1
|
Li SY, He C, Valades-Cruz CA, Zhang CC, Yang Y. Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055. Microbiol Res 2025; 292:127967. [PMID: 39637757 DOI: 10.1016/j.micres.2024.127967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Light-controlled motility is advantageous for photosynthetic prokaryotes to better survive in environment with constantly changing light conditions. For cyanobacteria, light is both an energy source for photosynthesis and a stress factor. Consequently, some cyanobacteria evolved the ability to control type-IV pili (T4P)-mediated surface motility using a chemotaxis-like system in response to light signals. Extensive studies on the mechanism of phototaxis has been conducted in the spherical Synechocystis sp. PCC 6803 and the filamentous strain Nostoc punctiforme, while less is explored in rod-shaped cyanobacteria such as Synechococcus species. In this study, we investigated the phototaxis pathway in the unicellular rod-shaped cyanobacterium Synechococcus elongatus UTEX 3055, which exhibits bidirectional phototaxis using a single tax1 operon, in contrast to more complex and multiple gene clusters revealed in Synechocystis sp. PCC 6803. Results obtained by protein-protein interaction assays and protein subcellular localization experiments indicated that proteins encoded by the tax1 operon form large clusters that asymmetrically distributed both between the two poles and within the same pole. In vitro phosphorylation assays and site-directed mutations of conserved phosphorylation sites in PixLSe, PixGSe and PixHSe demonstrate that PixLSe acts as a histidine kinase, and PixGSe and PixHSe as response regulators for signal transduction. We further show that PixGSe and PixHSe are recruited to cell poles via interactions with the N-terminal region of PixLSe. While phosphotransfer reactions in this signaling pathway are critical for phototactic signaling, the two response regulators appear to play different roles in the control of phototaxis. This study provides a framework for further investigation into the complex phototactic signaling network in rod-shaped cyanobacteria with clearly defined cell poles in contrast to round shaped Synechocystis species with virtual cells poles through light-lensing effect.
Collapse
Affiliation(s)
- Shang-Yu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenliu He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cesar Augusto Valades-Cruz
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
2
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
3
|
Hoshino H, Miyake K, Fushimi K, Narikawa R. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Protein Sci 2024; 33:e5132. [PMID: 39072823 DOI: 10.1002/pro.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.
Collapse
Affiliation(s)
- Hiroki Hoshino
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Keita Miyake
- Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Keiji Fushimi
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Kato R, Maeda K, Yano TA, Tanaka K, Tanaka T. Label-free visualization of photosynthetic microbial biofilms using mid-infrared photothermal and autofluorescence imaging. Analyst 2023; 148:6241-6247. [PMID: 37947037 DOI: 10.1039/d3an01453c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The formation of photosynthetic microbial biofilms comprising multispecies biomolecules, such as extracellular polymeric substances (EPSs), and microbial cells play pivotal roles in maintaining or stimulating their biological functions. Although there are numerous studies on photosynthetic microbial biofilms, the spatial distribution of EPS components that are vital for microbial biofilm formation, such as exopolysaccharides and proteins, is not well understood. Visualization of photosynthetic microbial biofilms requires label-free methods, because labelling EPSs results in structural changes or aggregation. Raman spectroscopy is useful for label-free visualization of biofilm constituents based on chemical contrast. However, interference resulting from the bright autofluorescence of photosynthetic molecules and the low detection efficiency of Raman scattering make visualization a challenge. Herein, we visualized photosynthetic microbial biofilms in a label-free manner using a super-resolution optical infrared absorption imaging technique, called mid-infrared photothermal (MIP) microscopy. By leveraging the advantages of MIP microscopy, such as its sub-micrometer spatial resolution, autofluorescence-free features, and high detection sensitivity, the distribution of cyanobacteria and their extracellular polysaccharides in the biofilm matrix were successfully visualized. This showed that cyanobacterial cells were aligned along acidic/sulfated polysaccharides in the extracellular environment. Furthermore, spectroscopic analyses elucidated that during formation of biofilms, sulfated polysaccharides initially form linear structures followed by entrapment of cyanobacterial cells. The present study provides the foundation for further studies on the formation, structure, and biological functions of microbial biofilms.
