinese) using a small set of highly variable markers (15 tetranucleotide and 17 dinucleotide repeats). RESULTS Hmong could be differentiated from Thai and Chinese based on multi-locus genotypes, but Thai and Chinese were indistinguishable from each other. We found significant evidence for a recent population bottleneck followed by expansion in the Hmong that was not present in the Thai or Chinese. Tetranucleotide repeats were less useful than dinucleotide repeat markers in distinguishing between major continental populations (Asian, European, and African) while both successfully distinguished Hmong from Thai and Chinese. CONCLUSION Demographic history contributes significantly to robust detection of intracontinental population structure. Populations having experienced a rapid size reduction may be reliably distinguished as a result of a genetic drift -driven redistribution of population allele frequencies. Tetranucleotide markers, which differ from dinucleotide markers in mutation mechanism and rate, are similar in information content to dinucleotide markers in this situation. These factors should be considered when identifying populations suitable for gene mapping studies and when interpreting interpopulation relationships based on microsatellite markers.
Collapse
|
33
|
Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika--the result of repeated introgressive hybridization. BMC Evol Biol 2007; 7:7. [PMID: 17254340 PMCID: PMC1790888 DOI: 10.1186/1471-2148-7-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 01/25/2007] [Indexed: 11/10/2022] Open
Abstract
Background The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar. Although shell-breeding arose several times in the evolutionary history of the lamprologines, all obligatory and most facultative shell-breeders belong to the so called "ossified group", a monophyletic lineage within the lamprologine cichlids. Since their distinctive life style enables these species to live and breed in closest vicinity, we hypothesized that these cichlids might be particularly prone to accidental hybridization, and that introgression might have affected the evolutionary history of this cichlid lineage. Results Our analyses revealed discrepancies between phylogenetic hypotheses based on mitochondrial and nuclear (AFLP) data. While the nuclear phylogeny was congruent with morphological, behavioral and ecological characteristics, several species – usually highly specialized shell-breeders – were placed at contradicting positions in the mitochondrial phylogeny. The discordant phylogenies strongly suggest repeated incidents of introgressive hybridization between several distantly related shell-breeding species, which reticulated the phylogeny of this group of cichlids. Long interior branches and high bootstrap support for many interior nodes in the mitochondrial phylogeny argue against a major effect of ancient incomplete lineage sorting on the phylogenetic reconstruction. Moreover, we provide morphological and genetic (mtDNA and microsatellites) evidence for ongoing hybridization among distantly related shell-breeders. In these cases, the territorial males of the inferred paternal species are too large to enter the shells of their mate, such that they have to release their sperm over the entrance of the shell to fertilize the eggs. With sperm dispersal by water currents and wave action, trans-specific fertilization of clutches in neighboring shells seem inevitable, when post-zygotic isolation is incomplete. Conclusion From the direct observation of hybrids we conclude that hybridization between distantly related gastropod-shell-breeding cichlids of Lake Tanganyika follows inevitably from their ecological specialization. Moreover, the observed incongruence between mtDNA and nuclear multilocus phylogeny suggests that repeated hybridization events among quite distantly related taxa affected the diversification of this group, and introduced reticulation into their phylogeny.
Collapse
|
34
|
Won YJ, Wang Y, Sivasundar A, Raincrow J, Hey J. Nuclear gene variation and molecular dating of the cichlid species flock of Lake Malawi. Mol Biol Evol 2006; 23:828-37. [PMID: 16461358 DOI: 10.1093/molbev/msj101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cichlid fishes of Lake Malawi are famously diverse. However, evolutionary studies have been difficult because of their recent and uncertain phylogenetic history. Portions of 12 nuclear loci were sequenced in nine rock-dwelling species (mbuna) and three representatives of pelagic nonmbuna species. In contrast to the pattern of variation at mitochondrial genes, which do provide phylogenetic resolution at the level of mbuna versus nonmbuna, and among some genera, the nuclear loci were virtually devoid of phylogenetic signal. Only a small minority of variable positions were phylogenetically informative, and no phylogenetic branches are supported by more than one site. From the nuclear gene perspective the Malawian radiation appears to be a star phylogeny, as if the founding of the lake was accompanied by a partial bottleneck. The pattern is different from that found in Lake Victoria, in which nuclear loci share large amounts of ancestral variation. In the case of nuclear genes of Lake Malawi, the absence of phylogenetically informative variation suggests a relative absence of ancestral variation. Nuclear genes also differed from the mitochondria in having nearly twice the amount of divergence from Oreochromis (tilapia). An approximate splitting time between mbuna and nonmbuna lineages was estimated as 0.7 Myr. Oreochromis is estimated to have diverged from the cichlids in Lake Malawi and Lake Tanganyika about 18 MYA.
