1
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
2
|
Ezaki K, Koga H, Takeda-Kamiya N, Toyooka K, Higaki T, Sakamoto S, Tsukaya H. Precocious cell differentiation occurs in proliferating cells in leaf primordia in Arabidopsis angustifolia3 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1322223. [PMID: 38689848 PMCID: PMC11058843 DOI: 10.3389/fpls.2024.1322223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.
Collapse
Affiliation(s)
- Kazune Ezaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Takeda-Kamiya
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. RESEARCH SQUARE 2023:rs.3.rs-3438810. [PMID: 37961382 PMCID: PMC10635316 DOI: 10.21203/rs.3.rs-3438810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | - Alina Y Lushnenko
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
5
|
Earley AM, Temme AA, Cotter CR, Burke JM. Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (Helianthus annuus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1425-1438. [PMID: 35815412 PMCID: PMC9545426 DOI: 10.1111/tpj.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Stomata and leaf veins play an essential role in transpiration and the movement of water throughout leaves. These traits are thus thought to play a key role in the adaptation of plants to drought and a better understanding of the genetic basis of their variation and coordination could inform efforts to improve drought tolerance. Here, we explore patterns of variation and covariation in leaf anatomical traits and analyze their genetic architecture via genome-wide association (GWA) analyses in cultivated sunflower (Helianthus annuus L.). Traits related to stomatal density and morphology as well as lower-order veins were manually measured from digital images while the density of minor veins was estimated using a novel deep learning approach. Leaf, stomatal, and vein traits exhibited numerous significant correlations that generally followed expectations based on functional relationships. Correlated suites of traits could further be separated along three major principal component (PC) axes that were heavily influenced by variation in traits related to gas exchange, leaf hydraulics, and leaf construction. While there was limited evidence of colocalization when individual traits were subjected to GWA analyses, major multivariate PC axes that were most strongly influenced by several traits related to gas exchange or leaf construction did exhibit significant genomic associations. These results provide insight into the genetic basis of leaf trait covariation and showcase potential targets for future efforts aimed at modifying leaf anatomical traits in sunflower.
Collapse
Affiliation(s)
- Ashley M. Earley
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Andries A. Temme
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Division of Intensive Plant Food SystemsHumboldt‐Universität zu Berlin10117BerlinGermany
| | | | - John M. Burke
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
6
|
PIF7 controls leaf cell proliferation through an AN3 substitution repression mechanism. Proc Natl Acad Sci U S A 2022; 119:2115682119. [PMID: 35086930 PMCID: PMC8812563 DOI: 10.1073/pnas.2115682119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Phytochrome photoreceptors can markedly alter leaf blade growth in response to far-red (FR) rich neighbor shade, yet we have a limited understanding of how this is accomplished. This study identifies ANGUSTIFOLIA3 (AN3) as a central component in phytochrome promotion of leaf cell proliferation and PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) as a potent repressor. AN3 and PIF7 impose opposing regulation on a shared suite of genes through common cis-acting promoter elements. In response to FR light, activated PIF7 blocks AN3 action by evicting and substituting for AN3 at target promoters. This molecular switch module provides a mechanism through which changes in external light quality can dynamically manipulate gene expression, cell division, and leaf size. Plants are agile, plastic organisms able to adapt to everchanging circumstances. Responding to far-red (FR) wavelengths from nearby vegetation, shade-intolerant species elicit the adaptive shade-avoidance syndrome (SAS), characterized by elongated petioles, leaf hyponasty, and smaller leaves. We utilized end-of-day FR (EODFR) treatments to interrogate molecular processes that underlie the SAS leaf response. Genetic analysis established that PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is required for EODFR-mediated constraint of leaf blade cell division, while EODFR messenger RNA sequencing data identified ANGUSTIFOLIA3 (AN3) as a potential PIF7 target. We show that PIF7 can suppress AN3 transcription by directly interacting with and sequestering AN3. We also establish that PIF7 and AN3 impose antagonistic control of gene expression via common cis-acting promoter motifs in several cell-cycle regulator genes. EODFR triggers the molecular substitution of AN3 to PIF7 at G-box/PBE-box promoter regions and a switch from promotion to repression of gene expression.
Collapse
|