Collapse
Affiliation(s)
- Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kaisei Maeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Taka-Aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
8
|
Nakane D. Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy. Methods Mol Biol 2023; 2646:255-263. [PMID: 36842120 DOI: 10.1007/978-1-0716-3060-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
9
|
Jang J, Reed PMM, Rauscher S, Woolley GA. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates. Biochemistry 2022; 61:1444-1455. [PMID: 35759789 DOI: 10.1021/acs.biochem.2c00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - P Maximilian M Reed
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sarah Rauscher
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada.,Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium. Microbiol Spectr 2022; 10:e0100822. [PMID: 35727069 PMCID: PMC9430166 DOI: 10.1128/spectrum.01008-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus elongatus UTEX 2973, the fastest-growing cyanobacterial strain known, optimally grows under extreme high light (HL) intensities of 1,500-2,500 μmol photons m-2 s-1, which is lethal to most other photosynthetic microbes. We leveraged the few genetic differences between Synechococcus 2973 and the HL sensitive strain Synechococcus elongatus PCC 7942 to unravel factors essential for the high light tolerance. We identified a novel protein in Synechococcus 2973 that we have termed HltA for High light tolerance protein A. Using bioinformatic tools, we determined that HltA contains a functional PP2C-type protein phosphatase domain. Phylogenetic analysis showed that the PP2C domain belongs to the bacterial-specific Group II family and is closely related to the environmental stress response phosphatase RsbU. Additionally, we showed that unlike any previously described phosphatases, HltA contains a single N-terminal regulatory GAF domain. We found hltA to be ubiquitous throughout cyanobacteria, indicative of its potentially important role in the photosynthetic lifestyle of these oxygenic phototrophs. Mutations in the hltA gene resulted in severe defects specific to high light growth. These results provide evidence that hltA is a key factor in the tolerance of Synechococcus 2973 to high light and will open new insights into the mechanisms of cyanobacterial light stress response. IMPORTANCE Cyanobacteria are a diverse group of photosynthetic prokaryotes. The cyanobacterium Synechococcus 2973 is a high light tolerant strain with industrial promise due to its fast growth under high light conditions and the availability of genetic modification tools. Currently, little is known about the high light tolerance mechanisms of Synechococcus 2973, and there are many unknowns overall regarding high light tolerance of cyanobacteria. In this study, a comparative genomic analysis of Synechococcus 2973 identified a single nucleotide polymorphism in a locus encoding a serine phosphatase as a key factor for high light tolerance. This novel GAF-containing phosphatase was found to be the sole Group II metal-dependent protein phosphatase that is evolutionarily conserved throughout cyanobacteria. These results shed new light on the light response mechanisms of Synechococcus 2973, improving our understanding of environmental stress response. Additionally, this work will help facilitate the development of Synechococcus 2973 as an industrially useful organism.
Collapse
|
11
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Identification of significant residues for intermediate accumulation in phycocyanobilin synthesis. Photochem Photobiol Sci 2022; 21:437-446. [PMID: 35394642 DOI: 10.1007/s43630-022-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Phycocyanobilin, the primary pigment of both light perception and light-harvesting in cyanobacteria, is synthesized from biliverdin IXα (BV) through intermediate 181, 182-dihydrobiliverdin (181, 182-DHBV) by a phycocyanobilin:ferredoxin oxidoreductase (PcyA). In our previous study, we discovered two PcyA homologs (AmPcyAc and AmPcyAp) derived from Acaryochloris marina MBIC 11017 (A. marina) that exceptionally uses chlorophyll d as the primary photosynthetic pigment, absorbing longer wavelength far-red light than chlorophyll a, the photosynthetic pigment found in most cyanobacteria. Biochemical characterization of the two PcyA homologs identified functional diversification of these two enzymes: AmPcyAc provides 181, 182-DHBV, and PCB to the cyanobacteriochrome (CBCR) photoreceptors, whereas, AmPcyAp specifically provides PCB to the light-harvesting phycobilisome subunit. In this study, we focused on the residues necessary for 181, 182-DHBV supply to the CBCR photoreceptors by AmPcyAc. Based on the SyPcyA structure, we concentrated on the 30 residues that constitute the substrate-binding pocket. Among them, we discovered that Leu151 and Val225 in AmPcyAc were both substituted with isoleucine. During the enzymatic reaction, the SyPcyA variant molecule, possessing V225I and L151I replacements, accumulates the 181, 182-DHBV and supplies it to a CBCR molecule derived from A. marina. It is worth noting that the substitution of Val225 with isoleucine was specifically conserved among the Acaryochloris genus. Collectively, we propose that the specific evolution of PcyA among the Acaryochloris genus may correlate with the acquisition of Chl. d synthetic ability and growth in long-wavelength far-red light environments.
