1
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Kono M, Haruta S. Coaggregation Occurs between a Piliated Unicellular Cyanobacterium, Thermosynechococcus, and a Filamentous Bacterium, Chloroflexus aggregans. Microorganisms 2024; 12:1904. [PMID: 39338578 PMCID: PMC11434263 DOI: 10.3390/microorganisms12091904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cyanobacteria are widely distributed in natural environments including geothermal areas. A unicellular cyanobacterium, Thermosynechococcus, in a deeply branching lineage, develops thick microbial mats with other bacteria, such as filamentous anoxygenic photosynthetic bacteria in the genus Chloroflexus, in slightly alkaline hot-spring water at ~55 °C. However, Thermosynechococcus strains do not form cell aggregates under axenic conditions, and the cells are dispersed well in the culture. In this study, Thermosynechococcus sp. NK55a and Chloroflexus aggregans NBF, isolated from Nakabusa Hot Springs (Nagano, Japan), were mixed in an inorganic medium and incubated at 50 °C under incandescent light. Small cell aggregates were detected after 4 h incubation, the size of cell aggregates increased, and densely packed cell aggregates (100-200 µm in diameter) developed. Scanning electron microscopy analysis of cell aggregates found that C. aggregans filaments were connected with Thermosynechococcus sp. cells via pili-like fibers. Co-cultivation of C. aggregans with a pili-less mutant of Thermosynechococcus sp. did not form tight cell aggregates. Cell aggregate formation was observed under illumination with 740 nm LED, which was utilized only by C. aggregans. These results suggested that Chloroflexus filaments gather together via gliding motility, and piliated cyanobacterial cells cross-link filamentous cells to form densely packed cell aggregates.
Collapse
Affiliation(s)
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Tokyo, Japan;
| |
Collapse
|
3
|
Bunbury F, Rivas C, Calatrava V, Malkovskiy A, Joubert LM, Parvate AD, Evans JE, Grossman A, Bhaya D. Illuminating microbial mat assembly: Cyanobacteria and Chloroflexota cooperate to structure light-responsive biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.605005. [PMID: 39211091 PMCID: PMC11360886 DOI: 10.1101/2024.07.24.605005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats, the unicellular oxygenic phototrophic cyanobacterium Synechococcus OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph Chloroflexus MS-CIW-1 (Chfl MS-1). We quantified the motility of individual cells and entire colonies and demonstrated that Chfl MS-1 formed bundles of filaments that moved in all directions with no directional bias to light. Syn OS- B' was slightly less motile but exhibited positive phototaxis. This binary consortium displayed cooperative behavior by moving further than either species alone and formed ordered arrays where both species aligned with the light source. No cooperative motility was observed when a non-motile pilB mutant of Syn OS-B' was used instead of Syn OS-B'. The binary consortium also produced more adherent biofilm than individual species, consistent with the close interspecies association revealed by electron microscopy. We propose that cyanobacteria and Chloroflexota cooperate in forming natural microbial mats, by colonizing new niches and building robust biofilms.
Collapse
|
4
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Nies F, Wein T, Hanke DM, Springstein BL, Alcorta J, Taubenheim C, Dagan T. Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:656-668. [PMID: 37794696 PMCID: PMC10667661 DOI: 10.1111/1758-2229.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid-encoded genes is similar to that of chromosome-encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited.
Collapse
Affiliation(s)
- Fabian Nies
- Institute of General MicrobiologyKiel UniversityKielGermany
| | - Tanita Wein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Benjamin L. Springstein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences FacultyPontifical Catholic University of ChileSantiagoChile
| | - Claudia Taubenheim
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Internal Medicine IIUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Tal Dagan
- Institute of General MicrobiologyKiel UniversityKielGermany
| |
Collapse
|
7
|
Toida K, Kushida W, Yamamoto H, Yamamoto K, Ishii K, Uesaka K, Kanaly RA, Kutsuna S, Ihara K, Fujita Y, Iwasaki H. The GGDEF protein Dgc2 suppresses both motility and biofilm formation in the filamentous cyanobacterium Leptolyngbya boryana. Microbiol Spectr 2023; 11:e0483722. [PMID: 37655901 PMCID: PMC10581220 DOI: 10.1128/spectrum.04837-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is a filamentous cyanobacterium, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen fixation. A widely used type strain [wild type (WT) in this article] of this species has not been reported to show any motile activity. However, we isolated a spontaneous mutant strain that shows active motility (gliding activity) to give rise to complicated colony patterns, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations in the genome of the mutant strain. We confirmed that inactivation of the candidate gene dgc2 (LBDG_02920) in the WT background was sufficient to give rise to motility and morphologically complex colony patterns. This gene encodes a protein containing the GGDEF motif which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the dgc2 mutant significantly facilitated biofilm formation, suggesting a role for the dgc2 gene in suppressing both gliding motility and biofilm formation. Thus, Leptolyngbya is expected to be an excellent genetic model for studying dynamic colony pattern formation and to provide novel insights into the role of DGC family genes in biofilm formation. IMPORTANCE Self-propelled bacteria often exhibit complex collective behaviors, such as formation of dense-moving clusters, which are exemplified by wandering comet-like and rotating disk-like colonies; however, the molecular details of how these structures are formed are scant. We found that a strain of the filamentous cyanobacterium Leptolyngbya deficient in the GGDEF protein gene dgc2 elicits motility and complex and dynamic colony pattern formation, including comet-like and disk-like clusters. Although c-di-GMP has been reported to activate biofilm formation in some bacterial species, disruption of dgc2 unexpectedly enhanced it, suggesting a novel role for this GGDEF protein for inhibiting both colony pattern formation and biofilm formation.
Collapse
Affiliation(s)
- Kazuma Toida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Wakana Kushida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Hiroki Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kyoka Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kaichi Ishii
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinsuke Kutsuna
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
- metaPhorest, Bioaesthetics Platform, Waseda University, Tokyo, Japan
| |
Collapse
|
8
|
Enomoto G, Wallner T, Wilde A. Control of light-dependent behaviour in cyanobacteria by the second messenger cyclic di-GMP. MICROLIFE 2023; 4:uqad019. [PMID: 37223735 PMCID: PMC10124867 DOI: 10.1093/femsml/uqad019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide-derived signalling molecules control a wide range of cellular processes in all organisms. The bacteria-specific cyclic dinucleotide c-di-GMP plays a crucial role in regulating motility-to-sessility transitions, cell cycle progression, and virulence. Cyanobacteria are phototrophic prokaryotes that perform oxygenic photosynthesis and are widespread microorganisms that colonize almost all habitats on Earth. In contrast to photosynthetic processes that are well understood, the behavioural responses of cyanobacteria have rarely been studied in detail. Analyses of cyanobacterial genomes have revealed that they encode a large number of proteins that are potentially involved in the synthesis and degradation of c-di-GMP. Recent studies have demonstrated that c-di-GMP coordinates many different aspects of the cyanobacterial lifestyle, mostly in a light-dependent manner. In this review, we focus on the current knowledge of light-regulated c-di-GMP signalling systems in cyanobacteria. Specifically, we highlight the progress made in understanding the most prominent behavioural responses of the model cyanobacterial strains Thermosynechococcus vulcanus and Synechocystis sp. PCC 6803. We discuss why and how cyanobacteria extract crucial information from their light environment to regulate ecophysiologically important cellular responses. Finally, we emphasize the questions that remain to be addressed.
