1
|
Numata T, Sugita K, Ahamed Rahman A, Rahman A. Actin isovariant ACT7 controls root meristem development in Arabidopsis through modulating auxin and ethylene responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6255-6271. [PMID: 35749807 DOI: 10.1093/jxb/erac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The meristem is the most functionally dynamic part in a plant. The shaping of the meristem requires constant cell division and elongation, which are influenced by hormones and the cytoskeletal component, actin. Although the roles of hormones in modulating meristem development have been extensively studied, the role of actin in this process is still elusive. Using the single and double mutants of the vegetative class actin, we demonstrate that actin isovariant ACT7 plays an important role in root meristem development. In the absence of ACT7, but not ACT8 and ACT2, depolymerization of actin was observed. Consistently, the act7 mutant showed reduced cell division, cell elongation, and meristem length. Intracellular distribution and trafficking of auxin transport proteins in the actin mutants revealed that ACT7 specifically functions in the root meristem to facilitate the trafficking of auxin efflux carriers PIN1 and PIN2, and consequently the transport of auxin. Compared with act7, the act7act8 double mutant exhibited slightly enhanced phenotypic response and altered intracellular trafficking. The altered distribution of auxin in act7 and act7act8 affects the response of the roots to ethylene, but not to cytokinin. Collectively, our results suggest that ACT7-dependent auxin-ethylene response plays a key role in controlling Arabidopsis root meristem development.
Collapse
Affiliation(s)
- Takahiro Numata
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kenji Sugita
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Arifa Ahamed Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Abidur Rahman
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Huang JB, Zou Y, Zhang X, Wang M, Dong Q, Tao LZ. RIBOSE PHOSPHATE ISOMERSASE 1 Influences Root Development by Acting on Cell Wall Biosynthesis, Actin Organization, and Auxin Transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1641. [PMID: 31969892 PMCID: PMC6960261 DOI: 10.3389/fpls.2019.01641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/29/2023]
Abstract
Cell wall biosynthesis plays essential roles in cell division and expansion and thus is fundamental to plant growth and development. In this work, we show that an Arabidopsis mutant dpr3, isolated by a forward genetic screen, displays embryo defects and short, swelling primary root with the failure of maintenance of root apical meristem reminiscent to several cell wall-deficient mutants. Map-based cloning identified dpr3 is a mutant allele of RIBOSE PHOSPHATE ISOMERSASE 1 (RPI1), an enzyme involved in cellulose synthesis. Cellulose content in the mutant was dramatically decreased. Moreover, dpr3 (rpi1 from hereon) caused aberrant auxin distribution, as well as defective accumulation of root master regulators PLETHORA (PLT1 and PLT2) and misexpression of auxin response factor 5 (MONOPTEROS, MP). The abnormal auxin distribution is likely due to the reduced accumulation of auxin efflux transporters PIN-FORMED (PIN1 and PIN3). Surprisingly, we found that the orientation of actin microfilaments was severely altered in rpi1 root cells, whereas the cortical microtubules stay normal. Our study provides evidence that the defects in cellulose synthesis in rpi1 affect polar auxin transport possibly connected with altered F-actin organization, which is critically important for vesicle trafficking, thus exerting effects on auxin distribution, signaling, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qingkun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Lehman TA, Sanguinet KA. Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1. PLANT & CELL PHYSIOLOGY 2019; 60:1487-1503. [PMID: 31004494 DOI: 10.1093/pcp/pcz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Ding X, Pervere LM, Bascom C, Bibeau JP, Khurana S, Butt AM, Orr RG, Flaherty PJ, Bezanilla M, Vidali L. Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. PLoS Genet 2018; 14:e1007221. [PMID: 29746462 PMCID: PMC5944918 DOI: 10.1371/journal.pgen.1007221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
| | - Leah M. Pervere
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
| | - Carl Bascom
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Jeffrey P. Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Sakshi Khurana