Collapse
|
13
|
Lamparter T, Babian J, Fröhlich K, Mielke M, Weber N, Wunsch N, Zais F, Schulz K, Aschmann V, Spohrer N, Krauß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 2022; 17:e0249509. [PMID: 35085243 PMCID: PMC8794177 DOI: 10.1371/journal.pone.0249509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
- * E-mail:
| | - Jennifer Babian
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Katrin Fröhlich
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Marion Mielke
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nora Weber
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nadja Wunsch
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Finn Zais
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Kevin Schulz
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Vera Aschmann
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Nina Spohrer
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
14
|
Han Y, Jakob A, Engel S, Wilde A, Nils S. PATAN-domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis. Mol Microbiol 2021; 117:790-801. [PMID: 34936151 DOI: 10.1111/mmi.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast-two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annik Jakob
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Sophia Engel
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Schuergers Nils
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
15
|
Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. eLife 2021; 10:66538. [PMID: 34127188 PMCID: PMC8205485 DOI: 10.7554/elife.66538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Extracellularpolysaccharides of bacteria contribute to biofilm formation, stress tolerance, and infectivity. Cyanobacteria, the oxygenic photoautotrophic bacteria, uniquely produce sulfated extracellular polysaccharides among bacteria to support phototrophic biofilms. In addition, sulfated polysaccharides of cyanobacteria and other organisms have been focused as beneficial biomaterial. However, very little is known about their biosynthesis machinery and function in cyanobacteria. Here, we found that the model cyanobacterium, Synechocystis sp. strain PCC 6803, formed bloom-like cell aggregates embedded in sulfated extracellular polysaccharides (designated as synechan) and identified whole set of genes responsible for synechan biosynthesis and its transcriptional regulation, thereby suggesting a model for the synechan biosynthesis apparatus. Because similar genes are found in many cyanobacterial genomes with wide variation, our findings may lead elucidation of various sulfated polysaccharides, their functions, and their potential application in biotechnology. Bacteria are single-cell microorganisms that can form communities called biofilms, which stick to surfaces such as rocks, plants or animals. Biofilms confer protection to bacteria and allow them to colonize new environments. The physical scaffold of biofilms is a viscous matrix made of several molecules, the main one being polysaccharides, complex carbohydrates formed by many monosaccharides (single sugar molecules) joined together. Cyanobacteria, also known as blue-green algae, are a type of bacteria that produce oxygen and use sunlight as an energy source, just as plants and algae do. Cyanobacteria produce extracellular polysaccharides that contain sulfate groups. These sulfated polysaccharides are also produced by animals and algae but are not common in other bacteria or plants. One possible role of sulfated, extracellular polysaccharides in cyanobacteria is keeping cells together in the floating aggregates found in cyanobacterial blooms. These are visible discolorations of the water caused by an overgrowth of cyanobacteria that occur in lakes, estuaries and coastal waters. However, little is known about how these polysaccharides are synthesized in cyanobacteria and what their natural role is. Maeda et al. found a strain of cyanobacteria that formed bloom-like aggregates that were embedded in sulfated extracellular polysaccharides. Using genetic engineering techniques, the researchers identified a set of genes responsible for producing a sulfated extracellular polysaccharide and regulating its levels. They also found that cell aggregates of cyanobacteria can float without having intracellular gas vesicles, which was previously thought to enable blooms to float. The results of the present study could have applications for human health, since many sulfated polysaccharides have antiviral, antitumor or anti-inflammatory properties, and similar genes are found in many cyanobacteria. In addition, these findings could be useful for controlling toxic cyanobacterial blooms, which are becoming increasingly problematic for society.
Collapse
Affiliation(s)
- Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yukiko Okuda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Sugimoto Y, Masuda S. In vivo localization and oligomerization of PixD and PixE for controlling phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2021; 67:54-58. [PMID: 33342920 DOI: 10.2323/jgam.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
17
|
Kamo T, Eki T, Hirose Y. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling. PLANT & CELL PHYSIOLOGY 2021; 62:334-347. [PMID: 33386854 PMCID: PMC8112840 DOI: 10.1093/pcp/pcaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| |
Collapse
|
18
|
Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Phytochromes in Agrobacterium fabrum. FRONTIERS IN PLANT SCIENCE 2021; 12:642801. [PMID: 33995441 PMCID: PMC8117939 DOI: 10.3389/fpls.2021.642801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes.
Collapse
Affiliation(s)
- Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Luisa Sauthof
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| |
Collapse
|
19
|
The cyanobacterial taxis protein HmpF regulates type IV pilus activity in response to light. Proc Natl Acad Sci U S A 2021; 118:2023988118. [PMID: 33723073 DOI: 10.1073/pnas.2023988118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein-protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacterium Nostoc punctiforme is capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacterium Synechocystis sp. strain PCC6803 interact in a similar manner to their N. punctiforme counterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.
