1
|
Li X, Gu Y, Kayoumu M, Muhammad N, Wang X, Gui H, Luo T, Wang Q, Wumaierjiang X, Ruan S, Iqbal A, Zhang X, Song M, Dong Q. Systematic characterization of Gossypium GLN family genes reveals a potential function of GhGLN1.1a regulates nitrogen use efficiency in cotton. BMC PLANT BIOLOGY 2024; 24:313. [PMID: 38654158 PMCID: PMC11036627 DOI: 10.1186/s12870-024-04990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.
Collapse
Affiliation(s)
- Xiaotong Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Yunqi Gu
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Mirezhatijiang Kayoumu
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Noor Muhammad
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xiangru Wang
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Huiping Gui
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Tong Luo
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Qianqian Wang
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xieraili Wumaierjiang
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Sijia Ruan
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Asif Iqbal
- Department of Agriculture, Hazara University, Khyber Pakhtunkhwa, Mansehra, 21120, Pakistan
| | - Xiling Zhang
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Meizhen Song
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| | - Qiang Dong
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- National Engineering Research Center of Cotton Biology Breeding and Industrial Technology /Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| |
Collapse
|
2
|
Valderrama-Martín JM, Ortigosa F, Aledo JC, Ávila C, Cánovas FM, Cañas RA. Pine has two glutamine synthetase paralogs, GS1b.1 and GS1b.2, exhibiting distinct biochemical properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1330-1347. [PMID: 36658761 DOI: 10.1111/tpj.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The enzyme glutamine synthetase (EC 6.3.1.2) is mainly responsible for the incorporation of inorganic nitrogen into organic molecules in plants. In the present work, a pine (Pinus pinaster) GS1 (PpGS1b.2) gene was identified, showing a high sequence identity with the GS1b.1 gene previously characterized in conifers. Phylogenetic analysis revealed that the presence of PpGS1b.2 is restricted to the genera Pinus and Picea and is not found in other conifers. Gene expression data suggest a putative role of PpGS1b.2 in plant development, similar to other GS1b genes from angiosperms, suggesting evolutionary convergence. The characterization of GS1b.1 and GS1b.2 at the structural, physicochemical, and kinetic levels has shown differences even though they have high sequence homology. GS1b.2 had a lower optimum pH (6 vs. 6.5) and was less thermally stable than GS1b.1. GS1b.2 exhibited positive cooperativity for glutamate and substrate inhibition for ammonium. However, GS1b.1 exhibited substrate inhibition behavior for glutamate and ATP. Alterations in the kinetic characteristics produced by site-directed mutagenesis carried out in this work strongly suggest an implication of amino acids at positions 264 and 267 in the active center of pine GS1b.1 and GS1b.2 being involved in affinity toward ammonium. Therefore, the amino acid differences between GS1b.1 and GS1b.2 would support the functioning of both enzymes to meet distinct plant needs.
Collapse
Affiliation(s)
- José Miguel Valderrama-Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Juan Carlos Aledo
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Rafael A Cañas
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| |
Collapse
|
3
|
Cho SG, Song M, Chuon K, Shim JG, Meas S, Jung KH. Heliorhodopsin binds and regulates glutamine synthetase activity. PLoS Biol 2022; 20:e3001817. [PMID: 36190943 PMCID: PMC9529153 DOI: 10.1371/journal.pbio.3001817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Photoreceptors are light-sensitive proteins found in various organisms that respond to light and relay signals into the cells. Heliorhodopsin, a retinal-binding membrane protein, has been recently discovered, however its function remains unknown. Herein, we investigated the relationship between Actinobacteria bacterium IMCC26103 heliorhodopsin (AbHeR) and an adjacent glutamine synthetase (AbGS) in the same operon. We demonstrate that AbHeR binds to AbGS and regulates AbGS activity. More specifically, the dissociation constant (Kd) value of the binding between AbHeR and AbGS is 6.06 μM. Moreover, the absence of positively charged residues within the intracellular loop of AbHeR impacted Kd value as they serve as critical binding sites for AbGS. We also confirm that AbHeR up-regulates the biosynthetic enzyme activity of AbGS both in vitro and in vivo in the presence of light. GS is a key enzyme involved in nitrogen assimilation that catalyzes the conversion of glutamate and ammonia to glutamine. Hence, the interaction between AbHeR and AbGS may be critical for nitrogen assimilation in Actinobacteria bacterium IMCC26103 as it survives in low-nutrient environments. Overall, the findings of our study describe, for the first time, to the best of our knowledge, a novel function of heliorhodopsin as a regulatory rhodopsin with the capacity to bind and regulate enzyme activity required for nitrogen assimilation. A study of heliorhodopsin, an actinobacterial photoreceptor of unknown function, reveals that it interacts with glutamine synthetase, an enzyme involved in nitrogen assimilation, and regulates its activity in the presence of light, highlighting the diverse functions of rhodopsins in different organisms.