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Allison M. Butt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Robert G. Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
| | - Patrick J. Flaherty
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
| | | | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA
- * E-mail:
| |
Collapse
|
5
|
Qiao F, Jiang XF, Cong HQ, Sun HP, Li L, Nick P. Cell shape can be uncoupled from formononetin induction in a novel cell line from Callerya speciosa. PLANT CELL REPORTS 2018; 37:665-676. [PMID: 29354881 DOI: 10.1007/s00299-018-2259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
It is the first time that formononetin produced by cell culture and its accumulation was shown to be triggered by specific stress signalling linked jasmonate pathway. Callerya speciosa, an endangered traditional Chinese medicine plant, is intensively used in traditional folk medicine. To develop sustainable alternatives for the overexploitation of natural resources, a suspension cell line was created from C. speciosa. Ingredients of C. speciosa, for instance the isoflavone formononetin, are formed during a peculiar swelling response of the root, which is considered as a quality trait for commercial application. A cell strain with elongated cells was obtained by using synthetic cytokinin 6-benzylaminopurine (6-BA) and synthetic auxin picloram. Both, picloram and 6-BA, promote cell division, whereas picloram was shown to be crucial for the maintenance of axial cell expansion. We addressed the question, whether the loss of axiality observed in the maturating root is necessary and sufficient for the accumulation of formononetin. While we were able to mimic a loss of axiality for cell expansion, either by specific combinations of 6-BA and picloram, or by treatment with the anti-microtubular compound oryzalin, formononetin was not detectable. However, formononetin could be induced by the stress hormone methyl jasmonate (MeJA), as well as by the bacterial elicitor flagellin peptide (flg22), but not by a necrosis inducing protein. Combined the fact that none of these treatments induced the loss of axiality, we conclude that formononetin accumulates in response to basal defence and unrelated with cell swelling.
Collapse
Affiliation(s)
- Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 517317, People's Republic of China
| | - Xue-Fei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Han-Qing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 517317, People's Republic of China
| | - Hua-Peng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 517317, People's Republic of China.
| | - Li Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 517317, People's Republic of China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Liao C, Weijers D. A toolkit for studying cellular reorganization during early embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:963-976. [PMID: 29383853 PMCID: PMC5887935 DOI: 10.1111/tpj.13841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 05/02/2023]
Abstract
Considerable progress has been made in understanding the influence of physical and genetic factors on the patterns of cell division in various model systems. However, how each of these factors directs changes in subcellular structures has remained unclear. Generic machineries for the execution of cell expansion and division have been characterized, but how these are influenced by genetic regulators and physical cell properties remains an open question. To a large degree, the complexity of growing post-embryonic tissues and a lack of precise predictability have prevented the extraction of rigid correlations between subcellular structures and future orientation of cell division. The Arabidopsis embryo offers an exquisitely predictable and simple model for studying such correlations, but so far the tools and methodology for studying subcellular structures in the early embryo have been lacking. Here, we describe a set of markers to visualize a range of subcellular structures in the early Arabidopsis embryo. We have designed a series of fluorescent cellular reporters optimized for embryos, and demonstrate the effectiveness of using these 'ACE' reporters with simple three-dimensional imaging procedures that preserve delicate cellular structures. We describe the ontogeny of subcellular structures in the early embryo and find that central/peripheral cell polarity is established much earlier than suspected. In addition, we show that the actin and microtubule cytoskeleton has distinct topologies in the embryo. These tools and methods will allow detailed analysis of the events of cellular reorganization that underlie morphogenesis in the Arabidopsis embryo.