Collapse
|
20
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
22
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
23
|
Chen Z, Li X, Tan X, Zhang Y, Wang B. Recent Advances in Biological Functions of Thick Pili in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:241. [PMID: 32210999 PMCID: PMC7076178 DOI: 10.3389/fpls.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
Cyanobacteria have evolved various strategies to sense and adapt to biotic and abiotic stresses including active movement. Motility in cyanobacteria utilizing the type IV pili (TFP) is useful to cope with changing environmental conditions. The model cyanobacterium Synechocystis sp. PCC 6803 (hereafter named Synechocystis) exhibits motility via TFP called thick pili, and uses it to seek out favorable light/nutrition or escape from unfavorable conditions. Recently, a number of studies on Synechocystis thick pili have been undertaken. Molecular approaches support the role of the pilin in motility, cell adhesion, metal utilization, and natural competence in Synechocystis. This review summarizes the most recent studies on the function of thick pili as well as their formation and regulation in this cyanobacterium.
Collapse
Affiliation(s)
- Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xitong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Arch Microbiol 2020; 202:1317-1325. [PMID: 32140734 DOI: 10.1007/s00203-020-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast's cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.
Collapse
|
25
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
26
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
27
|
Jakob A, Nakamura H, Kobayashi A, Sugimoto Y, Wilde A, Masuda S. The (PATAN)-CheY-Like Response Regulator PixE Interacts with the Motor ATPase PilB1 to Control Negative Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2020; 61:296-307. [PMID: 31621869 DOI: 10.1093/pcp/pcz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 05/22/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 can move directionally on a moist surface toward or away from a light source to reach optimal light conditions for its photosynthetic lifestyle. This behavior, called phototaxis, is mediated by type IV pili (T4P), which can pull a single cell into a certain direction. Several photoreceptors and their downstream signal transduction elements are involved in the control of phototaxis. However, the critical steps of local pilus assembly in positive and negative phototaxis remain elusive. One of the photoreceptors controlling negative phototaxis in Synechocystis is the blue-light sensor PixD. PixD forms a complex with the CheY-like response regulator PixE that dissociates upon illumination with blue light. In this study, we investigate the phototactic behavior of pixE deletion and overexpression mutants in response to unidirectional red light with or without additional blue-light irradiation. Furthermore, we show that PixD and PixE partly localize in spots close to the cytoplasmic membrane. Interaction studies of PixE with the motor ATPase PilB1, demonstrated by in vivo colocalization, yeast two-hybrid and coimmunoprecipitation analysis, suggest that the PixD-PixE signal transduction system targets the T4P directly, thereby controlling blue-light-dependent negative phototaxis. An intriguing feature of PixE is its distinctive structure with a PATAN (PatA N-terminus) domain. This domain is found in several other regulators, which are known to control directional phototaxis. As our PilB1 coimmunoprecipitation analysis revealed an enrichment of PATAN domain response regulators in the eluate, we suggest that multiple environmental signals can be integrated via these regulators to control pilus function.
Collapse
Affiliation(s)
- Annik Jakob
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Hiroshi Nakamura
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
| | - Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
28
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
29
|
Fushimi K, Narikawa R. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 2019; 57:39-46. [DOI: 10.1016/j.sbi.2019.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
30
|
Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Int J Mol Sci 2019; 20:ijms20122935. [PMID: 31208089 PMCID: PMC6628166 DOI: 10.3390/ijms20122935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cyanobacteria have cyanobacteriochromes (CBCRs), which are photoreceptors that bind to a linear tetrapyrrole chromophore and sense UV-to-visible light. A recent study revealed that the dual-Cys CBCR AM1_1186g2 covalently attaches to phycocyanobilin and exhibits unique photoconversion between a Pr form (red-absorbing dark state, λmax = 641 nm) and Pb form (blue-absorbing photoproduct, λmax = 416 nm). This wavelength separation is larger than those of the other CBCRs, which is advantageous for optical tools. Nowadays, bioimaging and optogenetics technologies are powerful tools for biological research. In particular, the utilization of far-red and near-infrared light sources is required for noninvasive applications to mammals because of their high potential to penetrate into deep tissues. Biliverdin (BV) is an intrinsic chromophore and absorbs the longest wavelength among natural linear tetrapyrrole chromophores. Although the BV-binding photoreceptors are promising platforms for developing optical tools, AM1_1186g2 cannot efficiently attach BV. Herein, by rationally introducing several replacements, we developed a BV-binding AM1_1186g2 variant, KCAP_QV, that exhibited reversible photoconversion between a Pfr form (far-red-absorbing dark state, λmax = 691 nm) and Pb form (λmax = 398 nm). This wavelength separation reached 293 nm, which is the largest among the known phytochrome and CBCR photoreceptors. In conclusion, the KCAP_QV molecule developed in this study can offer an alternative platform for the development of unique optical tools.
Collapse
|
31
|
Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2018; 115:E12378-E12387. [PMID: 30552139 DOI: 10.1073/pnas.1812871115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.