Collapse
Affiliation(s)
- Yong-Jin Won
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
35
|
McLachlan JS, Clark JS, Manos PS. MOLECULAR INDICATORS OF TREE MIGRATION CAPACITY UNDER RAPID CLIMATE CHANGE. Ecology 2005. [DOI: 10.1890/04-1036] [Citation(s) in RCA: 446] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
O'Reilly PT, Canino MF, Bailey KM, Bentzen P. Inverse relationship between F and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 2005; 13:1799-814. [PMID: 15189204 DOI: 10.1111/j.1365-294x.2004.02214.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microsatellites have proved to be useful for the detection of weak population structure in marine fishes and other species characterized by large populations and high gene flow. None the less, uncertainty remains about the net effects of the particular mutational properties of these markers, and the wide range of locus polymorphism they exhibit, on estimates of differentiation. We examined the effect of varying microsatellite polymorphism on the magnitude of observed differentiation in a population survey of walleye pollock, Theragra chalcogramma. Genetic differentiation at 14 microsatellite loci among six putative populations from across the North Pacific Ocean and Bering Sea was weak but significant on large geographical scales and conformed to an isolation-by-distance pattern. A negative relationship was found between locus variability and the magnitude of estimated population subdivision. Estimates of F(ST) declined with locus polymorphism, resulting in diminished power to discriminate among samples, and we attribute this loss to the effects of size homoplasy. This empirical result suggests that mutation rates of some microsatellite loci are sufficiently high to limit resolution of weak genetic structure typical of many marine fishes.
Collapse
Affiliation(s)
- P T O'Reilly
- Bedford Institute of Oceanography, #1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, USA
| | | | | | | |
Collapse
|
37
|
Hey J, Won YJ, Sivasundar A, Nielsen R, Markert JA. Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. Mol Ecol 2004; 13:909-19. [PMID: 15012765 DOI: 10.1046/j.1365-294x.2003.02031.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When populations or species have recently separated they often share genetic variation. However, it can be difficult to determine whether shared polymorphisms are the result of gene flow, the result of the persistence of variation in both populations since the time of common ancestry, or both of these factors. We have developed an empirical protocol for using loci that include unique nuclear DNA sequence haplotypes together with linked microsatellites or short tandem repeats (STRs). These 'HapSTRs' offer the potentially high resolution associated with the high mutation rate of STRs, together with the advantages of low homoplasy of unique sequence DNA. We also describe a new procedure for estimating the likelihood of HapSTR data under an Isolation with Migration model. An example using Cichlid fishes from Lake Malawi is described. The analysis suggests that the species have been exchanging genes since the time they began to diverge.
Collapse
Affiliation(s)
- Jody Hey
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Smith PF, Konings A, Kornfield I. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity. Mol Ecol 2003; 12:2497-504. [PMID: 12919487 DOI: 10.1046/j.1365-294x.2003.01905.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration.