Collapse
Affiliation(s)
- Che‐Yang Liao
- Laboratory of BiochemistryWageningen UniversityStippeneng 46708WE Wageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityStippeneng 46708WE Wageningenthe Netherlands
| |
Collapse
|
7
|
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Curr Biol 2017; 27:2248-2259.e4. [DOI: 10.1016/j.cub.2017.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022]
|
8
|
Żabka A, Polit JT, Winnicki K, Paciorek P, Juszczak J, Nowak M, Maszewski J. PIN2-like proteins may contribute to the regulation of morphogenetic processes during spermatogenesis in Chara vulgaris. PLANT CELL REPORTS 2016; 35:1655-69. [PMID: 27068826 PMCID: PMC4943976 DOI: 10.1007/s00299-016-1979-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/31/2016] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE PIN2-like auxin transporters are expressed, preferentially in a polarized manner, in antheridial cells of freshwater green alga Chara vulgaris , considered to be the closest relative of the present-day land plants. Chara vulgaris represents a group of advanced multicellular green algae that are considered as the closest relatives of the present-day land plants. A highly specialized structure of its male sex organs (antheridia) includes filaments consisting of generative cells, which after a series of synchronous divisions transform into mature sperm, and non-generative cells comprising outer shield cells, cylindrical manubria, and central complex of capitular cells from which antheridial filaments arise. Immunofluorescence observations indicate that PIN2-like proteins (PIN2-LPs), recognized by antibodies against PIN-FORMED2 (PIN2) auxin transporter in Arabidopsis thaliana, are expressed in both types of antheridial cells and, in most of them, preferentially accumulate in a polarized manner. The appearance of PIN2-LPs in germ-line cells is strictly confined to the proliferative period of spermatogenesis and their quantities increase steadily till antheridial filaments reach the 16-celled stage. An enhanced level of PIN2-LPs observed in the central cell walls separating two asynchronously developing parts of antheridial filaments (characterized by the plugged plasmodesmata) is correlated with an enhanced deposition of callose. Intense PIN2-LPs immunofluorescence maintained in the capitular cells and its altering polarity in manubria suggest a pivotal role of these cells in the regulation of auxin transport directionality during the whole time of antheridial ontogenesis. Immunohistochemical staining of IAA revealed a clear-cut correspondence between localization sites of auxins and PIN2-LPs. It seems probable then that a supplementary developmental mechanism has evolved in Chara, by which all antheridial elements may be integrated at the supra-cellular level via plasma membrane-targeted PIN2-LPs and auxin-mediated processes.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patrycja Paciorek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jolanta Juszczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Mateusz Nowak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
9
|
Hu Y, Na X, Li J, Yang L, You J, Liang X, Wang J, Peng L, Bi Y. Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. PLANTA 2015; 242:1349-1360. [PMID: 26232920 DOI: 10.1007/s00425-015-2373-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
The present study documented the action of a potential allelochemical, narciclasine, on auxin transport in Arabidopsis by mainly affecting subcellular trafficking of PIN and AUX1 proteins and through interfering actin cytoskeletal organization. Narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, has potential allelopathic activity and affects auxin transport. However, little is known about the cellular mechanism of this inhibitory effect of NCS on auxin transport. The present study characterizes the effects of NCS at the cellular level using transgenic Arabidopsis plants harboring the promoters of PIN, in combination with PIN-GFP proteins or AUX1-YFP fusions. NCS treatment caused significant reduction in the abundance of PIN and AUX1 proteins at the plasma membrane (PM). Analysis of the subcellular distribution of PIN and AUX1 proteins in roots revealed that NCS induced the intracellular accumulation of auxin transporters, including PIN2, PIN3, PIN4, PIN7 and AUX1. However, other PM proteins, such as PIP2, BRI1, and low temperature inducible protein 6b (LTI6b), were insensitive to NCS treatment. NCS-induced PIN2 compartments were further defined using endocytic tracer FM 4-64 labeled early endosomes and suggested that this compound affects the endocytosis trafficking of PIN proteins. Furthermore, pharmacological analysis indicated that the brefeldin A (BFA)-insensitive pathway is employed in the cellular effects of NCS on PIN2 trafficking. Although NCS did not alter actin dynamics in vitro, it resulted in the depolymerization of the actin cytoskeleton in vivo. This disruption of actin filaments by NCS subsequently influences the actin-based vesicle motility. Hence, the elucidation of the specific role of NCS is useful for further understanding the mechanisms of allelopathy at the phytohormone levels.