Collapse
Affiliation(s)
- Gen Enomoto
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Wallner
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Koskinen S, Kurkela J, Linhartová M, Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio 2023; 13:701-712. [PMID: 36792971 PMCID: PMC10068330 DOI: 10.1002/2211-5463.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Juha Kurkela
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Taina Tyystjärvi
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
10
|
Nakane D. Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy. Methods Mol Biol 2023; 2646:255-263. [PMID: 36842120 DOI: 10.1007/978-1-0716-3060-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
11
|
Schneider H, Lai B, Krömer J. Utilizing Cyanobacteria in Biophotovoltaics: An Emerging Field in Bioelectrochemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:281-302. [PMID: 36441187 DOI: 10.1007/10_2022_212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthropogenic global warming is driven by the increasing energy demand and the still dominant use of fossil energy carriers to meet these needs. New carbon-neutral energy sources are urgently needed to solve this problem. Biophotovoltaics, a member of the so-called bioelectrochemical systems family, will provide an important piece of the energy puzzle. It aims to harvest the electrons from sunlight-driven water splitting using the natural oxygenic photosystem (e.g., of cyanobacteria) and utilize them in the form of, e.g., electricity or hydrogen. Several key aspects of biophotovoltaics have been intensively studied in recent years like physicochemical properties of electrodes or efficient wiring of microorganisms to electrodes. Yet, the exact mechanisms of electron transfer between the biocatalyst and the electrode remain unresolved today. Most research is conducted on microscale reactors generating small currents over short time-scales, but multiple experiments have shown biophotovoltaics great potential with lab-scale reactors producing currents over weeks to months. Although biophotovoltaics is still in its infancy with many open research questions to be addressed, new promising results from various labs around the world suggest an important opportunity for biophotovoltaics in the decades to come. In this chapter, we will introduce the concept of biophotovoltaics, summarize its recent key progress, and finally critically discuss the potentials and challenges for future rational development of biophotovoltaics.
Collapse
Affiliation(s)
- Hans Schneider
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany.
| | - Bin Lai
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Jens Krömer
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| |
Collapse
|
12
|
Natural Competence in the Filamentous, Heterocystous Cyanobacterium
Chlorogloeopsis fritschii
PCC 6912. mSphere 2022; 7:e0099721. [PMID: 35862819 PMCID: PMC9429965 DOI: 10.1128/msphere.00997-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lateral gene transfer plays an important role in the evolution of genetic diversity in prokaryotes. DNA transfer via natural transformation depends on the ability of recipient cells to actively transport DNA from the environment into the cytoplasm, termed natural competence, which relies on the presence of type IV pili and other competence proteins. Natural competence has been described in cyanobacteria for several organisms, including unicellular and filamentous species. However, natural competence in cyanobacteria that differentiate specialized cells for N2-fixation (heterocysts) and form branching or multiseriate cell filaments (termed subsection V) remains unknown. Here, we show that genes essential for natural competence are conserved in subsection V cyanobacteria. Furthermore, using the replicating plasmid pRL25C, we experimentally demonstrate natural competence in a subsection V organism: Chlorogloeopsis fritschii PCC 6912. Our results suggest that natural competence is a common trait in cyanobacteria forming complex cell filament morphologies. IMPORTANCE Cyanobacteria are crucial players in the global biogeochemical cycles, where they contribute to CO2- and N2-fixation. Their main ecological significance is the primary biomass production owing to oxygenic photosynthesis. Cyanobacteria are a diverse phylum, in which the most complex species differentiate specialized cell types and form true-branching or multiseriate cell filament structures (termed subsection V cyanobacteria). These bacteria are considered a peak in the evolution of prokaryotic multicellularity. Among others, species in that group inhabit fresh and marine water habitats, soil, and extreme habitats such as thermal springs. Here, we show that the core genes required for natural competence are frequent in subsection V cyanobacteria and demonstrate for the first time natural transformation in a member of subsection V. The prevalence of natural competence has implications for the role of DNA acquisition in the genome evolution of cyanobacteria. Furthermore, the presence of mechanisms for natural transformation opens up new possibilities for the genetic modification of subsection V cyanobacteria.
Collapse
|
13
|
Opel F, Siebert NA, Klatt S, Tüllinghoff A, Hantke JG, Toepel J, Bühler B, Nürnberg DJ, Klähn S. Generation of Synthetic Shuttle Vectors Enabling Modular Genetic Engineering of Cyanobacteria. ACS Synth Biol 2022; 11:1758-1771. [PMID: 35405070 DOI: 10.1021/acssynbio.1c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nina A. Siebert
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Klatt
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Adrian Tüllinghoff
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Janis G. Hantke
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Nakane D, Enomoto G, Bähre H, Hirose Y, Wilde A, Nishizaka T. Thermosynechococcus switches the direction of phototaxis by a c-di-GMP-dependent process with high spatial resolution. eLife 2022; 11:73405. [PMID: 35535498 PMCID: PMC9090330 DOI: 10.7554/elife.73405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many cyanobacteria, which use light as an energy source via photosynthesis, show directional movement towards or away from a light source. However, the molecular and cell biological mechanisms for switching the direction of movement remain unclear. Here, we visualized type IV pilus-dependent cell movement in the rod-shaped thermophilic cyanobacterium Thermosynechococcus vulcanus using optical microscopy at physiological temperature and light conditions. Positive and negative phototaxis were controlled on a short time scale of 1 min. The cells smoothly moved over solid surfaces towards green light, but the direction was switched to backward movement when we applied additional blue light illumination. The switching was mediated by three photoreceptors, SesA, SesB, and SesC, which have cyanobacteriochrome photosensory domains and synthesis/degradation activity of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Our results suggest that the decision-making process for directional switching in phototaxis involves light-dependent changes in the cellular concentration of c-di-GMP. Direct visualization of type IV pilus filaments revealed that rod-shaped cells can move perpendicular to the light vector, indicating that the polarity can be controlled not only by pole-to-pole regulation but also within-a-pole regulation. This study provides insights into previously undescribed rapid bacterial polarity regulation via second messenger signalling with high spatial resolution.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Gen Enomoto
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
15
|
Suban S, Sendersky E, Golden SS, Schwarz R. Impairment of a cyanobacterial glycosyltransferase that modifies a pilin results in biofilm development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:218-229. [PMID: 35172394 PMCID: PMC9306852 DOI: 10.1111/1758-2229.13050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/03/2022] [Indexed: 05/03/2023]
Abstract
A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homologue, Ogt, participates in the inhibitory process - inactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild-type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild-type; therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt-mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.