Collapse
Affiliation(s)
- Peter F Smith
- Department of Biological Sciences, University of Maine, 5751 Murray Hall Orono, ME 04469-5751, USA
| | | | | |
Collapse
|
40
|
Cuenca A, Escalante AE, Piñero D. Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Mol Ecol 2003; 12:2087-97. [PMID: 12859631 DOI: 10.1046/j.1365-294x.2003.01890.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pinus nelsonii is a relictual pinyon pine distributed across a wide altitudinal range in semiarid zones in Mexico near the border between the States of Nuevo León and Tamaulipas. It also occurs in small patches in the State of San Luis Potosí. Pinus nelsonii is classified in the monotypic subsection Nelsoniae, separated from other pinyon pines (subsection Cembroides), because it possesses several distinctive characters including persistent fascicle sheaths, connate needles, and a distinctive wood anatomy. In the present study, chloroplast simple sequence repeats (cpSSRs) were used to estimate genetic variation in most known populations (nine) of P. nelsonii. The genetic variation (HT = 0.73; 27 haplotypes in 256 individuals) is moderate when compared to other pine species. Population differentiation ranged between low and moderate (FST = 0.13 and RST = 0.05), as did the Nei and Goldstein genetic distances between populations. However, this pattern varied depending on whether the infinite alleles or stepwise mutation model was used. In the former case a significant isolation by distance was found, but not in the latter. A significant association between geographical and genetic structure in one clade, through a nested clade analysis, was found, which suggested long-distance colonization between 125000 and 309000 years ago. We found weak evidence for a population expansion. A mismatch distribution suggests that P. nelsonii populations underwent an expansion 4.25 times their size between 59000 and 146000 years ago. On the other hand, the populations' star-like phylogeny and a slight parabolic relationship between coalescence times and lineage number also suggest weak population expansion. Overall, this species appears to have been in demographic stasis for a large proportion of the time detected by the markers used.
Collapse
Affiliation(s)
- A Cuenca
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, México DF 04510, México
| | | | | |
Collapse
|
41
|
Abstract
Over the past century, the spread of the common reed (Phragmites australis) has had a dramatic impact on wetland communities across North America. Although native populations of Phragmites persist, introduced invasive populations have dominated many sites and it is not clear if the two types can interbreed. This study compares patterns of differentiation in 10 microsatellite loci among North American and European Phragmites individuals with results obtained from sequencing of noncoding chloroplast DNA. Three population lineages (native, introduced and Gulf Coast) were previously identified in North America from chloroplast DNA and similar structuring was found in the nuclear genome. Each lineage was distinguished by unique alleles and allele combinations and the introduced lineage was closely related to its hypothesized source population in Europe. Size homoplasy and diagnostic base substitutions distinguishing lineages were evident at several loci, further emphasizing that native, introduced and Gulf Coast North American Phragmites lineages are genetically distinct. Gene flow between lineages was low and invasive introduced populations do not represent a hybrid population type.
Collapse
Affiliation(s)
- K Saltonstall
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
42
|
Baliraine FN, Bonizzoni M, Osir EO, Lux SA, Mulaa FJ, Zheng L, Gomulski LM, Gasperi G, Malacrida AR. Comparative analysis of microsatellite loci in four fruit fly species of the genus Ceratitis (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2003; 93:1-10. [PMID: 12593677 DOI: 10.1079/ber2002212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility to cross-species amplify microsatellites in fruit flies of the genus Ceratitis was tested with the polymerase chain reaction (PCR) by analysing 23 Ceratitis capitata (Wiedemann) microsatellite markers on the genomic DNA of three other economically important, congeneric species: C. rosa (Karsch), C. fasciventris (Bezzi) and C. cosyra (Walker). Twenty-two primer pairs produced amplification products in at least one of the three species tested. The majority of the products were similar, if not identical in size to those expected in C. capitata. The structures of the repeat motifs and their flanking sequences were examined for a total of 79 alleles from the three species. Sequence analysis revealed the same repeat type as the homologous C. capitata microsatellites in the majority of the loci, suggesting their utility for population analysis across the species range. A total of seven loci were differentially present/absent in C. capitata, C. rosa, C. fasciventris and C. cosyra, suggesting that it may be possible to differentiate these four species using a simple sequence repeat-based PCR assay. It is proposed that medfly-based microsatellite markers could be utilized in the identification and tracing of the geographical origins of colonist pest populations of the four tested species and in the assessment of their risk and invasive potentials; thereby assisting regulatory authorities in implementing quarantine restrictions and other pest control measures.