Collapse
Affiliation(s)
- Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Myungchul Song
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Jin-gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,Department of Biology, Faculty of Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea,* E-mail:
| |
Collapse
|
4
|
McCain JSP, Tagliabue A, Susko E, Achterberg EP, Allen AE, Bertrand EM. Cellular costs underpin micronutrient limitation in phytoplankton. SCIENCE ADVANCES 2021; 7:7/32/eabg6501. [PMID: 34362734 PMCID: PMC8346223 DOI: 10.1126/sciadv.abg6501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 05/08/2023]
Abstract
Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently unclear how micronutrient scarcity affects cellular processes and how interdependence across micronutrients arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding an approach for estimating biogeochemical metrics, including taxon-specific growth rates. Our results show that cumulative cellular costs govern how environmental conditions modify phytoplankton growth.
Collapse
Affiliation(s)
- J Scott P McCain
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Edward Susko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eric P Achterberg
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Osanai T, Kuwahara A, Otsuki H, Saito K, Yokota Hirai M. ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:650-657. [PMID: 28339983 DOI: 10.1093/pcp/pcx033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 05/03/2023]
Abstract
Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly correlated with GLN2 expression levels. Here we showed that the recombinant ACR11 protein increased GS2 activity in vitro by reducing the Km values of its substrate glutamine. A T-DNA insertion mutant of ACR11 exhibited a reduced GS activity under low nitrate conditions and reduced glutamine levels. Biochemical analyses revealed that ACR11 and GS2 interacted both in vitro and in vivo. These data demonstrate that ACR11 is an activator of GS2, giving it a mechanistic role in the nitrogen assimilation of A. thaliana.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama, Japan
- Meiji University, Higashimita, Tama-ku, Kanagawa, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Hitomi Otsuki
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
6
|
Tian YS, Wang RT, Zhao W, X J, Xing XJ, Fu XY, Peng RH, Yao QH. Distinct properties of two glutamine synthetase isoforms in soybean root nodules. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
An Y, Zhou H, Zhong M, Sun J, Shu S, Shao Q, Guo S. Root proteomics reveals cucumber 24-epibrassinolide responses under Ca(NO3)2 stress. PLANT CELL REPORTS 2016; 35:1081-101. [PMID: 26931454 DOI: 10.1007/s00299-016-1940-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/24/2016] [Indexed: 05/04/2023]
Abstract
The application of exogenous 24-epibrassinolide promotes Brassinosteroids intracellular signalling in cucumber, which leads to differentially expressed proteins that participate in different life process to relieve Ca(NO 3 ) 2 damage. NO3 (-) and Ca(2+) are the main anion and cation of soil secondary salinization during greenhouse cultivation. Brassinosteroids (BRs), steroidal phytohormones, regulate various important physiological and developmental processes and are used against abiotic stress. A two-dimensional electrophoresis gel coupled with MALDI-TOF/TOF MS was performed to investigate the effects of exogenous 24-epibrassinolide (EBL) on proteomic changes in cucumber seedling roots under Ca(NO3)2 stress. A total of 80 differentially accumulated protein spots in response to stress and/or exogenous EBL were identified and grouped into different categories of biological processes according to Gene Ontology. Under Ca(NO3)2 stress, proteins related to nitrogen metabolism and lignin biosynthesis were induced, while those related to cytoskeleton organization and cell-wall neutral sugar metabolism were inhibited. However, the accumulation of abundant proteins involved in protein modification and degradation, defence mechanisms against antioxidation and detoxification and lignin biosynthesis by exogenous EBL might play important roles in salt tolerance. Real-time quantitative PCR was performed to investigate BR signalling. BR signalling was induced intracellularly under Ca(NO3)2 stress. Exogenous EBL can alleviate the root indices, effectively reduce the Ca(2+) content and increase the K(+) content in cucumber roots under Ca(NO3)2 stress. This study revealed the differentially expressed proteins and BR signalling-associated mRNAs induced by EBL in cucumber seedling roots under Ca(NO3)2 stress, providing a better understanding of EBL-induced salt resistance in cucumber seedlings. The mechanism for alleviation provides valuable insight into improving Ca(NO3)2 stress tolerance of other horticultural plants.
Collapse
Affiliation(s)
- Yahong An
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Heng Zhou
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Min Zhong
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Sheng Shu
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Qiaosai Shao
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Shirong Guo
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China.