Collapse
Affiliation(s)
- Shiran Suban
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| | - Susan S. Golden
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA92093USA
- Center for Circadian BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| |
Collapse
|
16
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|
17
|
Lamparter T, Babian J, Fröhlich K, Mielke M, Weber N, Wunsch N, Zais F, Schulz K, Aschmann V, Spohrer N, Krauß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 2022; 17:e0249509. [PMID: 35085243 PMCID: PMC8794177 DOI: 10.1371/journal.pone.0249509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| | - Jennifer Babian
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Katrin Fröhlich
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Marion Mielke
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nora Weber
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nadja Wunsch
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Finn Zais
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Kevin Schulz
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Vera Aschmann
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nina Spohrer
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
18
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Han Y, Jakob A, Engel S, Wilde A, Nils S. PATAN-domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis. Mol Microbiol 2021; 117:790-801. [PMID: 34936151 DOI: 10.1111/mmi.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast-two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annik Jakob
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Sophia Engel
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Schuergers Nils
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
20
|
Development of a highly sensitive luciferase-based reporter system to study two-step protein secretion in cyanobacteria. J Bacteriol 2021; 204:e0050421. [PMID: 34898262 DOI: 10.1128/jb.00504-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multi-protein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however little is known regarding their function, regulation and secreted effectors. One such system, the type IVa pilus system (T4aPS), is responsible for the assembly of dynamic cell surface appendages, type IVa pili (T4aP), that mediate ecologically relevant processes such as phototactic motility, natural competence and adhesion. Several studies have suggested that the T4aPS can also act as a two-step protein secretion system in cyanobacteria akin to the homologous type II secretion system in heterotrophic bacteria. To determine whether the T4aP are involved in two-step secretion of non-pilin proteins, we developed a NanoLuc-based quantitative secretion reporter for the model cyanobacterium Synechocystis sp. PCC 6803. The NLuc reporter presented a wide dynamic range with at least one order of magnitude more sensitivity than traditional immunoblotting. Application of the reporter to a collection of Synechocystis T4aPS mutants demonstrated that the two-step secretion of NLuc is independent of T4aP. In addition, our data suggest that secretion differences typically observed in T4aPS mutants are likely due to a disruption of cell envelope homeostasis. This study opens the door to explore protein secretion in cyanobacteria further. Importance Protein secretion allows bacteria to interact and communicate with the external environment. Secretion is also biotechnologically relevant, where it is often beneficial to target proteins to the extracellular space. Due to a shortage of quantitative assays, many aspects of protein secretion are not understood. Here we introduce a NanoLuc (NLuc)-based secretion reporter in cyanobacteria. NLuc is highly sensitive and can be assayed rapidly and in small volumes. The NLuc reporter allowed us to clarify the role of type IVa pili in protein secretion and identify mutations that increase secretion yield. This study expands our knowledge on cyanobacterial secretion and offers a valuable tool for future studies of protein secretion systems in cyanobacteria.
Collapse
|
21
|
Wang J, Huang X, Ge H, Wang Y, Chen W, Zheng L, Huang C, Yang H, Li L, Sui N, Wang Y, Zhang Y, Lu D, Fang L, Xu W, Jiang Y, Huang F, Wang Y. The Quantitative Proteome Atlas of a Model Cyanobacterium. J Genet Genomics 2021; 49:96-108. [PMID: 34775074 DOI: 10.1016/j.jgg.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are a group of oxygenic photosynthetic bacteria with great potentials in biotechnological applications and advantages as models for photosynthesis research. The subcellular locations of the majority of proteins in any cyanobacteria remain undetermined, representing a major challenge in using cyanobacteria for both basic and industrial researches. Here, using label free quantitative proteomics we mapped 2027 proteins of Synechocystis sp. PCC6803, a model cyanobacterium, to different subcellular compartments, and generated a proteome atlas with such information. The atlas leads to numerous unexpected but important findings, including the predominant localization of the histidine kinases Hik33 and Hik27 on the thylakoid but not the plasma membrane. Such information completely changes the concept regarding how the two kinases are activated. Together, the atlas provides subcellular localization information for nearly 60% proteome of a model cyanobacterium, and will serve as an important resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Chen
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haomeng Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China
| | - Lingyu Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Oeser S, Wallner T, Schuergers N, Bučinská L, Sivabalasarma S, Bähre H, Albers SV, Wilde A. Minor pilins are involved in motility and natural competence in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 2021; 116:743-765. [PMID: 34115422 DOI: 10.1111/mmi.14768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibers that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Three further gene products with similarity to PilX-like minor pilins have a function in flocculation of Synechocystis. The results of our study indicate that different minor pilins facilitate distinct pilus functions. Further, our microarray analysis demonstrated that the transcription levels of the minor pilin genes change in response to surface contact. A total of 122 genes were determined to have altered transcription between planktonic and surface growth, including several plasmid genes which are involved exopolysaccharide synthesis and the formation of bloom-like aggregates.
Collapse
Affiliation(s)
- Sabrina Oeser
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Thomas Wallner
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Lenka Bučinská
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Trebon, Czech Republic
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Medical School Hannover, Hannover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Liu LM, Li DL, Deng B, Wang XW, Jiang HB. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria. Environ Microbiol 2021; 24:551-565. [PMID: 33817959 DOI: 10.1111/1462-2920.15506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
In oligotrophic oceans, low bioavailability of Fe is a key factor limiting primary productivity. However, excessive Fe in cells leads to the Fenton reaction, which is toxic to cells. Cyanobacteria must strictly maintain intracellular Fe homeostasis. Here, we knocked out a series of genes encoding efflux systems in Synechocystis sp. PCC 6803, and found eight genes that are required for high Fe detoxification. Unexpectedly, the HlyBD-TolC efflux system plays an important role in the adaptation of Synechocystis under Fe-deficient conditions. Mutants of HlyD and TolC grew worse than the wild-type strain under low-Fe conditions and showed significantly lower intracellular Fe contents than the wild-type strain. We excluded the possibility that the low Fe sensitivity of the HlyBD-TolC mutants was caused by a loss of the S-layer, the main extracellular protein secreted via this efflux system. Inactivation of the HlyD protein influenced type IV pili formation and direct inactivation of type IV pili related genes affected the adaptation to low-Fe conditions. HlyBD-TolC system is likely involved in the formation of type IV pili and indirectly influenced Fe acquisition. Our findings suggest that efflux system in non-siderophore-producing cyanobacteria can facilitate Fe uptake and help cells adapt to Fe-deficient conditions via novel pathways.