Collapse
|
32
|
Köbler C, Schultz SJ, Kopp D, Voigt K, Wilde A. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day-night transitions. Mol Microbiol 2018; 110:847-861. [PMID: 30216574 DOI: 10.1111/mmi.14129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023]
Abstract
Cyanobacteria exhibit rhythmic gene expression with a period length of 24 hours to adapt to daily environmental changes. In the model organism Synechococcuselongatus PCC 7942, the central oscillator consists of the three proteins KaiA, KaiB and KaiC and utilizes the histidine kinase SasA and its response regulator RpaA as output-signaling pathway. Synechocystis sp. PCC 6803 contains in addition to the canonical kaiAB1C1 gene cluster two further homologs of the kaiB and kaiC genes. Here, we demonstrate that the SasA-RpaA system interacts with the KaiAB1C1 core oscillator only. Interaction with KaiC2 and KaiC3 proteins was not detected, suggesting different signal transduction components for the clock homologs. Inactivation of rpaA in Synechocystis sp. PCC 6803 leads to reduced viability of the mutant in light-dark cycles, especially under mixotrophic growth conditions. Chemoheterotrophic growth of the ∆rpaA strain in the dark was abolished completely. Transcriptomic data revealed that RpaA is mainly involved in the regulation of genes related to CO2 - acclimation in the light and to carbon metabolism in the dark. Further, our results indicate a link between the circadian clock and phototaxis.
Collapse
Affiliation(s)
- Christin Köbler
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Siri-Jasmin Schultz
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Dominik Kopp
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Karsten Voigt
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
33
|
Sycrp2 Is Essential for Twitching Motility in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2018; 200:JB.00436-18. [PMID: 30104238 DOI: 10.1128/jb.00436-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
Two cAMP receptor proteins (CRPs), Sycrp1 (encoded by sll1371) and Sycrp2 (encoded by sll1924), exist in the cyanobacterium Synechocystis sp. strain PCC 6803. Previous studies have demonstrated that Sycrp1 has binding affinity for cAMP and is involved in motility by regulating the formation of pili. However, the function of Sycrp2 remains unknown. Here, we report that sycrp2 disruption results in the loss of motility of Synechocystis sp. PCC 6803, and that the phenotype can be recovered by reintroducing the sycrp2 gene into the genome of sycrp2-disrupted mutants. Electron microscopy showed that the sycrp2-disrupted mutant lost the pilus apparatus on the cell surface, resulting in a lack of cell motility. Furthermore, the transcript level of the pilA9-pilA11 operon (essential for cell motility and regulated by the cAMP receptor protein Sycrp1) was markedly decreased in sycrp2-disrupted mutants compared with the wild-type strain. Moreover, yeast two-hybrid analysis and a pulldown assay demonstrated that Sycrp2 interacted with Sycrp1 to form a heterodimer and that Sycrp1 and Sycrp2 interacted with themselves to form homodimers. Gel mobility shift assays revealed that Sycrp1 specifically binds to the upstream region of pilA9 Together, these findings indicate that in Synechocystis sp. PCC 6803, Sycrp2 regulates the formation of pili and cell motility by interacting with Sycrp1.IMPORTANCE cAMP receptor proteins (CRPs) are widely distributed in cyanobacteria and play important roles in regulating gene expression. Although many cyanobacterial species have two cAMP receptor-like proteins, the functional links between them are unknown. Here, we found that Sycrp2 in the cyanobacterium Synechocystis sp. strain PCC 6803 is essential for twitching motility and that it interacts with Sycrp1, a known cAMP receptor protein involved with twitching motility. Our findings indicate that the two cAMP receptor-like proteins in cyanobacteria do not have functional redundancy but rather work together.
Collapse
|
34
|
Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia. ISME JOURNAL 2018; 12:1329-1343. [PMID: 29410487 PMCID: PMC5932025 DOI: 10.1038/s41396-018-0058-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.
Collapse
|
35
|
Scarbath-Evers LK, Jähnigen S, Elgabarty H, Song C, Narikawa R, Matysik J, Sebastiani D. Structural heterogeneity in a parent ground-state structure of AnPixJg2 revealed by theory and spectroscopy. Phys Chem Chem Phys 2018; 19:13882-13894. [PMID: 28513754 DOI: 10.1039/c7cp01218g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the red absorbing, dark stable state (Pr state) of the second GAF domain of the cyanobacteriochrome AnPixJ (AnPixJg2) by a molecular dynamics simulation of 1 μs duration. Our results reveal two distinct conformational isoforms of the chromophore, from which only one was known from crystallographic experiments. The interconversion between both isoforms is accompanied by alterations in the hydrogen bond pattern between the chromophore and the protein and the solvation structure of the chromophore binding pocket. The existence of sub-states in the Pr form of AnPixJg2 is supported by the results from experimental 13C MAS NMR spectroscopy. Our finding is consistent with the observation of structural heterogeneity in other cyanobacteriochromes and phytochromes.
