1
|
Salomon S, Oliva O, Amato A, Bastien O, Michaud M, Jouhet J. Betaine lipids: Biosynthesis, functional diversity and evolutionary perspectives. Prog Lipid Res 2025; 97:101320. [PMID: 39793901 DOI: 10.1016/j.plipres.2025.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Betaine lipids (BL) are relatively understudied non‑phosphorus glycerolipids. They are predominantly found in algae but have also been detected in other unicellular eukaryotes, fungi, bacteria, and some bryophytes and pteridophytes. These extraplastidial lipids are considered as substitute for phospholipids in organisms, particularly under phosphate (Pi) deficiency. This review provides a broader perspective on the roles and functions of BL, revealing their functional diversity across species and environments. It also discuss the biosynthetic pathways of BL. Indeed, the pathway for DGTS (1(3),2-diacylglyceryl-3(1)-O-4'-(N,N,N-trimethyl)-homoserine), the most widespread and studied BL form, is completely known, whereas the pathway for DGTA (1(3),2-diacylglyceryl-3(1)-O-2'-(N,N,N-trimethyl)-β-alanine) is only partially understood. In this review, the role of the BTA1 gene, responsible for the synthesis of DGTS, is discussed. It is revealed to be essential in DGTA synthesis as it enables the production of its intermediate, DGTS. A phylogenetic analysis, conducted on BTA1 gene, does not seem to link the phylogenetic position of BTA1 with the BL species produced but confirms the distribution trends, with a BL diversification in marine environments and the gradual disappearance of DGTS in the evolution of the green lineage. Further research is needed to elucidate the specific roles and biosynthetic pathways of BL across different species.
Collapse
Affiliation(s)
- Sarah Salomon
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Océane Oliva
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Morgane Michaud
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
2
|
Zuliani L, Cecchin M, Miotti T, Paloschi M, Cuine S, Cazzaniga S, Li-Beisson Y, Ballottari M. Interplay between CO 2 and light governs carbon partitioning in Chlamydomonas reinhardtii. PHYSIOLOGIA PLANTARUM 2024; 176:e14630. [PMID: 39563411 DOI: 10.1111/ppl.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Increasing CO2 availability is a common practice at the industrial level to trigger biomass productivity in microalgae cultures. Still, the consequences of high CO2 availability in microalgal cells exposed to relatively high light require further investigation. Here, the photosynthetic, physiologic, and metabolic responses of the green microalga model Chlamydomonas reinhardtii were investigated in high or low CO2 availability conditions: high CO2 enabled higher biomass yields only if sufficient light energy was provided. Moreover, cells grown in high light and high CO2 availability were characterized, compared to cells grown in high light and low CO2, by a relative increase of the energy-dense triacylglycerols and decreased starch accumulation per dry weight. The photosynthetic machinery adapted to the increased carbon availability, modulating Photosystem II light-harvesting efficiency and increasing Photosystem I photochemical activity, which shifted from being acceptor side to donor side limited: cells grown at high CO2 availability were characterized by increased photosynthetic linear electron flow and by the onset of a balance between NAD(P)H oxidation and NAD(P)+ reduction. Mitochondrial respiration was also influenced by the conditions herein applied, with reduced respiration through the cytochrome pathway compensated by increased respiration through alternative pathways, demonstrating a different use of the cellular reducing power based on carbon availability. The results suggest that at high CO2 availability and high irradiance, the reducing power generated by the oxidative metabolism of photosynthates is either dissipated through alternative oxidative pathways in the mitochondria or translocated back to the chloroplasts to support carbon assimilation and energy-rich lipids accumulation.