Collapse
Affiliation(s)
- Ling-Mei Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China
| | - Ding-Lan Li
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Bin Deng
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xin-Wei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China.,School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Bo Jiang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China.,School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
24
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
25
|
Pili allow dominant marine cyanobacteria to avoid sinking and evade predation. Nat Commun 2021; 12:1857. [PMID: 33767153 PMCID: PMC7994388 DOI: 10.1038/s41467-021-22152-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
How oligotrophic marine cyanobacteria position themselves in the water column is currently unknown. The current paradigm is that these organisms avoid sinking due to their reduced size and passive drift within currents. Here, we show that one in four picocyanobacteria encode a type IV pilus which allows these organisms to increase drag and remain suspended at optimal positions in the water column, as well as evade predation by grazers. The evolution of this sophisticated floatation mechanism in these purely planktonic streamlined microorganisms has important implications for our current understanding of microbial distribution in the oceans and predator-prey interactions which ultimately will need incorporating into future models of marine carbon flux dynamics.
Collapse
|
26
|
Yegorov Y, Sendersky E, Zilberman S, Nagar E, Waldman Ben-Asher H, Shimoni E, Simkovsky R, Golden SS, LiWang A, Schwarz R. A Cyanobacterial Component Required for Pilus Biogenesis Affects the Exoproteome. mBio 2021; 12:e03674-20. [PMID: 33727363 PMCID: PMC8092324 DOI: 10.1128/mbio.03674-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium Synechococcus elongatus uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism. This protein, which is annotated as "hypothetical," is denoted EbsA (essential for biofilm self-suppression A) here. EbsA homologs are highly conserved and widespread in diverse cyanobacteria but are not found outside this clade. We revealed a tripartite complex of EbsA, Hfq, and the ATPase homolog PilB (formerly called T2SE) and demonstrated that each of these components is required for the assembly of the hairlike type IV pili (T4P) appendages, for DNA competence, and affects the exoproteome in addition to its role in biofilm self-suppression. These data are consistent with bioinformatics analyses that reveal only a single set of genes in S. elongatus to serve pilus assembly or protein secretion; we suggest that a single complex is involved in both processes. A phenotype resulting from the impairment of the EbsA homolog in the cyanobacterium Synechocystis sp. strain PCC 6803 implies that this feature is a general cyanobacterial trait. Moreover, comparative exoproteome analyses of wild-type and mutant strains of S. elongatus suggest that EbsA and Hfq affect the exoproteome via a process that is independent of PilB, in addition to their involvement in a T4P/secretion machinery.IMPORTANCE Cyanobacteria, environmentally prevalent photosynthetic prokaryotes, contribute ∼25% of global primary production. Cyanobacterial biofilms elicit biofouling, thus leading to substantial economic losses; however, these microbial assemblages can also be beneficial, e.g., in wastewater purification processes and for biofuel production. Mechanistic aspects of cyanobacterial biofilm development were long overlooked, and genetic and molecular information emerged only in recent years. The importance of this study is 2-fold. First, it identifies novel components of cyanobacterial biofilm regulation, thus contributing to the knowledge of these processes and paving the way for inhibiting detrimental biofilms or promoting beneficial ones. Second, the data suggest that cyanobacteria may employ the same complex for the assembly of the motility appendages, type 4 pili, and protein secretion. A shared pathway was previously shown in only a few cases of heterotrophic bacteria, whereas numerous studies demonstrated distinct systems for these functions. Thus, our study broadens the understanding of pilus assembly/secretion in diverse bacteria and furthers the aim of controlling the formation of cyanobacterial biofilms.
Collapse
Affiliation(s)
- Yevgeni Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shaul Zilberman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Nagar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Susan S Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
27
|
Hik36-Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803. Sci Rep 2020; 10:19405. [PMID: 33173131 PMCID: PMC7656254 DOI: 10.1038/s41598-020-76264-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
In response to environmental stress the model cyanobacterium, Synechocystis sp. PCC6803 can switch from a planktonic state to autoaggregation and biofilm formation. The precise mechanism of this transition remains unknown. Here we investigated the role of a candidate two-component regulatory system (TCS) in controlling morphological changes, as a way to understand the intermediate molecular steps that are part of the signaling pathway. A bacterial two-hybrid assay showed that the response regulator Rre6 formed a TCS together with a split histidine kinase consisting of Hik36 and Hik43. Individual disruption mutants displayed autoaggregation in a static culture. In contrast, unlike in the wild type, high salinity did not induce biofilm formation in Δhik36, Δhik43 and Δrre6. The expression levels of exopolysaccharide (EPS) production genes were higher in Δhik36 and Δhik43, compared with the wild type, but lower in Δrre6, suggesting that the TCS regulated EPS production in Synechocystis. Rre6 interacted physically with the motor protein PilT2, that is a component of the type IV pilus system. This interaction was enhanced in a phosphomimic version of Rre6. Taken together, Hik36-Hik43-Rre6 function as an upstream component of the pili-related signal transduction cascade and control the prevention of cell adhesion and biofilm formation.
Collapse
|
28
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
29
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
30
|
Russo DA, Zedler JAZ. Genomic insights into cyanobacterial protein translocation systems. Biol Chem 2020; 402:39-54. [PMID: 33544489 DOI: 10.1515/hsz-2020-0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions. Intriguingly, only one set of genes for the general secretory and the twin-arginine translocation pathways seem to be present. However, these systems have to operate in both plasma and thylakoid membranes. This raises the question of how substrates are recognized and targeted to their correct, final destination. Additional complexities arise when a protein has to be secreted across the outer membrane, where very little is known regarding the mechanisms involved. Given their ecological importance and biotechnological interest, a better understanding of protein targeting in cyanobacteria is of great value. This review will provide insights into the known knowns of protein targeting, propose hypotheses based on available genomic sequences and discuss future directions.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Julie A Z Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburgerstr. 159, D-07743 Jena, Germany
| |
Collapse
|
31
|
Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2020; 170:10-26. [PMID: 32141606 PMCID: PMC7496141 DOI: 10.1111/ppl.13086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Wetsus – Center of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Klaas J. Hellingwerf
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hans C. P. Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
32
|
Thirumurthy MA, Hitchcock A, Cereda A, Liu J, Chavez MS, Doss BL, Ros R, El-Naggar MY, Heap JT, Bibby TS, Jones AK. Type IV Pili-Independent Photocurrent Production by the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:1344. [PMID: 32714295 PMCID: PMC7344198 DOI: 10.3389/fmicb.2020.01344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Biophotovoltaic devices utilize photosynthetic organisms such as the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) to generate current for power or hydrogen production from light. These devices have been improved by both architecture engineering and genetic engineering of the phototrophic organism. However, genetic approaches are limited by lack of understanding of cellular mechanisms of electron transfer from internal metabolism to the cell exterior. Type IV pili have been implicated in extracellular electron transfer (EET) in some species of heterotrophic bacteria. Furthermore, conductive cell surface filaments have been reported for cyanobacteria, including Synechocystis. However, it remains unclear whether these filaments are type IV pili and whether they are involved in EET. Herein, a mediatorless electrochemical setup is used to compare the electrogenic output of wild-type Synechocystis to that of a ΔpilD mutant that cannot produce type IV pili. No differences in photocurrent, i.e., current in response to illumination, are detectable. Furthermore, measurements of individual pili using conductive atomic force microscopy indicate these structures are not conductive. These results suggest that pili are not required for EET by Synechocystis, supporting a role for shuttling of electrons via soluble redox mediators or direct interactions between the cell surface and extracellular substrates.