Collapse
Affiliation(s)
- Laura Katharina Scarbath-Evers
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
37
|
Cho YW, Gonzales A, Harwood TV, Huynh J, Hwang Y, Park JS, Trieu AQ, Italia P, Pallipuram VK, Risser DD. Dynamic localization of HmpF regulates type IV pilus activity and directional motility in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol 2017; 106:252-265. [DOI: 10.1111/mmi.13761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Ye Won Cho
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Alfonso Gonzales
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Thomas V. Harwood
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Jessica Huynh
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Yeji Hwang
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Jun Sang Park
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Anthony Q. Trieu
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - Parth Italia
- Departments of Electrical and Computer Engineering; University of the Pacific; Stockton CA 95211 USA
| | - Vivek K. Pallipuram
- Departments of Electrical and Computer Engineering; University of the Pacific; Stockton CA 95211 USA
| | - Douglas D. Risser
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| |
Collapse
|
38
|
Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria. Proc Natl Acad Sci U S A 2017; 114:6593-6598. [PMID: 28584115 DOI: 10.1073/pnas.1702395114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The type IV pili (T4P) system is a supermolecular machine observed in prokaryotes. Cells repeat the cycle of T4P extension, surface attachment, and retraction to drive twitching motility. Although the properties of T4P as a motor have been scrutinized with biophysics techniques, the mechanism of regulation remains unclear. Here we provided the framework of the T4P dynamics at the single-cell level in Synechocystis sp. PCC6803, which can recognize light direction. We demonstrated that the dynamics was detected by fluorescent beads under an optical microscope and controlled by blue light that induces negative phototaxis; extension and retraction of T4P was activated at the forward side of lateral illumination to move away from the light source. Additionally, we directly visualized each pilus by fluorescent labeling, allowing us to quantify their asymmetric distribution. Finally, quantitative analyses of cell tracking indicated that T4P was generated uniformly within 0.2 min after blue-light exposure, and within the next 1 min the activation became asymmetric along the light axis to achieve directional cell motility; this process was mediated by the photo-sensing protein, PixD. This sequential process provides clues toward a general regulation mechanism of T4P system, which might be essentially common between archaella and other secretion apparatuses.
Collapse
|
39
|
Schuergers N, Mullineaux CW, Wilde A. Cyanobacteria in motion. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:109-115. [PMID: 28472718 DOI: 10.1016/j.pbi.2017.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/17/2023]
Abstract
Cyanobacteria are able to move directly towards or away from a light source, a process called phototaxis. Recent studies have revealed that the spherical unicellular cyanobacterium Synechocystis sp. PCC 6803 exhibits a cell polarity in response to unidirectional illumination and that micro-optic properties of cyanobacterial cells are the basis of their directional light sensing. Further functional and physiological studies highlight a very complex control of cyanobacterial phototaxis by sensory proteins, histidine kinases and response regulators. Notably, PATAN domain response regulators appear to participate in directional control of phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. In this review we explain the problem of directional light sensing at the small scale of bacteria and discuss our current understanding of signal transduction in cyanobacterial phototaxis.
Collapse
Affiliation(s)
- Nils Schuergers
- Laboratory of Nanobiotechnology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, D79104 Freiburg, Germany; BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
40
|
Rockwell NC, Martin SS, Lagarias JC. There and Back Again: Loss and Reacquisition of Two‐Cys Photocycles in Cyanobacteriochromes. Photochem Photobiol 2017; 93:741-754. [DOI: 10.1111/php.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology University of California Davis CA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology University of California Davis CA
| | - John Clark Lagarias
- Department of Molecular and Cellular Biology University of California Davis CA
| |
Collapse
|
41
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Shcherbakova DM, Verkhusha VV, Turoverov KK. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome. Int J Mol Sci 2017; 18:E1009. [PMID: 28481303 PMCID: PMC5454922 DOI: 10.3390/ijms18051009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 8 Haartmaninkatu st., Helsinki 00290, Finland.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| |
Collapse
|
42
|
Abstract
Environmental cues can stimulate a variety of single-cell responses, as well as collective behaviors that emerge within a bacterial community. These responses require signal integration and transduction, which can occur on a variety of time scales and often involve feedback between processes, for example, between growth and motility. Here, we investigate the dynamics of responses of the phototactic, unicellular cyanobacterium Synechocystis sp. PCC6803 to complex light inputs that simulate the natural environments that cells typically encounter. We quantified single-cell motility characteristics in response to light of different wavelengths and intensities. We found that red and green light primarily affected motility bias rather than speed, while blue light inhibited motility altogether. When light signals were simultaneously presented from different directions, cells exhibited phototaxis along the vector sum of the light directions, indicating that cells can sense and combine multiple signals into an integrated motility response. Under a combination of antagonistic light signal regimes (phototaxis-promoting green light and phototaxis-inhibiting blue light), the ensuing bias was continuously tuned by competition between the wavelengths, and the community response was dependent on both bias and cell growth. The phototactic dynamics upon a rapid light shift revealed a wavelength dependence on the time scales of photoreceptor activation/deactivation. Thus, Synechocystis cells achieve exquisite integration of light inputs at the cellular scale through continuous tuning of motility, and the pattern of collective behavior depends on single-cell motility and population growth. The photosynthetic cyanobacterium Synechocystis sp. exhibits phototaxis that is dependent on the incident light wavelength through the action of various photoreceptors. In natural environments, cells experience a set of highly dynamic and complex light inputs, yet how cells transduce multiple or dynamic inputs into motion is unknown. In this study, we measured the phototactic behaviors of single cells and communities as a function of light intensity or when illuminated by combinations of lights of different wavelengths or incidence directions. Responses to a spectrum of light regimes revealed that Synechocystis sp. integrates information about the light environment to tune its phototactic response, which is likely generated by competition among photoreceptors and the degree of wavelength-regulated growth to sensitively control the direction and degree of movement.