Collapse
Affiliation(s)
- F N Baliraine
- International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rico C, Bouteillon P, Van Oppen MJH, Knight ME, Hewitt GM, Turner GF. No evidence for parallel sympatric speciation in cichlid species of the genus Pseudotropheus from north-western Lake Malawi. J Evol Biol 2003; 16:37-46. [PMID: 14635878 DOI: 10.1046/j.1420-9101.2003.00477.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis of parallel speciation by sexual selection, we examined length variation at six microsatellite loci of samples from four sites of four to six putative species belonging to two subgenera of rocky shore mbuna cichlids from Lake Malawi. Almost all fixation indices were significantly different from zero, suggesting that there is presently little or no gene flow among allopatric populations or sympatric species. Analysis of variance indicated that genetic distances among allopatric populations of putative conspecifics were significantly lower than among sympatric populations of heterospecifics. The topology of trees based on distance matrices was also largely consistent with the hypothesis that the putative species are monophyletic and have thus not evolved in parallel in their present locations. If parallel speciation does occur in Malawi cichlids, it may be on a larger spatial scale than investigated in our study.
Collapse
Affiliation(s)
- C Rico
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | |
Collapse
|
44
|
Smith PF, Kornfield I. Phylogeography of Lake Malawi cichlids of the genus Pseudotropheus: significance of allopatric colour variation. Proc Biol Sci 2002; 269:2495-502. [PMID: 12573062 PMCID: PMC1691194 DOI: 10.1098/rspb.2002.2188] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the most compelling features of the cichlid fishes of the African Great Lakes is the seemingly endless diversity of male coloration. Colour diversification has been implicated as an important factor driving cichlid speciation. Colour has also been central to cichlid taxonomy and, thus, to our concept of species diversity. We undertook a phylogeographical examination of several allopatric populations of the Lake Malawi cichlid Pseudotropheus zebra in order to reconstruct the evolutionary history of the populations, which exhibit one of two dorsal fin colours. We present evidence that populations with red dorsal fins (RT) are not monophyletic. The RT population defining the northern limit of the distribution has evidently originated independently of the southern RT populations, which share a common ancestry. This evidence of species-level colour convergence is an important discovery in our understanding of cichlid evolution. It implies that divergence in coloration may accompany speciation, and that allopatric populations with similar coloration cannot be assumed to be conspecific. In addition to this finding, we have observed evidence for introgression, contributing to current evidence that this phenomenon may be extremely widespread. Thus, in species-level phylogenetic reconstructions, including our own, consideration must be given to the potential effects of introgression.
Collapse
Affiliation(s)
- Peter F Smith
- Department of Biological Sciences, University of Maine, Orono, ME 04469-5751, USA
| | | |
Collapse
|
45
|
Hale ML, Squirrell J, Borland AM, Wolff K. Isolation of polymorphic microsatellite loci in the genus Clusia (Clusiaceae). ACTA ACUST UNITED AC 2002. [DOI: 10.1046/j.1471-8286.2002.00293.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Estoup A, Jarne P, Cornuet JM. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 2002; 11:1591-604. [PMID: 12207711 DOI: 10.1046/j.1365-294x.2002.01576.x] [Citation(s) in RCA: 527] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
Collapse
Affiliation(s)
- Arnaud Estoup
- Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, 34980 Montferrier/Lez, France.
| | | | | |
Collapse
|
47
|
Abstract
Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.