Collapse
Affiliation(s)
- Luca Zuliani
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Tea Miotti
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Matteo Paloschi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Stephan Cuine
- Aix-Marseille Univ, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez Durance, France
| | | | - Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez Durance, France
| | | |
Collapse
|
3
|
Yang M, Xu X, Lei H, Yang Z, Xie X, Gong Z. Polyunsaturated triacylglycerol accumulation mainly attributes to turnover of de novo-synthesized membrane lipids in stress-induced starchless Chlamydomonas. PLANT CELL REPORTS 2024; 43:240. [PMID: 39317879 DOI: 10.1007/s00299-024-03334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Assembly of PUFA-attached TAGs is intimately correlated to turnover of newly formed membrane lipids in starch-deficient Chlamydomonas exposed to high light and nitrogen stress under air-aerated mixotrophic conditions. Triacylglycerols (TAGs) rich in polyunsaturated fatty acids (PUFAs) in microalgae have attracted extensive attention due to its promising application in nutraceuticals and other high-value compounds. Previous studies revealed that PUFAs accumulated in TAG primarily derived from the dominant membrane lipids, monogalactosyldiacylglycerolipid, digalactosyldiacylglycerol and diacylglycerol-N,N,N-trimethylhomoserine (DGTS), in the model alga Chlamydomonas reinhardtii. However, their respective contribution to PUFA-attached TAG integration has not been clearly deciphered, particularly in starchless Chlamydomonas that hyper-accumulates TAG. In this study, the starchless C. reinhardtii BAFJ5 was mixotrophically cultivated in photobioreactors aerated with air (0.04% CO2), and we monitored the dynamic changes in growth, cellular carbon and nitrogen content, photosynthetic activity, biochemical compositions, and glycerolipid remodeling under high light and nitrogen starvation conditions. The results indicated that multiple PUFAs continually accumulated in total lipids and TAG, and the primary distributors of these PUFAs gradually shifted from membrane lipids to TAG in stress-induced BAFJ5. The stoichiometry analyses showed that the PUFA-attached TAG assembly attributed to turnover of not only the major glycerolipids, but also the phospholipids, phosphatidylethanolamine (PE) and phosphatidylglycerol. Specifically, the augmented C16:3n3 and C18:3n3 in TAG mainly originated from de novo-synthesized galactolipids, while the cumulative C18:3n6 and C18:4n3 in TAG were intimately correlated with conversion of the newly formed DGTS and PE. These findings emphasized significance of PUFA-attached TAG formation dependent on turnover of de novo assembled membrane lipids in starch-deficient Chlamydomonas, beneficial for enhanced production of value-added lipids in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xinyue Xu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Hengping Lei
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ziyi Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xi Xie
- Key Laboratory of Conservation and Exploitation of Aquatic Germplasm Resource Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
4
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Shin SE, Koh HG, Park K, Park SH, Chang YK, Kang NK. Increasing lipid production in Chlamydomonas reinhardtii through genetic introduction for the overexpression of glyceraldehyde-3-phosphate dehydrogenase. Front Bioeng Biotechnol 2024; 12:1396127. [PMID: 38707501 PMCID: PMC11066295 DOI: 10.3389/fbioe.2024.1396127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Microalgae, valued for their sustainability and CO2 fixation capabilities, are emerging as promising sources of biofuels and high-value compounds. This study aimed to boost lipid production in C. reinhardtii by overexpressing chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in the Calvin cycle and glycolysis, under the control of a nitrogen-inducible NIT1 promoter, to positively impact overall carbon metabolism. The standout transformant, PNG#7, exhibited significantly increased lipid production under nitrogen starvation, with biomass rising by 44% and 76% on days 4 and 16, respectively. Fatty acid methyl ester (FAME) content in PNG#7 surged by 2.4-fold and 2.1-fold, notably surpassing the wild type (WT) in lipid productivity by 3.4 and 3.7 times on days 4 and 16, respectively. Transcriptome analysis revealed a tenfold increase in transgenic GAPDH expression and significant upregulation of genes involved in fatty acid and triacylglycerol synthesis, especially the gene encoding acyl-carrier protein gene (ACP, Cre13. g577100. t1.2). In contrast, genes related to cellulose synthesis were downregulated. Single Nucleotide Polymorphism (SNP)/Indel analysis indicated substantial DNA modifications, which likely contributed to the observed extensive transcriptomic and phenotypic changes. These findings suggest that overexpressing chloroplast GAPDH, coupled with genetic modifications, effectively enhances lipid synthesis in C. reinhardtii. This study not only underscores the potential of chloroplast GAPDH overexpression in microalgal lipid synthesis but also highlights the expansive potential of metabolic engineering in microalgae for biofuel production.