Collapse
|
43
|
Sugimoto Y, Nakamura H, Ren S, Hori K, Masuda S. Genetics of the Blue Light-Dependent Signal Cascade That Controls Phototaxis in the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2017; 58:458-465. [PMID: 28028165 DOI: 10.1093/pcp/pcw218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
The Synechocystis sp. PCC6803 can move on a solid surface in response to light, a phenomenon called phototaxis. Although many of the photoreceptors involved in phototaxis have been identified, the mechanisms that regulate directional motility of Synechocystis are not well understood. Previous studies showed that a mutant lacking the blue light-using flavin (BLUF) photoreceptor PixD exhibits negative phototaxis under conditions where the wild type responds positively. PixD interacts with the pseudo-response regulator-like protein PixE in a light-dependent manner, suggesting that this intermolecular interaction is important for phototaxis regulation, although genetic evidence has been lacking. To gain further insight into phototaxis regulation by PixD-PixE signaling, we constructed the deletion mutants ΔPixE and ΔPixD-ΔPixE, and characterized their phenotypes, which matched those of the wild type (positive phototaxis). Because ΔPixD exhibited negative phototaxis, PixE must function downstream of PixD. Under intense blue light (>100 μmol m-2 s-1; 470 nm) the wild type exhibited negative phototaxis, but ΔPixD-PixE exhibited positive phototaxis toward low-intensity blue light (∼0.8 μmol m-2 s-1; 470 nm). These results suggest that an unknown light-sensing system(s), that is necessary for directional cell movement, can be activated by low-intensity blue light; on the other hand, PixD needs high-intensity blue light to be activated. We also isolated spontaneous mutants that compensated for the pixE deletion. Genome-wide sequencing of the mutants revealed that the uncharacterized gene sll2003 regulates positive and negative phototaxis in response to light intensity.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Nakamura
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shukun Ren
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, USA
| | - Koichi Hori
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
44
|
Hydrophobic Residues near the Bilin Chromophore-Binding Pocket Modulate Spectral Tuning of Insert-Cys Subfamily Cyanobacteriochromes. Sci Rep 2017; 7:40576. [PMID: 28094296 PMCID: PMC5240096 DOI: 10.1038/srep40576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are a subfamily of phytochrome photoreceptors found exclusively in photosynthetic cyanobacteria. Four CBCRs containing a second Cys in the insert region (insert-Cys) have been identified from the nonheterocystous cyanobacterium Microcoleus B353 (Mbr3854g4 and Mbl3738g2) and the nitrogen fixing, heterocystous cyanobacterium Nostoc punctiforme (NpF2164g3 and NpR1597g2). These insert-Cys CBCRs can sense light in the near-UV to orange range, but key residues responsible for tuning their colour sensitivity have not been reported. In the present study, near-UV/Green (UG) photosensors Mbr3854g4 (UG1) and Mbl3738g2 (UG2) were chosen for further spectroscopic analysis of their spectral sensitivity and tuning. Consistent with most dual-Cys CBCRs, both UGs formed a second thioether linkage to the phycocyanobilin (PCB) chromophore via the insert-Cys. This bond is subject to breakage and relinkage during forward and reverse photoconversions. Variations in residues equivalent to Phe that are in close contact with the PCB chromophore D-ring in canonical red/green CBCRs are responsible for tuning the light absorption peaks of both dark and photoproducts. This is the first time these key residues that govern light absorption in insert-Cys family CBCRs have been identified and characterised.