Collapse
Affiliation(s)
- Yanfeng Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150000, People's Republic of China
| | - Xiaofan Na
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiaolong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lijing Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia You
- School of Life Science, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Xiaolei Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianfeng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Żabka A, Trzaskoma P, Winnicki K, Polit JT, Chmielnicka A, Maszewski J. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:62-70. [PMID: 25462968 DOI: 10.1016/j.jplph.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Agnieszka Chmielnicka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
11
|
Idris NA, Collings DA. The life of phi: the development of phi thickenings in roots of the orchids of the genus Miltoniopsis. PLANTA 2015; 241:489-506. [PMID: 25377920 DOI: 10.1007/s00425-014-2194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Phi thickenings, bands of secondary wall thickenings that reinforce the primary wall of root cortical cells in a wide range of species, are described for the first time in the epiphytic orchid Miltoniopsis. As with phi thickenings found in other plants, the phi thickenings in Miltoniopsis contain highly aligned cellulose running along the lengths of the thickenings, and are lignified but not suberized. Using a combination of histological and immunocytochemical techniques, thickening development can be categorized into three different stages. Microtubules align lengthwise along the thickening during early and intermediate stages of development, and callose is deposited within the thickening in a pattern similar to the microtubules. These developing thickenings also label with the fluorescently tagged lectin wheat germ agglutinin (WGA). These associations with microtubules and callose, and the WGA labeling, all disappear when the phi thickenings are mature. This pattern of callose and WGA deposition show changes in the thickened cell wall composition and may shed light on the function of phi thickenings in plant roots, a role for which has yet to be established.
Collapse
Affiliation(s)
- Nurul A Idris
- School of Biological Science, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | | |
Collapse
|
12
|
Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JKC, Willats WGT, Popper ZA. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:465-79. [PMID: 24285826 PMCID: PMC3904706 DOI: 10.1093/jxb/ert390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
- * To whom correspondence should be addressed. E-mail:
| | - Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Carly Sacks
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Brechka
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Amanda Andreas
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Faculty of Science, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | | - William G. T. Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Faculty of Science, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Sciences and Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:148-159. [PMID: 23294290 DOI: 10.1111/tpj.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/11/2012] [Accepted: 01/02/2013] [Indexed: 05/28/2023]
Abstract
In both plants and animals, cell-to-cell signaling controls key aspects of development. In plants, cells communicate through direct transfer of transcription factors between cells. It is thought that most, if not all, mobile transcription factors move via plasmodesmata, membrane-lined channels that connect nearly all cells in the plant. However, the mechanisms by which these proteins access the plasmodesmata are not known. Using four independent assays, we examined the movement of the SHORT-ROOT (SHR) transcription factor under conditions that affect microtubule stability, organization or dynamics. We found that intact microtubules are required for cell-to-cell trafficking of SHR. Either chemical or genetic disruption of microtubules results in a significant reduction in SHR transport. Interestingly, inhibition of microtubules also results in mis-localization of the SHR-INTERACTING EMBRYONIC LETHAL (SIEL) protein, which has been shown to bind directly to SHR and is required for SHR movement. These results show that microtubules facilitate cell-to-cell transport of an endogenous plant protein.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Cvrčková F. Formins: emerging players in the dynamic plant cell cortex. SCIENTIFICA 2012; 2012:712605. [PMID: 24278734 PMCID: PMC3820618 DOI: 10.6064/2012/712605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/16/2012] [Indexed: 05/11/2023]
Abstract
Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague, Czech Republic
| |
Collapse
|
15
|
Lucas JR, Shaw SL. MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:454-63. [PMID: 22443289 DOI: 10.1111/j.1365-313x.2012.05002.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigated the role of the Arabidopsis microtubule associated proteins 65-1 and 65-2 (MAP65-1 and MAP65-2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65-1 and MAP65-2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65-1 and MAP65-2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post-transcriptional control that restricts these proteins to rapidly growing portions of the root. Co-expression of MAP65-1 and MAP65-2 fusion proteins showed precise co-localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65-1 and MAP65-2 co-localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65-1 and MAP65-2 are coordinately required for proper root elongation. Double map65-1-1 map65-2-2 mutant roots from dark-grown plants contained 50% fewer cells per file than wild-type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65-1 and MAP65-2 accumulated. Our data indicate that MAP65-1 and MAP65-2 play a critical role in root growth by promoting cell proliferation and axial extension.