Collapse
Affiliation(s)
- Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
6
|
Wang R, Li J, Zhang F, Miao X. Non-Tandem CCCH-Type Zinc-Finger Protein CpZF_CCCH1 Improves Fatty Acid Desaturation and Stress Tolerance in Chlamydomonas reinhardtii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910392 DOI: 10.1021/acs.jafc.3c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The properties and nutritional value of microalgal bioproducts depend significantly on fatty acid desaturation, which is generally modulated by manipulating the culture conditions or associated gene expressions. Here, we investigated the role of CpZF_CCCH1, a non-tandem CCCH-type zinc-finger (non-TZF) protein, in elevating polyunsaturated fatty acid (PUFA) content (11.00-16.36%) in Chlamydomonas reinhardtii. Through lipidomic and flow cytometry analyses, we observed reduced triacylglycerol accumulation (7.01-21.15%) and elevated levels of membrane lipids containing PUFAs (7.81-46.18%) in C. reinhardtii overexpressing CpZF_CCCH1. Additionally, overexpression of nucleus-located CpZF_CCCH1 downregulated genes associated with triacylglycerol assembly and lipid turnover from 2.00- to 2.90-fold, likely by binding to GCN4 motif and promoter of 3-phosphate-glycerol acyltransferase. Furthermore, overexpression of CpZF_CCCH1 alleviated reactive oxygen species levels by 59.28-73.26% and enhanced stress tolerance under adverse conditions. These findings expanded the roles of non-TZF proteins in lipid metabolism, opening new avenues for metabolic engineering to enhance the nutritional value and stress tolerance of microalgae and agricultural crops.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Lu H, Liu K, Zhang H, Xie X, Ge Y, Chi Z, Xue S, Kong F, Ohama T. Enhanced triacyclglycerols and starch synthesis in Chlamydomonas stimulated by the engineered biodegradable nanoparticles. Appl Microbiol Biotechnol 2023; 107:971-983. [PMID: 36622426 DOI: 10.1007/s00253-023-12366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.
Collapse
Affiliation(s)
- Han Lu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Keqing Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hao Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xi Xie
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Yunlong Ge
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-City, 782-8502, Japan
| |
Collapse
|
8
|
Hoffmann DY, Shachar-Hill Y. Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae? FRONTIERS IN PLANT SCIENCE 2023; 14:1077347. [PMID: 36743481 PMCID: PMC9892843 DOI: 10.3389/fpls.2023.1077347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Acyl editing refers to a deacylation and reacylation cycle on a lipid, which allows for fatty acid desaturation and modification prior to being removed and incorporated into other pools. Acyl editing is an important determinant of glycerolipid synthesis and has been well-characterized in land plants, thus this review begins with an overview of acyl editing in plants. Much less is known about acyl editing in algae, including the extent to which acyl editing impacts lipid synthesis and on which lipid substrate(s) it occurs. This review compares what is known about acyl editing on its major hub phosphatidylcholine (PC) in land plants with the evidence for acyl editing of betaine lipids such as diacylglyceryltrimethylhomoserine (DGTS), the structural analog that replaces PC in several species of microalgae. In land plants, PC is also known to be a major source of fatty acids and diacylglycerol (DAG) for synthesis of the neutral lipid triacylglycerol (TAG). We review the evidence that DGTS contributes substantially to TAG accumulation in algae as a source of fatty acids, but not as a precursor to DAG. We conclude with evidence of acyl editing on other membrane lipid substrates in plants and algae apart from PC or DGTS, and discuss future analyses to elucidate the role of DGTS and other betaine lipids in acyl editing in microalgae.