Collapse
Affiliation(s)
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Angelo Cereda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jiawei Liu
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Marko S. Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Bryant L. Doss
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Robert Ros
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Mohamed Y. El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thomas S. Bibby
- Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Anne K. Jones
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
33
|
Nies F, Mielke M, Pochert J, Lamparter T. Natural transformation of the filamentous cyanobacterium Phormidium lacuna. PLoS One 2020; 15:e0234440. [PMID: 32530971 PMCID: PMC7292380 DOI: 10.1371/journal.pone.0234440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Research for biotechnological applications of cyanobacteria focuses on synthetic pathways and bioreactor design, while little effort is devoted to introduce new, promising organisms in the field. Applications are most often based on recombinant work, and the establishment of transformation can be a risky, time-consuming procedure. In this work we demonstrate the natural transformation of the filamentous cyanobacterium Phormidium lacuna and insertion of a selection marker into the genome by homologous recombination. This is the first example for natural transformation filamentous non-heterocystous cyanobacterium. We found that Phormidium lacuna is polyploid, each cell has about 20-90 chromosomes. Transformed filaments were resistant against up to 14 mg/ml of kanamycin. Formerly, natural transformation in cyanobacteria has been considered a rare and exclusive feature of a few unicellular species. Our finding suggests that natural competence is more distributed among cyanobacteria than previously thought. This is supported by bioinformatic analyses which show that all protein factors for natural transformation are present in the majority of the analyzed cyanobacteria.
Collapse
Affiliation(s)
- Fabian Nies
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janko Pochert
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
34
|
Wallner T, Pedroza L, Voigt K, Kaever V, Wilde A. The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. Photochem Photobiol Sci 2020; 19:631-643. [PMID: 32255440 DOI: 10.1039/c9pp00489k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cyanobacterial phytochrome Cph2 is a light-dependent diguanylate cyclase of the cyanobacterium Synechocystis 6803. Under blue light, Cph2-dependent increase in the cellular c-di-GMP concentration leads to inhibition of surface motility and enhanced flocculation of cells in liquid culture. However, the targets of second messenger signalling in this cyanobacterium and its mechanism of action remained unclear. Here, we determined the cellular concentrations of cAMP and c-di-GMP in wild-type and Δcph2 cells after exposure to blue and green light. Inactivation of cph2 completely abolished the blue-light dependent increase in c-di-GMP content. Therefore, a microarray analysis with blue-light grown wild-type and Δcph2 mutant cells was used to identify c-di-GMP dependent alterations in transcript accumulation. The increase in the c-di-GMP content alters expression of genes encoding putative cell appendages, minor pilins and components of chemotaxis systems. The mRNA encoding the minor pilins pilA5-pilA6 was negatively affected by high c-di-GMP content under blue light, whereas the minor pilin encoding operon pilA9-slr2019 accumulates under these conditions, suggesting opposing functions of the respective gene sets. Artificial overproduction of c-di-GMP leads to similar changes in minor pilin gene expression and supports previous findings that c-di-GMP is important for flocculation via the function of minor pilins. Mutational and gene expression analysis further suggest that SyCRP2, a CRP-like transcription factor, is involved in regulation of minor pilin and putative chaperone usher pili gene expression.
Collapse
Affiliation(s)
- Thomas Wallner
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany.
| | - Laura Pedroza
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Karsten Voigt
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun 2020; 11:1688. [PMID: 32245943 PMCID: PMC7125226 DOI: 10.1038/s41467-020-15384-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/05/2020] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation in S. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length. The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms, and is naturally competent for transformation. Here, Taton et al. identify genes required for natural transformation in this organism, and show that the coincidence of circadian dusk and darkness regulates the competence state in different day lengths.
Collapse
|
36
|
Chen Z, Li X, Tan X, Zhang Y, Wang B. Recent Advances in Biological Functions of Thick Pili in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:241. [PMID: 32210999 PMCID: PMC7076178 DOI: 10.3389/fpls.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
Cyanobacteria have evolved various strategies to sense and adapt to biotic and abiotic stresses including active movement. Motility in cyanobacteria utilizing the type IV pili (TFP) is useful to cope with changing environmental conditions. The model cyanobacterium Synechocystis sp. PCC 6803 (hereafter named Synechocystis) exhibits motility via TFP called thick pili, and uses it to seek out favorable light/nutrition or escape from unfavorable conditions. Recently, a number of studies on Synechocystis thick pili have been undertaken. Molecular approaches support the role of the pilin in motility, cell adhesion, metal utilization, and natural competence in Synechocystis. This review summarizes the most recent studies on the function of thick pili as well as their formation and regulation in this cyanobacterium.
Collapse
Affiliation(s)
- Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xitong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
Jakob A, Nakamura H, Kobayashi A, Sugimoto Y, Wilde A, Masuda S. The (PATAN)-CheY-Like Response Regulator PixE Interacts with the Motor ATPase PilB1 to Control Negative Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2020; 61:296-307. [PMID: 31621869 DOI: 10.1093/pcp/pcz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 05/22/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 can move directionally on a moist surface toward or away from a light source to reach optimal light conditions for its photosynthetic lifestyle. This behavior, called phototaxis, is mediated by type IV pili (T4P), which can pull a single cell into a certain direction. Several photoreceptors and their downstream signal transduction elements are involved in the control of phototaxis. However, the critical steps of local pilus assembly in positive and negative phototaxis remain elusive. One of the photoreceptors controlling negative phototaxis in Synechocystis is the blue-light sensor PixD. PixD forms a complex with the CheY-like response regulator PixE that dissociates upon illumination with blue light. In this study, we investigate the phototactic behavior of pixE deletion and overexpression mutants in response to unidirectional red light with or without additional blue-light irradiation. Furthermore, we show that PixD and PixE partly localize in spots close to the cytoplasmic membrane. Interaction studies of PixE with the motor ATPase PilB1, demonstrated by in vivo colocalization, yeast two-hybrid and coimmunoprecipitation analysis, suggest that the PixD-PixE signal transduction system targets the T4P directly, thereby controlling blue-light-dependent negative phototaxis. An intriguing feature of PixE is its distinctive structure with a PATAN (PatA N-terminus) domain. This domain is found in several other regulators, which are known to control directional phototaxis. As our PilB1 coimmunoprecipitation analysis revealed an enrichment of PATAN domain response regulators in the eluate, we suggest that multiple environmental signals can be integrated via these regulators to control pilus function.
