1
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
2
|
3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis. Sci Rep 2023; 13:3902. [PMID: 36890158 PMCID: PMC9995466 DOI: 10.1038/s41598-023-30797-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Isoprenoids, a large kind of plant natural products, are synthesized by the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. As one of the rate-limiting enzymes in the MVA pathway of soybean (Glycine max), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is encoded by eight isogenes (GmHMGR1-GmHMGR8). To begin, we used lovastatin (LOV), a specific inhibitor of GmHMGR, to investigate their role in soybean development. To further investigate, we overexpressed the GmHMGR4 and GmHMGR6 genes in Arabidopsis thaliana. The growth of soybean seedlings, especially the development of lateral roots, was inhibited after LOV treatment, accompanied by a decrease in sterols content and GmHMGR gene expression. After the overexpression of GmHMGR4 and GmHMGR6 in A. thaliana, the primary root length was higher than the wild type, and total sterol and squalene contents were significantly increased. In addition, we detected a significant increase in the product tocopherol from the MEP pathway. These results further support the fact that GmHMGR1-GmHMGR8 play a key role in soybean development and isoprenoid biosynthesis.
Collapse
|
3
|
Breygina M, Voronkov A, Galin I, Akhiyarova G, Polevova S, Klimenko E, Ivanov I, Kudoyarova G. Dynamics of endogenous levels and subcellular localization of ABA and cytokinins during pollen germination in spruce and tobacco. PROTOPLASMA 2023; 260:237-248. [PMID: 35579760 DOI: 10.1007/s00709-022-01766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased. In dormant spruce pollen grains, zeatin and ABA were localized uniformly throughout the cytoplasm. Zeatin was not detected in the nuclei, and the antheridial cell showed higher levels than the vegetative cell; ABA signal was detected in the cytoplasm and the nuclei. In germinating pollen, both hormones were detected mainly in plastids. The similar pattern was found in growing pollen tubes; signal from ABA also had a noticeable level in the cytosol of the tube cell, and was weaker in the antheridial cell. Zeatin fluorescence, on the other hand, was more pronounced in the antheridial cell. In non-germinated grains of tobacco, zeatin was localized mainly in organelles. ABA in dormant pollen grains demonstrated uniform localization, including the nuclei and cytoplasm of both cells. After germination, zeatin was accumulated in the plasmalemma or cell wall. ABA signal in the cytoplasm decreased; in the nuclei, it remained high. In growing tubes, the strongest zeatin and ABA signals were observed at the plasma membrane. The differences in ABA and cytokinin localization between species and dynamic changes in their level in spruce pollen highlight the key spatial and temporal parameters of hormonal regulation of gymnosperm pollen germination.
Collapse
Affiliation(s)
- Maria Breygina
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia.
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Ilshat Galin
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Akhiyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Svetlana Polevova
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Ekaterina Klimenko
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Igor Ivanov
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| |
Collapse
|
4
|
Zou X, Shao J, Wang Q, Chen P, Zhu Y, Yin C. Supraoptimal Cytokinin Content Inhibits Rice Seminal Root Growth by Reducing Root Meristem Size and Cell Length via Increased Ethylene Content. Int J Mol Sci 2018; 19:ijms19124051. [PMID: 30558185 PMCID: PMC6321243 DOI: 10.3390/ijms19124051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Cytokinins (CKs), a class of phytohormone, regulate root growth in a dose-dependent manner. A certain threshold content of CK is required for rapid root growth, but supraoptimal CK content inhibits root growth, and the mechanism of this inhibition remains unclear in rice. In this study, treatments of lovastatin (an inhibitor of CK biosynthesis) and kinetin (KT; a synthetic CK) were found to inhibit rice seminal root growth in a dose-dependent manner, suggesting that endogenous CK content is optimal for rapid growth of the seminal root in rice. KT treatment strongly increased ethylene level by upregulating the transcription of ethylene biosynthesis genes. Ethylene produced in response to exogenous KT inhibited rice seminal root growth by reducing meristem size via upregulation of OsIAA3 transcription and reduced cell length by downregulating transcription of cell elongation-related genes. Moreover, the effects of KT treatment on rice seminal root growth, root meristem size and cell length were rescued by treatment with aminoethoxyvinylglycine (an inhibitor of ethylene biosynthesis), which restored ethylene level and transcription levels of OsIAA3 and cell elongation-related genes. Supraoptimal CK content increases ethylene level by promoting ethylene biosynthesis, which in turn inhibits rice seminal root growth by reducing root meristem size and cell length.