Collapse
Affiliation(s)
- François Balloux
- Zoologisches Institut, Universität Bern, CH-3032 Hinterkappelen-Bern, Switzerland.
| | | |
Collapse
|
48
|
Michalak P, Minkov I, Helin A, Lerman DN, Bettencourt BR, Feder ME, Korol AB, Nevo E. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in "Evolution Canyon," Israel. Proc Natl Acad Sci U S A 2001; 98:13195-200. [PMID: 11687637 PMCID: PMC60847 DOI: 10.1073/pnas.231478298] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2001] [Indexed: 11/18/2022] Open
Abstract
Substantial genetic differentiation, as great as among species, exists between populations of Drosophila melanogaster inhabiting opposite slopes of a small canyon. Previous work has shown that prezygotic sexual isolation and numerous differences in stress-related phenotypes have evolved between D. melanogaster populations in "Evolution Canyon," Israel, in which slopes 100-400 m apart differ dramatically in aridity, solar radiation, and associated vegetation. Because the canyon's width is well within flies' dispersal capabilities, we examined genetic changes associated with local adaptation and incipient speciation in the absence of geographical isolation. Here we report remarkable genetic differentiation of microsatellites and divergence in the regulatory region of hsp70Ba which encodes the major inducible heat shock protein of Drosophila, in the two populations. Additionally, an analysis of microsatellites suggests a limited exchange of migrants and lack of recent population bottlenecks. We hypothesize that adaptation to the contrasting microclimates overwhelms gene flow and is responsible for the genetic and phenotypic divergence between the populations.
Collapse
Affiliation(s)
- P Michalak
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rüber L, Meyer A, Sturmbauer C, Verheyen E. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Mol Ecol 2001; 10:1207-25. [PMID: 11380878 DOI: 10.1046/j.1365-294x.2001.01259.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterns of genetic differentiation were analysed and compared in two sympatric species of the endemic Lake Tanganyika cichlid tribe Eretmodini by means of mitochondrial DNA (mtDNA) sequences of the control region and six microsatellite DNA loci. The sample area covers a total of 138 km of mostly uninterrupted rocky shoreline in the Democratic Republic of Congo and includes the entire distribution range of Tanganicodus cf. irsacae that stretches over a distance of 35 km. Both markers detected significant genetic differentiation within and between the two species. T. cf. irsacae contained lower overall genetic variation than Eretmoduscyanostictus, possibly due to its more restricted range of distribution and its smaller effective population sizes. Complete fixation of Tanganicodus mtDNA haplotypes was observed in Eretmodus at two localities, while at two other localities some Tanganicodus individuals possessed Eretmodus mtDNA haplotypes. Taking into account the relatively large average sequence divergence of 6.2% between the two species, as well as the geographical distribution of mtDNA haplotypes in the lake, the observed pattern is more likely to be a consequence of asymmetric introgression than of shared ancestral polymorphism. As there is significant population differentiation between sympatric Tanganicodus and Eretmodus populations, the events of introgressions may have happened after secondary contact, but our data provide no evidence for ongoing gene flow and suggest that both species are reproductively isolated at present time.
Collapse
Affiliation(s)
- L Rüber
- Zoological Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
50
|
Pascual M, Aquadro CF, Soto V, Serra L. Microsatellite variation in colonizing and palearctic populations of Drosophila subobscura. Mol Biol Evol 2001; 18:731-40. [PMID: 11319257 DOI: 10.1093/oxfordjournals.molbev.a003855] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recent colonization of North America by Drosophila subobscura has provided a great opportunity to analyze a colonization process from the beginning. A comparative study using 10 microsatellite loci was conducted for five European and two North American populations. No genetic differentiation between European populations was detected, indicating that gene flow is high among them and that the microsatellites used in the present work represent neutral markers not subject to differentiation due to selection. Extensive reduction in the number of alleles and a significant decrease in heterozygosity in colonizing populations were detected that could be explained by the founder effect and a subsequent quick but not infinite expansion. Assuming that all alleles present in the colonized area were carried by the sample of colonizers, we estimated that most probably 4-11 individuals expanded in the new area. F(ST) and the chord distance measures reflect the colonization process more accurately, since drift has been the major force in differentiating the Old and New World populations, and thus other measures considering allele size differences, such as Rho(ST) and deltamu2, are less reliable for studying nonequilibrium populations. Finally, our results were consistent with the two-phase microsatellite mutational model, indicating that most alleles are generated by gain or loss of a repeat unit, while some alleles originate by more complex mutations.
Collapse
Affiliation(s)
- M Pascual
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|