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Li X, Xi H, Sun X, Yang Y, Yang S, Zhou Y, Zhou X, Yang Y. Comparative proteomics exploring the molecular mechanism of eutrophic water purification using water hyacinth (Eichhornia crassipes). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8643-8658. [PMID: 25563831 DOI: 10.1007/s11356-014-4020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Eutrophication is a serious threat to ecosystem stability and use of water resources worldwide. Accordingly, physical, chemical, and biological technologies have been developed to treat eutrophic water. Phytoremediation has attracted a great deal of attention, and water hyacinth (Eichhornia crassipes) is regarded as one of the best plants for purification of eutrophic water. Previous studies have shown that water hyacinths remove nitrogen (N) and phosphorus (P) via diverse processes and that they can inhibit the growth of algae. However, the molecular mechanisms responsible for these processes, especially the role of proteins, are unknown. In this study, we applied a proteomics approach to investigate the protein dynamics of water hyacinth under three eutrophication levels. The results suggested that proteins with various functions, including response to stress, N and P metabolic pathways, synthesis and secretion, photosynthesis, biosynthesis, and energy metabolism, were involved in regulating water hyacinth to endure the excess-nutrient environment, remove N and P, and inhibit algal growth. The results help us understand the mechanism of purification of eutrophic water by water hyacinth and supply a theoretical basis for improving techniques for phytoremediation of polluted water.
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual MB, Avila C, Cánovas FM. Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC PLANT BIOLOGY 2015; 15:20. [PMID: 25608602 PMCID: PMC4329200 DOI: 10.1186/s12870-014-0365-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/02/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism in higher plants. In poplar, the GS family is organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1.1, GS1.2 and GS1.3) and one group that codes for the choroplastic GS isoform (GS2). Our previous work suggested that GS duplicates may have been retained to increase the amount of enzyme in a particular cell type. RESULTS The current study was conducted to test this hypothesis by developing a more comprehensive understanding of the molecular and biochemical characteristics of the poplar GS isoenzymes and by determinating their kinetic parameters. To obtain further insights into the function of the poplar GS genes, in situ hybridization and laser capture microdissections were conducted in different tissues, and the precise GS gene spatial expression patterns were determined in specific cell/tissue types of the leaves, stems and roots. The molecular and functional analysis of the poplar GS family and the precise localization of the corresponding mRNA in different cell types strongly suggest that the GS isoforms play non-redundant roles in poplar tree biology. Furthermore, our results support the proposal that a function of the duplicated genes in specific cell/tissue types is to increase the abundance of the enzymes. CONCLUSION Taken together, our results reveal that there is no redundancy in the poplar GS family at the whole plant level but it exists in specific cell types where the two duplicated genes are expressed and their gene expression products have similar metabolic roles. Gene redundancy may contribute to the homeostasis of nitrogen metabolism in functions associated with changes in environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Angel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Ma Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
10
|
Zhao W, Yang J, Tian Y, Fu X, Zhu B, Xue Y, Gao J, Han HJ, Peng R, Yao QH. Expression, purification, and characterization of recombinant mangrove glutamine synthetase. Mol Biol Rep 2014; 41:7575-83. [PMID: 25086623 DOI: 10.1007/s11033-014-3649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant. The subunit molecular mass of GSI was ~40 kDa. Optimal conditions for biosynthetic activity were found to be 35 °C at pH 7.5. The Mg(2+)-dependent biosynthetic activity was strongly inhibited by Ni(2+), Zn(2+), and Al(3+), whereas was enhanced by Co(2+). The apparent K m values of AmGLN1 for the substrates in the biosynthetic assay were 3.15 mM for glutamate, and 2.54 mM for ATP, 2.80 mM for NH4 (+) respectively. The low affinity kinetics of AmGLN1 apparently participates in glutamine synthesis under the ammonium excess conditions.
Collapse
Affiliation(s)
- Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy AS, Just J, Chalhoub B, Masclaux-Daubresse C. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3927-47. [PMID: 24567494 PMCID: PMC4106436 DOI: 10.1093/jxb/eru041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat.
Collapse
Affiliation(s)
- Mathilde Orsel
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49071 Beaucouzé, France Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L'UNAM, F-49045 Angers, France AgroCampus-Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Michaël Moison
- UMR1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France
| | - Vanessa Clouet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Justine Thomas
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Françoise Leprince
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Anne-Sophie Canoy
- Biogemma, Groupe de Recherche Génomique Amont, F-63028 Clermont-Ferrand, France
| | - Jérémy Just
- INRA-CNRS, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP 5708, 91057 Evry Cedex, France
| | - Boulos Chalhoub
- INRA-CNRS, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP 5708, 91057 Evry Cedex, France
| | - Céline Masclaux-Daubresse
- UMR1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France
| |
Collapse
|
12
|
Goodall AJ, Kumar P, Tobin AK. Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). PLANT & CELL PHYSIOLOGY 2013; 54:492-505. [PMID: 23324171 DOI: 10.1093/pcp/pct006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH(+)4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.
Collapse
Affiliation(s)
- Andrew J Goodall
- School of Biology, Biomolecular Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | |
Collapse
|
13
|
Bernard SM, Møller ALB, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Tercé-Laforgue T, Foyer CH, Parry MAJ, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 67:89-105. [PMID: 18288574 DOI: 10.1007/s11103-008-9303-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 01/28/2008] [Indexed: 05/25/2023]
Abstract
We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat.
Collapse
Affiliation(s)
- Stéphanie M Bernard
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|