Collapse
Affiliation(s)
- Xiao Zou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Junwei Shao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Qi Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Peisai Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Yanchun Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Changxi Yin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| |
Collapse
|
5
|
Yang S, Liu X, Qiao S, Tan W, Li M, Feng J, Zhang C, Kang X, Huang T, Zhu Y, Yang L, Wang D. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression. Funct Integr Genomics 2018; 18:613-625. [PMID: 29754269 DOI: 10.1007/s10142-018-0611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important root crops in the world. Initial formation and development of storage roots (SRs) are key factors affecting its yields. In order to study the molecular mechanism and regulatory networks of the SRs development process, we have analyzed root transcriptomes between the high and low starch content sweet potato accessions at three different developmental stages. In this study, we assembled 46,840 unigenes using Illumina paired-end sequencing reads and identified differentially expressed genes (DEGs) between two accessions. The numbers of DEGs were increased with the development of SRs, indicating that the difference between two accessions is enlarging with the maturation. DEGs were mainly enriched in starch biosynthesis, plant hormones regulatory, and genetic information processing pathways. Then, expression patterns of DEGs that are most significant and starch biosynthesis related were validated using qRT-PCR. Our results provide valuable resources to future study on molecular mechanisms of SRs development and candidate genes for starch content improvement in sweet potato.
Collapse
Affiliation(s)
- Songtao Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiaojing Liu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shuai Qiao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Wenfang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ming Li
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Junyan Feng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Cong Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Xiang Kang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tianbao Huang
- Jiangxi Institute of Red Soil, Nanchang, 331717, China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lan Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Toyooka K, Sato M, Wakazaki M, Matsuoka K. Morphological and quantitative changes in mitochondria, plastids, and peroxisomes during the log-to-stationary transition of the growth phase in cultured tobacco BY-2 cells. PLANT SIGNALING & BEHAVIOR 2016; 11:e1149669. [PMID: 26855065 PMCID: PMC4883831 DOI: 10.1080/15592324.2016.1149669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
We developed a wide-range and high-resolution transmission electron microscope acquisition system and obtained giga-pixel images of tobacco BY-2 cells during the log and stationary phases of cell growth. We demonstrated that the distribution and ultrastructure of compartments involved in membrane traffic (i.e., Golgi apparatus, multivesicular body, and vesicle cluster) change during the log-to-stationary transition. Mitochondria, peroxisomes, and plastids were also enumerated. Electron densities of mitochondria and peroxisomes were altered during the growth-phase shift, while their numbers were reduced by nearly half. Plastid structure dramatically changed from atypical to spherical with starch granules. Nearly the same number of plastids was observed in both log and stationary phases. These results indicate that mechanisms regulating organelle populations differ from organelle to organelle.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
7
|
Nayar S, Sharma R, Tyagi AK, Kapoor S. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4239-53. [PMID: 23929654 PMCID: PMC3808311 DOI: 10.1093/jxb/ert231] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis.
Collapse
Affiliation(s)
- Saraswati Nayar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- *Present address: Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Akhilesh Kumar Tyagi
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
8
|
Cortleven A, Valcke R. Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: lessons from cytokinin. PHYSIOLOGIA PLANTARUM 2012; 144:394-408. [PMID: 22182256 DOI: 10.1111/j.1399-3054.2011.01558.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cytokinin is known to be involved in many processes related to plastid development and function but the exact role of cytokinin in photosynthesis remains elusive. To investigate more profoundly the effects of cytokinin in this process, the photosynthetic activity of transgenic Pssuipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with respectively elevated and reduced endogenous cytokinin content was evaluated. Pigment analysis indicated that elevated endogenous cytokinin content resulted in increased pigment content. Functional analysis of the photosynthetic apparatus by chlorophyll a fluorescence and in vitro electron transport measurements clearly showed that changing the endogenous cytokinin content affects the activity of the photosynthetic apparatus. Surprisingly, both an increase as well as a decrease in cytokinin content results in a better photosynthetic performance. Quenching analysis revealed that the initial responses of the photosynthetic apparatus on a dark-light transition are not affected by changed cytokinin content. However, it has an effect on the further kinetic behavior. Taken together, we suggest that cytokinins can induce structural changes in the different parts of the electron transport chain as also demonstrated by the in vitro electron transport measurements.