Collapse
Affiliation(s)
- Annik Jakob
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Hiroshi Nakamura
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
| | - Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
38
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
39
|
Factors Controlling Floc Formation and Structure in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2019; 201:JB.00344-19. [PMID: 31262837 PMCID: PMC6755745 DOI: 10.1128/jb.00344-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Motile strains of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates. The flocs are formed from strands of linked cells, sometimes packed into dense clusters but also containing voids with very few cells. Cells within the dense clusters show signs of nutrient stress, as judged by the subcellular distribution of green fluorescent protein (GFP)-tagged Vipp1 protein. We analyzed the effects on flocculation of a series of mutations that alter piliation and motility, including Δhfq, ΔpilB1, ΔpilT1, and ΔushA mutations and deletion mutations affecting major and minor pilins. The extent of flocculation is increased in the hyperpiliated ΔpilT1 mutant, but active cycles of pilus extension and retraction are not required for flocculation. Deletion of PilA1, the major subunit of type IV pili, has no effect on flocculation; however, flocculation is lost in mutants lacking an operon coding for the minor pilins PilA9 to -11. Therefore, minor pilins appear crucial for flocculation. We show that flocculation is a tightly regulated process that is promoted by blue light perception by the cyanobacteriochrome Cph2. Floc formation also seems to be a highly cooperative process. A proportion of nonflocculating Δhfq cells can be incorporated into wild-type flocs, but the presence of a high proportion of Δhfq cells disrupts the large-scale architecture of the floc.IMPORTANCE Some bacteria form flocs, which are multicellular floating assemblages of many thousands of cells. Flocs have been relatively little studied compared to surface-adherent biofilms, but flocculation could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting. We studied floc formation and architecture in the model cyanobacterium Synechocystis sp. strain PCC 6803, using mutants to identify specific cell surface structures required for floc formation. We show that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2. The flocs have a characteristic structure based on strands of linked cells aggregating into dense clusters. Cells within the dense clusters show signs of nutrient stress, pointing to a disadvantage of floc formation.
Collapse
|
40
|
Wendt KE, Pakrasi HB. Genomics Approaches to Deciphering Natural Transformation in Cyanobacteria. Front Microbiol 2019; 10:1259. [PMID: 31231343 PMCID: PMC6567925 DOI: 10.3389/fmicb.2019.01259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Natural transformation is the process by which bacteria actively take up and maintain extracellular DNA. This naturally occurring process is widely used as a genetic modification method in bacterial species, and is crucial for the efficient genetic modification of organisms in an industrial setting. Cyanobacteria are oxygenic photosynthetic microbes that are promising platforms for bioproduction of fuels, chemicals, and feedstocks. Using CO2 and sunlight alone, cyanobacteria can make these valuable bioproducts in a carbon-neutral manner. While genetic modifications have been performed in a number of cyanobacterial strains, natural transformation has been successfully demonstrated in only a handful of species. Even though thousands of cyanobacterial strains have been deposited in culture collections and hundreds of these species have had their genomes sequenced, only a few of these organisms have been experimentally transformed. Although there are many aspects of cyanobacterial biology that provide exciting opportunities for biological investigation, the absence of a rapid and straightforward genetic modification method such as natural transformation hinders research efforts to understand some of the fascinating nuances of cyanobacterial physiology. The ability to use natural transformation in more strains of cyanobacteria would facilitate the rapid employment of these organisms in bioproduction settings. This article discusses recent advances in the understanding of natural transformation in cyanobacteria. Additionally, it identifies gaps in the current knowledge about cyanobacterial natural transformation and provides an overview of how new genomic technologies may be implemented to understand this important process.
Collapse
Affiliation(s)
- Kristen E Wendt
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
41
|
Allen R, Rittmann BE, Curtiss R. Axenic Biofilm Formation and Aggregation by Synechocystis sp. Strain PCC 6803 Are Induced by Changes in Nutrient Concentration and Require Cell Surface Structures. Appl Environ Microbiol 2019; 85:e02192-18. [PMID: 30709828 PMCID: PMC6585507 DOI: 10.1128/aem.02192-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
Phototrophic biofilms are key to nutrient cycling in natural environments and bioremediation technologies, but few studies describe biofilm formation by pure (axenic) cultures of a phototrophic microbe. The cyanobacterium Synechocystis sp. strain PCC 6803 (here Synechocystis) is a model microorganism for the study of oxygenic photosynthesis and biofuel production. We report here that wild-type (WT) Synechocystis caused extensive biofilm formation in a 2,000-liter outdoor nonaxenic photobioreactor under conditions attributed to nutrient limitation. We developed a biofilm assay and found that axenic Synechocystis forms biofilms of cells and extracellular material but only when cells are induced by an environmental signal, such as a reduction in the concentration of growth medium BG11. Mutants lacking cell surface structures, namely type IV pili and the S-layer, do not form biofilms. To further characterize the molecular mechanisms of cell-cell binding by Synechocystis, we also developed a rapid (8-h) axenic aggregation assay. Mutants lacking type IV pili were unable to aggregate, but mutants lacking a homolog to Wza, a protein required for type 1 exopolysaccharide export in Escherichia coli, had a superbinding phenotype. In WT cultures, 1.2× BG11 medium induced aggregation to the same degree as 0.8× BG11 medium. Overall, our data support that Wza-dependent exopolysaccharide is essential to maintain stable, uniform suspensions of WT Synechocystis cells in unmodified growth medium and that this mechanism is counteracted in a pilus-dependent manner under altered BG11 concentrations.IMPORTANCE Microbes can exist as suspensions of individual cells in liquids and also commonly form multicellular communities attached to surfaces. Surface-attached communities, called biofilms, can confer antibiotic resistance to pathogenic bacteria during infections and establish food webs for global nutrient cycling in the environment. Phototrophic biofilm formation is one of the earliest phenotypes visible in the fossil record, dating back over 3 billion years. Despite the importance and ubiquity of phototrophic biofilms, most of what we know about the molecular mechanisms, genetic regulation, and environmental signals of biofilm formation comes from studies of heterotrophic bacteria. We aim to help bridge this knowledge gap by developing new assays for Synechocystis, a phototrophic cyanobacterium used to study oxygenic photosynthesis and biofuel production. With the aid of these new assays, we contribute to the development of Synechocystis as a model organism for the study of axenic phototrophic biofilm formation.