Collapse
|
45
|
Hori M, Oka S, Sugie Y, Ohtsuka H, Aiba H. Construction of a photo-responsive chimeric histidine kinase in Escherichia coli. J GEN APPL MICROBIOL 2017; 63:44-50. [DOI: 10.2323/jgam.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mayuko Hori
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Shyunsuke Oka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Yoshimi Sugie
- Laboratory of Molecular Microbiology, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
46
|
Fushimi K, Rockwell NC, Enomoto G, Ni-Ni-Win, Martin SS, Gan F, Bryant DA, Ikeuchi M, Lagarias JC, Narikawa R. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry 2016; 55:6981-6995. [PMID: 27935696 DOI: 10.1021/acs.biochem.6b00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C31 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin. In the well-characterized DXCF subfamily, the second Cys is part of a conserved Asp-Xaa-Cys-Phe motif. We here report novel CBCRs lacking the first Cys but retaining the DXCF Cys as part of a conserved Asp-Xaa-Cys-Ile-Pro (DXCIP) motif. Phylogenetic analysis demonstrates that DXCIP CBCRs are a sister to a lineage of DXCF CBCR domains from phototaxis sensors. Three such DXCIP CBCR domains (cce_4193g1, Cyan8802_2776g1, and JSC1_24240) were characterized after recombinant expression in Escherichia coli engineered to produce phycocyanobilin. All three covalently bound bilin and showed unidirectional photoconversion in response to green light. Spectra of acid-denatured proteins in the dark-adapted state do not correspond to those of known bilins. One DXCIP CBCR, cce_4193g1, exhibited very rapid dark reversion consistent with a function as a power sensor. However, Cyan8802_2776g1 exhibited slower dark reversion and would not have such a function. The full-length cce_4193 protein also possesses a DXCF CBCR GAF domain (cce_4193g2) with a covalently bound phycoviolobilin chromophore and a blue/green photocycle. Our studies indicate that CBCRs need not contain the canonical Cys residue to function as photochromic light sensors and that phototaxis proteins containing DXCIP CBCRs may potentially perceive both light quality and light intensity.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ni-Ni-Win
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States.,Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717 United States
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
47
|
Construction of a Miniaturized Chromatic Acclimation Sensor from Cyanobacteria with Reversed Response to a Light Signal. Sci Rep 2016; 6:37595. [PMID: 27883080 PMCID: PMC5121610 DOI: 10.1038/srep37595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria harbor unique photoreceptors, designated as cyanobacteriochromes (CBCRs). In this study, we attempted to engineer the chromatic acclimation sensor CcaS, a CBCR derived from the cyanobacterium Synechocystis sp. PCC 6803. The wild-type CcaS induces gene expression under green light illumination and represses it under red light illumination. We focused on the domain structure of CcaS, which consists of an N-terminal transmembrane helix; a GAF domain, which serves as the sensor domain; a linker region (L1); two PAS domains; a second linker region (L2); and a C-terminal histidine kinase (HK) domain. Truncated versions of the photoreceptor were constructed by removing the L1 linker region and the two PAS domains, and fusing the GAF and HK domains with a truncated linker region. Thus constructed “miniaturized CcaSs” were grouped into four distinct categories according to their responses toward green and red light illumination, with some showing improved gene regulation compared to the wild type. Remarkably, one of the miniaturized CcaSs induced gene expression under red light and repressed it under green light, a reversed response to the light signal compared to wild type CcaS. These characteristics of engineered photoreceptors were discussed by analyzing the CcaS structural model.
Collapse
|
48
|
Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4079-4090. [PMID: 27217547 DOI: 10.1093/jxb/erw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, Sato M, Narikawa R. Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin. Front Microbiol 2016; 7:588. [PMID: 27242674 PMCID: PMC4876366 DOI: 10.3389/fmicb.2016.00588] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB) and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV). The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2) from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Yuki Aono
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Tatsuro Yamamoto
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Masahiko Ikeuchi
- Graduate School of Arts and Sciences, University of TokyoTokyo, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| |
Collapse
|
50
|
Schuergers N, Lenn T, Kampmann R, Meissner MV, Esteves T, Temerinac-Ott M, Korvink JG, Lowe AR, Mullineaux CW, Wilde A. Cyanobacteria use micro-optics to sense light direction. eLife 2016; 5:12620. [PMID: 26858197 PMCID: PMC4758948 DOI: 10.7554/elife.12620] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/26/2015] [Indexed: 01/08/2023] Open
Abstract
Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world's smallest and oldest example of a camera eye.
Collapse
Affiliation(s)
- Nils Schuergers
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Tchern Lenn
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ronald Kampmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Markus V Meissner
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tiago Esteves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto, , Portugal
| | - Maja Temerinac-Ott
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alan R Lowe
- London Centre for Nanotechnology, London, United Kingdom.,Institute for Structural and Molecular Biology, University College London and Birkbeck College London, London, United Kingdom
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|