Collapse
Affiliation(s)
- Jessica R Lucas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
16
|
Ambrose C, Wasteneys GO. Nanoscale and geometric influences on the microtubule cytoskeleton in plants: thinking inside and outside the box. PROTOPLASMA 2012; 249 Suppl 1:S69-76. [PMID: 22002743 DOI: 10.1007/s00709-011-0334-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/04/2011] [Indexed: 05/11/2023]
Abstract
The dynamic microtubule (MT) cytoskeleton found in the cell cortex of plants drives cell expansion via cell wall modifications. In the last decade, live cell imaging studies employing green fluorescent protein have helped unravel the mechanisms behind how cells arrange cortical MTs into complex arrays and shape cell expansion. In this review, we explore the reverse scenario: how cell geometry and organelles influence and constrain the organization and behavior of cortical MTs. This newly emerging principle explains how cells perceive local nanoscale structural input from MT-organizing centers, such as the nucleus, endomembranes, and cell edges, and translate this into global cell-wide order via MT self-organization. Studies primarily using the model plant Arabidopsis thaliana and tobacco BY-2 suspension cultures have broadened our understanding of how cells form not only elegant parallel arrays but also more complex MT configurations, including the prominent MT bundles found in preprophase bands, leaf epidermal cells, and developing xylem.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
17
|
Rounds CM, Lubeck E, Hepler PK, Winship LJ. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. PLANT PHYSIOLOGY 2011; 157:175-87. [PMID: 21768649 PMCID: PMC3165868 DOI: 10.1104/pp.111.182196] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 05/02/2023]
Abstract
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.
Collapse
Affiliation(s)
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 (C.M.R., P.K.H.); School of Natural Science, Hampshire College, Amherst, Massachusetts 01002 (E.L., L.J.W.)
| | | |
Collapse
|
18
|
Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL. Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. THE PLANT CELL 2011; 23:1889-903. [PMID: 21551389 PMCID: PMC3123956 DOI: 10.1105/tpc.111.084970] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/05/2011] [Accepted: 04/18/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.
Collapse
|
19
|
Rutschow HL, Baskin TI, Kramer EM. Regulation of solute flux through plasmodesmata in the root meristem. PLANT PHYSIOLOGY 2011; 155:1817-26. [PMID: 21325566 PMCID: PMC3091107 DOI: 10.1104/pp.110.168187] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/10/2011] [Indexed: 05/19/2023]
Abstract
Plasmodesmata permit solutes to move between cells nonspecifically and without having to cross a membrane. This symplastic connectivity, while straightforward to observe using fluorescent tracers, has proven difficult to quantify. We use fluorescence recovery after photobleaching, combined with a mathematical model of symplastic diffusion, to assay plasmodesmata-mediated permeability in the Arabidopsis (Arabidopsis thaliana) root meristem in wild-type and transgenic lines, and under selected chemical treatments. The permeability measured for the wild type is nearly 10-times greater than previously reported. Plamodesmal permeability remains constant in seedlings treated with auxin (30 mM indoleacetic acid for 2 and 24 h; 100 nm indoleacetic acid for 2 h); however, permeability is diminished in two lines previously reported to have impaired plasmodesmal function as well as in wild-type seedlings treated for 24 h with 0.6 mM tryptophan. Moreover, plasmodesmal permeability is strongly altered by applied hydrogen peroxide within 2 h of treatment, being approximately doubled at a low concentration (0.6 mM) and nearly eliminated at a higher one (6 mM). These results reveal that the plasmodesmata in the root meristem carry a substantial flux of small molecules and that this flux is subject to rapid regulation.
Collapse
|
20
|
|
21
|
Wu S, Scheible WR, Schindelasch D, Van Den Daele H, De Veylder L, Baskin TI. A conditional mutation in Arabidopsis thaliana separase induces chromosome non-disjunction, aberrant morphogenesis and cyclin B1;1 stability. Development 2010; 137:953-61. [PMID: 20150278 DOI: 10.1242/dev.041939] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The caspase family protease, separase, is required at anaphase onset to cleave the cohesin complex, which joins sister chromatids. However, among eukaryotes, separases have acquired novel functions. Here, we show that Arabidopsis thaliana radially swollen 4 (rsw4), a temperature-sensitive mutant isolated previously on the basis of root swelling, harbors a mutation in At4g22970, the A. thaliana separase. Loss of separase function in rsw4 at the restrictive temperature is indicated by the widespread failure of replicated chromosomes to disjoin. Surprisingly, rsw4 has neither pronounced cell cycle arrest nor anomalous spindle formation, which occur in other eukaryotes upon loss of separase activity. However, rsw4 roots have disorganized cortical microtubules and accumulate the mitosis-specific cyclin, cyclin B1;1, excessive levels of which have been associated with altered microtubules and morphology. Cyclin B1;1 also accumulates in certain backgrounds in response to DNA damage, but we find no evidence for aberrant responses to DNA damage in rsw4. Our characterization of rsw4 leads us to hypothesize that plant separase, in addition to cleaving cohesin, regulates cyclin B1;1, with profound ramifications for morphogenesis.