Collapse
Affiliation(s)
- Anne Cortleven
- UHasselt, Laboratory of Molecular and Physical Plant Physiology, Faculty of Sciences, Agoralaan, Bldg.D, B-3590 Diepenbeek, Belgium
| | | |
Collapse
|
9
|
Faix B, Radchuk V, Nerlich A, Hümmer C, Radchuk R, Emery RJN, Keller H, Götz KP, Weschke W, Geigenberger P, Weber H. Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C:N metabolism mediated by an overlapping metabolic-hormonal control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1077-1093. [PMID: 22098161 DOI: 10.1111/j.1365-313x.2011.04857.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The barley Risø16 mutation leads to inactivation of cytosolic ADP-Glc pyrophosphorylase, and results in decreased ADP-Glc and endospermal starch levels. Here we show that this mutation is accompanied by a decrease in storage protein accumulation and seed size, which indicates that alteration of a single enzymatic step can change the network of storage metabolism as a whole. We used comprehensive transcript, metabolite and hormonal profiling to compare grain metabolism and development of Risø16 and wild-type endosperm. Despite increased sugar availability in mutant endosperm, glycolytic intermediates downstream of hexose phosphates remained unchanged or decreased, while several glycolytic enzymes were downregulated at the transcriptional level. Metabolite and transcript profiling also indicated an inhibition of the tricarboxylic acid cycle at the level of mitochondrial nicotinamide adenine dinucleotide (NAD)-isocitrate dehydrogenase and an attendant decrease in alpha-ketoglutarate and amino acids levels in Risø16, compared with wild type. Decreased levels of cytokinins in Risø16 endosperm suggested co-regulation between starch synthesis, abscisic acid (ABA) deficiency and cytokinin biosynthesis. Comparative cis-element analysis in promoters of jointly downregulated genes in Risø16 revealed an overlap between metabolic and hormonal regulation, which leds to a coordinated downregulation of endosperm-specific and ABA-inducible gene expression (storage proteins) together with repression by sugars (isocitrate dehydrogenase, amylases). Such co-regulation ensured that decreased carbon fluxes into starch lead to a coordinated inhibition of glycolysis, amino acid and storage proteins biosynthesis, which is useful in the prevention of osmotic imbalances and oxidative stress due to increased accumulation of sugars.
Collapse
Affiliation(s)
- Benjamin Faix
- Department Biologie I, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
11
|
Cortleven A, Noben JP, Valcke R. Analysis of the photosynthetic apparatus in transgenic tobacco plants with altered endogenous cytokinin content: a proteomic study. Proteome Sci 2011; 9:33. [PMID: 21703031 PMCID: PMC3151202 DOI: 10.1186/1477-5956-9-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/26/2011] [Indexed: 01/18/2023] Open
Abstract
Background Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive. Results To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic Pssu-ipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms. Conclusion Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.
Collapse
Affiliation(s)
- Anne Cortleven
- Laboratory of Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium.
| | | | | |
Collapse
|
12
|
Lipavská H, Masková P, Vojvodová P. Regulatory dephosphorylation of CDK at G₂/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. ANNALS OF BOTANY 2011; 107:1071-86. [PMID: 21339187 PMCID: PMC3091802 DOI: 10.1093/aob/mcr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G₂/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G₂/M have not yet been identified. SCOPE Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G₂/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G₂ phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G₂ and early M-phase. Spcdc25-expressing tobacco ('Samsun') cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics. CONCLUSIONS The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G₂/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G₂/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.
Collapse
Affiliation(s)
- Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague 2, Czech Republic.
| | | | | |
Collapse
|
13
|
Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:193-211. [PMID: 21205184 DOI: 10.1111/j.1744-7909.2010.01018.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement.