Collapse
Affiliation(s)
- Rey Allen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- School of Life Sciences, Biodesign Swette Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
42
|
Sebesta J, Werner A, Peebles CAM. Genetic Engineering of Cyanobacteria: Design, Implementation, and Characterization of Recombinant Synechocystis sp. PCC 6803. Methods Mol Biol 2019; 1927:139-154. [PMID: 30788790 DOI: 10.1007/978-1-4939-9142-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium which has been investigated to produce a variety of fuels and chemicals. Genetic mutations are of interest for studying photosynthesis and engineering chemical production. Here, methods for culturing, preserving, and genetically transforming Synechocystis sp. PCC 6803 are detailed including methods to test promoter strength using the green fluorescent protein reporter. Furthermore, a method for markerless transformation of chromosomal DNA is presented. Sufficient details are provided to enable application by the novice investigator.
Collapse
Affiliation(s)
- Jacob Sebesta
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Allison Werner
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Christie Ann Marie Peebles
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
43
|
Angeleri M, Muth-Pawlak D, Wilde A, Aro EM, Battchikova N. Global proteome response ofSynechocystis6803 to extreme copper environments applied to control the activity of the induciblepetJpromoter. J Appl Microbiol 2019; 126:826-841. [DOI: 10.1111/jam.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- M. Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - D. Muth-Pawlak
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - A. Wilde
- Molecular Genetics of Prokaryotes; University of Freiburg; Freiburg Germany
| | - E.-M. Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - N. Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| |
Collapse
|
44
|
Allen CJ, Lacey RF, Binder Bickford AB, Beshears CP, Gilmartin CJ, Binder BM. Cyanobacteria Respond to Low Levels of Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:950. [PMID: 31417582 PMCID: PMC6682694 DOI: 10.3389/fpls.2019.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 05/07/2023]
Abstract
Ethylene is a gas that has long been known to act as a plant hormone. We recently showed that a cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis) contains an ethylene receptor (SynEtr1) that regulates cell surface and extracellular components leading to altered phototaxis and biofilm formation. To determine whether other cyanobacteria respond to ethylene, we examined the effects of exogenous ethylene on phototaxis of the filamentous cyanobacterium, Geitlerinema sp. PCC 7105 (Geitlerinema). A search of the Geitlerinema genome suggests that two genes encode proteins that contain an ethylene binding domain and Geitlerinema cells have previously been shown to bind ethylene. We call these genes GeiEtr1 and GeiEtr2 and show that in air both are expressed. Treatment with ethylene decreases the abundance of GeiEtr1 transcripts. Treatment of Geitlerinema with 1000 nL L-1 ethylene affected the phototaxis response to white light as well as monochromatic red light, but not blue or green light. This is in contrast to Synechocystis where we previously found ethylene affected phototaxis to all three colors. We also demonstrate that application of ethylene down to 8 nL L-1 stimulates phototaxis of both cyanobacteria as well as biofilm formation of Synechocystis. We formerly demonstrated that the transcript levels of slr1214 and CsiR1 in Synechocystis are reduced by treatment with 1000 nL L-1 ethylene. Here we show that application of ethylene down to 1 nL L-1 causes a reduction in CsiR1 abundance. This is below the threshold for most ethylene responses documented in plants. By contrast, slr1214 is unaffected by this low level of ethylene and only shows a reduction in transcript abundance at the highest ethylene level used. Thus, cyanobacteria are very sensitive to ethylene. However, the dose-binding characteristics of ethylene binding to Geitlerinema and Synechocystis cells as well as to the ethylene binding domain of SynEtr1 heterologously expressed in yeast, are similar to what has been reported for plants and exogenously expressed ethylene receptors from plants. These data are consistent with a model where signal amplification is occurring at the level of the receptors.
Collapse
Affiliation(s)
- Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - C. Payton Beshears
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Brad M. Binder,
| |
Collapse
|
45
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
46
|
Sycrp2 Is Essential for Twitching Motility in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2018; 200:JB.00436-18. [PMID: 30104238 DOI: 10.1128/jb.00436-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
Two cAMP receptor proteins (CRPs), Sycrp1 (encoded by sll1371) and Sycrp2 (encoded by sll1924), exist in the cyanobacterium Synechocystis sp. strain PCC 6803. Previous studies have demonstrated that Sycrp1 has binding affinity for cAMP and is involved in motility by regulating the formation of pili. However, the function of Sycrp2 remains unknown. Here, we report that sycrp2 disruption results in the loss of motility of Synechocystis sp. PCC 6803, and that the phenotype can be recovered by reintroducing the sycrp2 gene into the genome of sycrp2-disrupted mutants. Electron microscopy showed that the sycrp2-disrupted mutant lost the pilus apparatus on the cell surface, resulting in a lack of cell motility. Furthermore, the transcript level of the pilA9-pilA11 operon (essential for cell motility and regulated by the cAMP receptor protein Sycrp1) was markedly decreased in sycrp2-disrupted mutants compared with the wild-type strain. Moreover, yeast two-hybrid analysis and a pulldown assay demonstrated that Sycrp2 interacted with Sycrp1 to form a heterodimer and that Sycrp1 and Sycrp2 interacted with themselves to form homodimers. Gel mobility shift assays revealed that Sycrp1 specifically binds to the upstream region of pilA9 Together, these findings indicate that in Synechocystis sp. PCC 6803, Sycrp2 regulates the formation of pili and cell motility by interacting with Sycrp1.IMPORTANCE cAMP receptor proteins (CRPs) are widely distributed in cyanobacteria and play important roles in regulating gene expression. Although many cyanobacterial species have two cAMP receptor-like proteins, the functional links between them are unknown. Here, we found that Sycrp2 in the cyanobacterium Synechocystis sp. strain PCC 6803 is essential for twitching motility and that it interacts with Sycrp1, a known cAMP receptor protein involved with twitching motility. Our findings indicate that the two cAMP receptor-like proteins in cyanobacteria do not have functional redundancy but rather work together.