Collapse
|
9
|
Co-Expression of Lipid Transporters Simultaneously Enhances Oil and Starch Accumulation in the Green Microalga Chlamydomonas reinhardtii under Nitrogen Starvation. Metabolites 2023; 13:metabo13010115. [PMID: 36677040 PMCID: PMC9866645 DOI: 10.3390/metabo13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Lipid transporters synergistically contribute to oil accumulation under normal conditions in microalgae; however, their effects on lipid metabolism under stress conditions are unknown. Here, we examined the effect of the co-expression of lipid transporters, fatty acid transporters, (FAX1 and FAX2) and ABC transporter (ABCA2) on lipid metabolism and physiological changes in the green microalga Chlamydomonas under nitrogen (N) starvation. The results showed that the TAG content in FAX1-FAX2-ABCA2 over-expressor (OE) was 2.4-fold greater than in the parental line. Notably, in FAX1-FAX2-ABCA2-OE, the major membrane lipids and the starch and cellular biomass content also significantly increased compared with the control lines. Moreover, the expression levels of genes directly involved in TAG, fatty acid, and starch biosynthesis were upregulated. FAX1-FAX2-ABCA2-OE showed altered photosynthesis activity and increased ROS levels during nitrogen (N) deprivation. Our results indicated that FAX1-FAX2-ABCA2 overexpression not only enhanced cellular lipids but also improved starch and biomass contents under N starvation through modulation of lipid and starch metabolism and changes in photosynthesis activity. The strategy developed here could also be applied to other microalgae to produce FA-derived energy-rich and value-added compounds.
Collapse
|
10
|
Transcriptome Analysis Reveals the Involvement of Alternative Splicing in the Nitrogen Starvation Response of Chlamydomonas reinhardtii. Processes (Basel) 2022. [DOI: 10.3390/pr10122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing (AS) is a regulatory mechanism of post-transcriptional regulation that plays an important role in plant response to abiotic stresses. However, corresponding research involving the mechanism of AS in the nitrogen starvation response of C. reinhardtii is rare. This study performed a comprehensive and systematic analysis of AS events in C. reinhardtii at nine time points (0 h, 10 m, 30 m, 1 h, 6 h, 8 h, 24 h, and 48 h) under nitrogen starvation. It used STAR and rMATS tools to identify and quantify the probability of the AS event happening through the transcriptome high-throughput sequencing data. A total of 5806 AS events in 3500 genes were identified, and the retained intron and skipped exon were considered the main AS types. The genes related to the AS event in nitrogen starvation were mainly involved in spliceosome and transporter and enriched in the citrate cycle and fatty acid degradation pathways. These results suggested that AS may play an important role in the nitrogen starvation response in C. reinhardtii, and provided insights into post-transcriptional regulation under nitrogen starvation.
Collapse
|
11
|
Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:54. [PMID: 35596223 PMCID: PMC9123788 DOI: 10.1186/s13068-022-02154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/07/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloroplast and endoplasmic reticulum (ER)-localized fatty acid (FA) transporters have been reported to play important roles in oil (mainly triacylglycerols, TAG) biosynthesis. However, whether these FA transporters synergistically contribute to lipid accumulation, and their effect on lipid metabolism in microalgae are unknown.
Results
Here, we co-overexpressed two chloroplast-localized FA exporters (FAX1 and FAX2) and one ER-localized FA transporter (ABCA2) in Chlamydomonas. Under standard growth conditions, FAX1/FAX2/ABCA2 over-expression lines (OE) accumulated up to twofold more TAG than the parental strain UVM4, and the total amounts of major polyunsaturated FAs (PUFA) in TAG increased by 4.7-fold. In parallel, the total FA contents and major membrane lipids in FAX1/FAX2/ABCA2-OE also significantly increased compared with those in the control lines. Additionally, the total accumulation contribution ratio of PUFA, to total FA and TAG synthesis in FAX1/FAX2/ABCA2-OE, was 54% and 40% higher than that in UVM4, respectively. Consistently, the expression levels of genes directly involved in TAG synthesis, such as type-II diacylglycerol acyltransferases (DGTT1, DGTT3 and DGTT5), and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), significantly increased, and the expression of PGD1 (MGDG-specific lipase) was upregulated in FAX1/FAX2/ABCA2-OE compared to UVM4.