Collapse
Affiliation(s)
- Jun Yang
- Shanghai Center for Cassava Biotechnology, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
14
|
Brovko FA, Vasil'eva VS, Lushnikova AL, Selivankina SY, Karavaiko NN, Boziev KM, Shepelyakovskaya AO, Moshkov DA, Pavlik LL, Kusnetsov VV, Kulaeva ON. Cytokinin-binding protein (70 kDa) from etioplasts and amyloplasts of etiolated maize seedlings and chloroplasts of green plants and its putative function. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3461-3474. [PMID: 20584787 DOI: 10.1093/jxb/erq170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytokinins regulate chloroplast differentiation and functioning, but their targets in plastids are not known. In this connection, the plastid localization of the 70 kDa cytokinin-binding protein (CBP70) was studied immunocytochemically in 4-d-old etiolated maize seedlings (Zea mays L., cv. Elbrus) using monoclonal antibodies (mAbs) against CBP70 recognizing this protein not only in nuclei and cytoplasm, but also in plastids. CBP70 was detected in the amyloplasts of the root cap and etioplasts of the mesocotyl, stem apex, and leaves encircling the stem axis in the node. Immunogold electron microscopy demonstrated CBP70 localization in amyloplasts outside starch grains and revealed a dependence of CBP70 content in etioplasts on the degree of their inner membrane differentiation: the low CBP70 amount in etioplasts at the early stages of membrane development, the high content in etioplasts with actively developing membranes, and a considerable decrease in plastids with the formed prolamellar body. This suggests that CBP70 is involved in etioplast structure development. CBP70 was also observed in chloroplasts of the bundle sheath of green maize leaves. CBP70 purified from etioplasts mediated trans-zeatin-dependent activation of transcription elongation in vitro in the transcription systems of maize etioplasts and barley chloroplasts, suggesting that CBP70 is a plastid transcription elongation factor or a modulator of plastid elongation factor activity. CBP70 involvement in the cytokinin-dependent regulation of plastid transcription elongation could be essential for the cytokinin control of the biogenesis of this organelle.
Collapse
Affiliation(s)
- Fedor A Brovko
- Pushchino Branch of Ovchinnikov-Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, pr. Nauki 6, Pushchino, Moscow region, 142290 Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gerber E, Hemmerlin A, Bach TJ. Chapter 9 The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
16
|
Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, Crowell DN, Bach TJ. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. THE PLANT CELL 2009; 21:285-300. [PMID: 19136647 PMCID: PMC2648074 DOI: 10.1105/tpc.108.063248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/12/2008] [Accepted: 12/19/2008] [Indexed: 05/07/2023]
Abstract
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.
Collapse
Affiliation(s)
- Esther Gerber
- Institut de Biologie Moléculaire des Plantes (Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, associated with the Université Louis Pasteur), F-67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Suchomelová-Mašková P, Novák O, Lipavská H. Tobacco cells transformed with the fission yeast Spcdc25 mitotic inducer display growth and morphological characteristics as well as starch and sugar status evocable by cytokinin application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:673-684. [PMID: 18550380 DOI: 10.1016/j.plaphy.2008.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Indexed: 05/26/2023]
Abstract
In plants, the G2/M control of cell cycle remains an elusive issue as doubts persist about activatory dephosphorylation--in other eukaryotes provided by CDC25 phosphatase and serving as a final all-or-nothing mitosis regulator. We report on the effects of tobacco (Nicotiana tabacum L., cv. Samsun) transformation with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on cell characteristics. Transformed cell suspension cultures showed higher dry mass accumulation during the exponential phase and clustered more circular cell phenotypes compared to chains of elongated WT cells. Similar cell parameters, as in the transformants, can be induced in WT by cytokinins. Spcdc25 cells, after cytokinin treatment, showed giant cell clusters and growth inhibition. In addition, Spcdc25 expression led to altered carbohydrate status: increased starch and soluble sugars with higher sucrose:hexoses ratio, inducible in WT by cytokinin treatment. Taken together, the Spcdc25 transformation had a cytokinin-like effect on studied characteristics. However, endogenous cytokinin determination revealed markedly lower cytokinin levels in Spcdc25 transformants. This indicates that the cells sense Spcdc25 expression as an increased cytokinin availability, manifested by changed cell morphology, and in consequence decrease endogenous cytokinin levels. Clearly, the results on cell growth and morphology are consistent with the model of G2/M control including cytokinin-regulated activatory dephosphorylation. Nevertheless, no clear link is obvious between Spcdc25 transformation and carbohydrate status and thus the observed cytokinin-like effect on carbohydrate levels poses a problem. Hence, we propose that Spcdc25-induced higher CDK(s) activity at G2/M generates a signal-modifying carbohydrate metabolism to meet high energy and C demands of forthcoming cell division.