Collapse
|
47
|
Surface Display of Small Affinity Proteins on Synechocystis sp. Strain PCC 6803 Mediated by Fusion to the Major Type IV Pilin PilA1. J Bacteriol 2018; 200:JB.00270-18. [PMID: 29844032 DOI: 10.1128/jb.00270-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022] Open
Abstract
Functional surface display of small affinity proteins, namely, affibodies (6.5 kDa), was evaluated for the model cyanobacterium Synechocystis sp. strain PCC 6803 through anchoring to native surface structures. These structures included confirmed or putative subunits of the type IV pili, the S-layer protein, and the heterologous Escherichia coli autotransporter antigen 43 system. The most stable display system was determined to be through C-terminal fusion to PilA1, the major type IV pilus subunit in Synechocystis, in a strain unable to retract these pili (ΔpilT1). Type IV pilus synthesis was upheld, albeit reduced, when fusion proteins were incorporated. However, pilus-mediated functions, such as motility and transformational competency, were negatively affected. Display of affibodies on Synechocystis and the complementary anti-idiotypic affibodies on E. coli or Staphylococcus carnosus was able to mediate interspecies cell-cell binding by affibody complex formation. The same strategy, however, was not able to drive cell-cell binding and aggregation of Synechocystis-only mixtures. Successful affibody tagging of the putative minor pilin PilA4 showed that it locates to the type IV pili in Synechocystis and that its extracellular availability depends on PilA1. In addition, affibody tagging of the S-layer protein indicated that the domains responsible for the anchoring and secretion of this protein are located at the N and C termini, respectively. This study can serve as a basis for future surface display of proteins on Synechocystis for biotechnological applications.IMPORTANCE Cyanobacteria are gaining interest for their potential as autotrophic cell factories. Development of efficient surface display strategies could improve their suitability for large-scale applications by providing options for designed microbial consortia, cell immobilization, and biomass harvesting. Here, surface display of small affinity proteins was realized by fusing them to the major subunit of the native type IV pili in Synechocystis sp. strain PCC 6803. The display of complementary affinity proteins allowed specific cell-cell binding between Synechocystis and Escherichia coli or Staphylococcus carnosus Additionally, successful tagging of the putative pilin PilA4 helped determine its localization to the type IV pili. Analogous tagging of the S-layer protein shed light on the regions involved in its secretion and surface anchoring.
Collapse
|
48
|
Li S, Sun T, Xu C, Chen L, Zhang W. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 2018; 48:163-174. [PMID: 29883802 DOI: 10.1016/j.ymben.2018.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973) has been considered a good chassis candidate for "microbial cell factory" as it can perform oxygenic photosynthesis and its doubling time can be as short as 1.9 h. However, the limited genetic tools currently restrict its further research and application efforts using synthetic biology approaches. In this study, a series of genetic tools were systematically developed and optimized for Synechococcus 2973. First, the introduction of Tfp pilus assembly protein encoding gene pilN into Synechococcus 2973 successfully recovered its natural transformability, which greatly simplified the DNA transformation process. Second, a series of promoters with different strengths were evaluated and the super-strong promoters including Pcpc560 from Synechocystis sp. PCC 6803, native PpsbA2 and PpsbA3 of Synechococcus 2973 were found with the highest activity of β-galactosidase among those evaluated by miller values. Some promoters related to photosystems (i.e., PpsbA2, PpsbA3, P6803psbA2 and Pcpc560) were also demonstrated to be induced by high intensity of light. Third, three lactose induction systems were evaluated, among which Plac combined with lacIq showed the best application prospect with great induction capacity, low leakage and middle induced expression. Fourth, the translational on riboswitch theoE* , the transcriptional off riboswitches theo/yitJ and xpt(C74U)/metE and an artificial inducing system combining theoE* with T7 RNA polymerase were successfully developed and characterized in Synechococcus 2973. Finally, by using T7 induction system to control the expression of both small RNA and chaperone Hfq, a small RNA regulatory tool was developed and optimized to be a strictly inducible off system for gene regulation in Synechococcus 2973. The work here presented valuable genetic toolboxes necessary for metabolic engineering and synthetic biology research in Synechococcus 2973, which will facilitate the future application of the fast growing cyanobacterial chassis.
Collapse
Affiliation(s)
- Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Chunxiao Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
49
|
Hu J, Zhan J, Chen H, He C, Cang H, Wang Q. The Small Regulatory Antisense RNA PilR Affects Pilus Formation and Cell Motility by Negatively Regulating pilA11 in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:786. [PMID: 29740417 PMCID: PMC5924778 DOI: 10.3389/fmicb.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
Pili are found on the surface of many bacteria and play important roles in cell motility, pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell motility in the model cyanobacterium Synechocystis sp. PCC 6803 relies on expression of the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis of overexpressor [PilR(+)] and suppressor [PilR(-)] mutant strains revealed that PilR is a direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect cell growth, it greatly reduced levels of pilA11 mRNA and protein and decreased both the thickness and number of pili, resulting in limited cell motility and small, distinct colonies. Suppression of PilR had the opposite effect. A hypothetical model on the regulation of pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add a layer of complexity to the mechanisms controlling pilA11 gene expression and cell motility, and provide novel insights into how sRNA and the intergenic region secondary structures can work together to discoordinatly regulate target gene in an operon in cyanobacterium.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
50
|
Lacey RF, Allen CJ, Bakshi A, Binder BM. Ethylene causes transcriptomic changes in Synechocystis during phototaxis. PLANT DIRECT 2018; 2:e00048. [PMID: 31245714 PMCID: PMC6508509 DOI: 10.1002/pld3.48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 05/02/2023]
Abstract
Ethylene is well known as a plant hormone, but its role in bacteria is poorly studied. We recently showed that Synechocystis sp. Strain PCC 6803 has a functional receptor for ethylene, ethylene response 1 (Etr1), that is involved in various processes such as phototaxis in response to directional light and biofilm formation. Here, we use RNA sequencing to examine the changes in gene transcripts caused by ethylene under phototaxis conditions. Over 500 gene transcripts across many functional categories, of approximately 3700 protein-encoding genes, were altered by application of ethylene. In general, ethylene caused both up- and downregulation of genes within a functional category. However, the transcript levels of amino acid metabolism genes were mainly upregulated and cell envelope genes were mostly downregulated by ethylene. The changes in cell envelope genes correlate with our prior observation that ethylene affects cell surface properties to alter cell motility. Ethylene caused a twofold or more change in 62 transcripts with the largest category of upregulated genes annotated as transporters and the largest category of downregulated genes annotated as glycosyltransferases which sometimes are involved in changing the composition of sugars on the cell surface. Consistent with changes in cell envelope, glycosyltransferase, and transporter gene transcripts, application of ethylene altered the levels of specific sugar moieties on the surface of cells. Light signaling from Etr1 involves two proteins (Slr1213 and Slr1214) and a small, noncoding RNA, carbon stress-induced RNA1 (csiR1). Application of ethylene caused a rapid, but transient, decrease in the transcript levels of etr1, slr1213, and slr1214 and a rapid and prolonged decrease in csiR1 transcript. Deletion of Slr1214 caused a large increase in csiR1 transcript levels and ethylene lowered csiR1 transcript. These data combined with prior reports indicate that ethylene functions as a signal to affect a variety of processes altering the physiology of Synechocystis cells.
Collapse
Affiliation(s)
- Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Arkadipta Bakshi
- Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleTNUSA
- Present address:
Department of BotanyUniversity of WisconsinMadisonWIUSA
| | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
- Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|