Conclusion
These results indicate that the increased expression of FAX1/FAX2/ABCA2 has an additive effect on enhancing TAG, total FA and membrane lipid accumulation and accelerates the PUFA remobilization from membrane lipids to TAG by fine-tuning the key genes involved in lipid metabolism under standard growth conditions. Overall, FAX1/FAX2/ABCA2-OE shows better traits for lipid accumulation than the parental line and previously reported individual FA transporter-OE. Our study provides a potential useful strategy to increase the production of FA-derived energy-rich and value-added compounds in microalgae.
Collapse
|
12
|
Young DY, Pang N, Shachar-Hill Y. 13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas. PLANT PHYSIOLOGY 2022; 189:1326-1344. [PMID: 35377446 PMCID: PMC9237737 DOI: 10.1093/plphys/kiac154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
13
|
Yang M, Xie X, Kong FT, Xie KP, Yu SH, Ma JY, Xue S, Gong Z. Differences in Glycerolipid Response of Chlamydomonas reinhardtii Starchless Mutant to High Light and Nitrogen Deprivation Stress Under Three Carbon Supply Regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:860966. [PMID: 35599875 PMCID: PMC9120814 DOI: 10.3389/fpls.2022.860966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Carbon source serves as a crucial factor for microalgal lipid biosynthesis. The supplied exogenous inorganic or organic carbon affects lipid accumulation in microalgae under stress conditions. However, the impacts of different carbon availability on glycerolipid metabolism, triacylglycerol (TAG) metabolism in particular, still remain elusive in microalgae. Chlamydomonas starchless mutant BAFJ5 has emerged as a model system to study TAG metabolism, due to its property of hyper-accumulating TAG. In this study, the glycerolipidomic response of the starchless BAFJ5 to high light and nitrogen-deprived (HL-N) stress was deciphered in detail to distinguish glycerolipid metabolism under three carbon supply regimes. The results revealed that the autotrophically and mixotrophically grown BAFJ5 cells aerated with air containing 2% CO2 presented similar changes in growth, photosynthetic activity, biochemical components, and glycerolipid metabolism under HL-N conditions. But the mixotrophically grown BAFJ5 aerated with air containing 0.04% CO2 exhibited more superior accumulation in TAG, which was esterified with a significantly higher proportion of C18:1n9 and prominently the lower proportions of polyunsaturated fatty acids. In addition, these cells increased the relative levels of C18:2n6 in the membrane lipids, i.e., monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in priority, and decreased that of C18:3n3 and C18:4n3 in the betaine lipid, N,N,N-trimethylhomoserine diacylglycerol (DGTS), subsequently, to adapt to the HL-N stress conditions, compared to the cells under the other two conditions. Thus, it was suggested that C. reinhardtii starchless mutant appeared to present distinct metabolism for TAG biosynthesis involving membrane lipid remodeling under distinct carbon supply regimes. This study provides insights into how the different carbon supply regimes affect lipid metabolism in Chlamydomonas starchless cells, which will benefit the optimized production of storage lipids in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Xi Xie
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Kun-Peng Xie
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Si-Hui Yu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Jing-Yi Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
14
|
Bai F, Zhang Y, Liu J. A bZIP transcription factor is involved in regulating lipid and pigment metabolisms in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Young DY, Shachar-Hill Y. Large fluxes of fatty acids from membranes to triacylglycerol and back during N-deprivation and recovery in Chlamydomonas. PLANT PHYSIOLOGY 2021; 185:796-814. [PMID: 33822218 PMCID: PMC8133548 DOI: 10.1093/plphys/kiaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|