Collapse
Affiliation(s)
- Petra Suchomelová-Mašková
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 11, Olomouc, Czech Republic
| | - Helena Lipavská
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
18
|
Werner T, Holst K, Pörs Y, Guivarc'h A, Mustroph A, Chriqui D, Grimm B, Schmülling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2659-72. [PMID: 18515826 PMCID: PMC2486470 DOI: 10.1093/jxb/ern134] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/19/2008] [Accepted: 04/07/2008] [Indexed: 05/17/2023]
Abstract
Cytokinin deficiency causes pleiotropic developmental changes such as reduced shoot and increased root growth. It was investigated whether cytokinin-deficient tobacco plants, which overproduce different cytokinin oxidase/dehydrogenase enzymes, show changes in different sink and source parameters, which could be causally related to the establishment of the cytokinin deficiency syndrome. Ultrastructural analysis revealed distinct changes in differentiating shoot tissues, including an increased vacuolation and an earlier differentiation of plastids, which showed partially disorganized thylakoid structures later in development. A comparison of the ploidy levels revealed an increased population of cells with a 4C DNA content during early stages of leaf development, indicating an inhibited progression from G2 to mitosis. To compare physiological characteristics of sink leaves, source leaves and roots of wild-type and cytokinin-deficient plants, several photosynthetic parameters, content of soluble sugars, starch and adenylates, as well as activities of enzymes of carbon assimilation and dissimilation were determined. Leaves of cytokinin-deficient plants contained less chlorophyll and non-photochemical quenching of young leaves was increased. However, absorption rate, photosynthetic capacity (F(v)/F(m) and J(CO2 max)) and efficiency (Phi CO(2 app)), as well as the content of soluble sugars, were not strongly altered in source leaves, indicating that chlorophyll is not limiting for photoassimilation and suggesting that source strength did not restrict shoot growth. By contrast, shoot sink tissues showed drastically reduced contents of soluble sugars, decreased activities of vacuolar invertases, and a reduced ATP content. These results strongly support a function of cytokinin in regulating shoot sink strength and its reduction may be a cause of the altered shoot phenotype. Roots of cytokinin-deficient plants contained less sugar compared with wild-type. However, this did not negatively affect glycolysis, ATP content, or root development. It is suggested that cytokinin-mediated regulation of the sink strength differs between roots and shoots.
Collapse
Affiliation(s)
- Tomáš Werner
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| | - Kerstin Holst
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| | - Yvonne Pörs
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anne Guivarc'h
- Cytologie Expérimentale et Morphogenèse Végétale (CEMV), Université Pierre et Marie Curie, Paris, France
| | - Angelika Mustroph
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Dominique Chriqui
- Cytologie Expérimentale et Morphogenèse Végétale (CEMV), Université Pierre et Marie Curie, Paris, France
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Free University of Berlin, Berlin, Germany
| |
Collapse
|
19
|
Qi Y, Kawano N, Yamauchi Y, Ling J, Li D, Tanaka K. Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. PLANTA 2005; 221:437-445. [PMID: 15645304 DOI: 10.1007/s00425-004-1453-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 11/11/2004] [Indexed: 05/24/2023]
Abstract
A submergence-induced gene, OsGGT, was cloned from 7-day submerged rice (Oryza sativa L. plants, FR13A (a submergence-tolerant cultivar, Indica), using suppression subtractive hybridization and both 5'- and 3'-rapid amplification of cDNA ends (RACE). The full-length OsGGT cDNA contains 1,273 bp with an open reading frame of 1,140 bp (17-1,156) that encodes 379 amino acids. Its deduced amino acid sequence is homologous with glycogenin glucosyltransferase. We found that the OsGGT gene is located in the 17,970-20,077 bp region of genome fragment AAAA01002475.1 of the Indica cultivar and in the 53,293-51,186 bp region of genome fragment AC037426.12 of chromosome 10 of the Japanica cultivar. A time-course study showed that OsGGT-gene expression increased in FR13A during submergence but decreased in IR42 (submergence-intolerant cultivar, Indica). The expression of the OsGGT gene in FR13A was induced by salicylic acid and benzyladenine. The accumulation of OsGGT mRNA in FR13A also increased in response to ethylene, gibberellin, abscisic acid, drought and salt treatment, but methyl jasmonate treatment and cold stress had no effect on expression. These results suggest that the OsGGT gene could be related to submergence stress and associated with a general defensive response to various environmental stresses.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Glycoproteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Hybridization/methods
- Oryza/enzymology
- Oryza/genetics
- Plant Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Water/pharmacology
Collapse
Affiliation(s)
- YanHua Qi
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Hemmerlin A, Gerber E, Feldtrauer JF, Wentzinger L, Hartmann MA, Tritsch D, Hoeffler JF, Rohmer M, Bach TJ. A review of tobacco BY-2 cells as an excellent system to study the synthesis and function of sterols and other isoprenoids. Lipids 2004; 39:723-35. [PMID: 15638240 DOI: 10.1007/s11745-004-1289-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate (IPP), the universal precursor for isoprenoid biosynthesis. In this paper we review findings and observations made primarily with tobacco BY-2 cells (TBY-2), which have proven to be an excellent system in which to study the two biosynthetic pathways. A major advantage of these cells as an experimental system is their ability to readily take up specific inhibitors and stably- and/or radiolabeled precursors. This permits the functional elucidation of the role of isoprenoid end products and intermediates. Because TBY-2 cells undergo rapid cell division and can be synchronized within the cell cycle, they constitute a highly suitable test system for determination of those isoprenoids and intermediates that act as cell cycle inhibitors, thus giving an indication of which branches of the isoprenoid pathway are essential. Through chemical complementation; and use of precursors, intracellular compartmentation can be elucidated, as well as the extent to which the plastidial and cytosolic pathways contribute to the syntheses of specific groups of isoprenoids (e.g., sterols) via exchange of intermediates across membranes. These topics are discussed in the context of the pertinent literature.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (UPR 2357), Département Fonctions et Biosynthèse des Isoprénoïdes, Université Louis Pasteur, F-67083 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, Muranaka T. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:750-761. [PMID: 14871314 DOI: 10.1111/j.1365-313x.2004.02003.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the first committed step in the cytosolic isoprenoid biosynthesis pathway in higher plants. To understand the contribution of HMGR to plant development, we isolated T-DNA insertion mutants for HMG1 and HMG2. The hmg1 and hmg2 mutants were both more sensitive than the wild type (WT) to lovastatin, an inhibitor of HMGR. The hmg2 mutant showed no visible phenotype under normal growth conditions. In contrast, the hmg1 mutant exhibited dwarfing, early senescence, and sterility. Expression of senescence-associated genes 12 (SAG12), a marker gene for senescence, was induced in the hmg1 mutant at an earlier stage than in the WT. Levels of trans-cytokinins--hormones known to inhibit senescence--were not lower in hmg1. The mutant did not have the typical appearance of brassinosteroid (BR)-deficient mutants, except for a dwarf phenotype, because of the suppression of cell elongation. The expression of several genes involved in cell elongation was suppressed in hmg1. WT plants treated exogenously with inhibitors of sterol biosynthesis had similar gene expression and sterility characteristics as the hmg1 mutants. Pleiotropic phenotypes were rescued by feeding with squalene, the precursor of sterols and triterpenoids. The sterol levels in hmg1 mutants were lower than in the WT. These findings suggest that HMG1 plays a critical role in triterpene biosynthesis, and that sterols and/or triterpenoids contribute to cell elongation, senescence, and fertility.
Collapse
Affiliation(s)
- Masashi Suzuki
- Plant Science Center, RIKEN, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Yamaguchi M, Kato H, Yoshida S, Yamamura S, Uchimiya H, Umeda M. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc Natl Acad Sci U S A 2003; 100:8019-23. [PMID: 12799469 PMCID: PMC164705 DOI: 10.1073/pnas.1332637100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Indexed: 11/18/2022] Open
Abstract
Little is known concerning the mechanisms by which auxin and cytokinin exert their effects on proliferation and differentiation. Cyclin-dependent kinases (CDKs) are major regulators of the eukaryotic cell cycle, thus they are assumed to control cell differentiation as well as proliferation in response to phytohormone signals. Here, we overexpressed rice R2 cDNA, which encodes a CDK-activating kinase, in tobacco leaf explants by using the glucocorticoid-mediated transcriptional induction system. Transient expression of R2 during the first 7 days of culture triggered callus formation in the absence of cytokinin. This phenotype was enhanced by higher expression of R2 or coexpression of cyclin H, and suppressed by treatment with roscovitine, a CDK inhibitor. R2 expression at a later stage did not prevent cells from differentiation into roots, suggesting a restricted period for sensing CDK activities that control differentiation fate of cells during organogenesis.
Collapse
Affiliation(s)
- Masatoshi Yamaguchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|