Collapse
Affiliation(s)
- Shuang Wu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
22
|
Shibasaki K, Uemura M, Tsurumi S, Rahman A. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. THE PLANT CELL 2009; 21:3823-38. [PMID: 20040541 PMCID: PMC2814496 DOI: 10.1105/tpc.109.069906] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/28/2009] [Accepted: 12/09/2009] [Indexed: 05/17/2023]
Abstract
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4 degrees C inhibited root growth and gravity response by approximately 50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers.
Collapse
Affiliation(s)
- Kyohei Shibasaki
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Seiji Tsurumi
- Center for Supports to Research and Education Activities Isotope Division, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
23
|
Vidali L, Augustine RC, Fay SN, Franco P, Pattavina KA, Bezanilla M. Rapid screening for temperature-sensitive alleles in plants. PLANT PHYSIOLOGY 2009; 151:506-14. [PMID: 19666707 PMCID: PMC2754644 DOI: 10.1104/pp.109.143727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/06/2009] [Indexed: 05/21/2023]
Abstract
We developed a simple and fast method to identify temperature-sensitive alleles of essential plant genes. We used primary and tertiary structure information to identify residues in the core of the protein of interest. These residues were mutated and tested for temperature sensitivity, taking advantage of the exceptionally rapid 1-week complementation assay in the moss Physcomitrella patens. As test molecules, we selected the actin-binding proteins profilin and actin-depolymerizing factor, because they are essential and their loss-of-function phenotype can be fully rescued. Screening a small number of candidate mutants, we successfully identified temperature-sensitive alleles of both profilin and actin-depolymerizing factor. Plants harboring these alleles grew well at the permissive temperature of 20 degrees C to 25 degrees C but showed a complete loss of function at the restrictive temperature of 32 degrees C. Notably, the profilin mutation identified in the moss gene can be transferred to profilins from other plant species, also rendering them temperature sensitive. The ability to routinely generate temperature-sensitive alleles of essential plant proteins provides a powerful tool for the study of gene function in plants.
Collapse
Affiliation(s)
- Luis Vidali
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shevchenko GV. Interaction of microtubules and microfilaments in the zone of distal elongation of Arabidopsis thaliana roots. CYTOL GENET+ 2009. [DOI: 10.3103/s009545270904001x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Walia A, Lee JS, Wasteneys G, Ellis B. Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:565-75. [PMID: 19392697 DOI: 10.1111/j.1365-313x.2009.03895.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signalling networks are important regulators of environmental responses and developmental processes in plants. To understand the role of MAPK signalling modules in the regulation of plant microtubule functions, we searched for MAPKs that interact with the dual-specificity MAPK phosphatase, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1), whose mutation has previously been reported to confer hypersensitivity to microtubule-disrupting drugs in Arabidopsis. Yeast two-hybrid assays demonstrated that PHS1 specifically interacts with two MAPKs, MPK12 and MPK18. Bimolecular fluorescence complementation (BiFC) studies confirmed that the PHS1 and MPK18 proteins are physically coupled, and that this interaction occurs in the cytoplasm. At the biochemical level, in vitro dephosphorylation assays indicated that phospho-MPK18 can be dephosphorylated by recombinant PHS1. Mutant mpk18 seedlings show defects in microtubule-related functions, and have moderately stabilized microtubules. Absence of MPK18 in the phs1-1 background partially complements the phs1-1 root growth phenotypes, providing genetic evidence for involvement of MPK18 signalling in microtubule-related functions. We propose a model whereby the PHS1-MPK18 signalling module is involved in a phosphorylation/dephosphorylation switch that regulates cortical microtubule functions.
Collapse
Affiliation(s)
- Ankit Walia
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | | | | | | |
Collapse
|
26
|
Driouich A, Baskin TI. Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules. AMERICAN JOURNAL OF BOTANY 2008; 95:1491-7. [PMID: 21628156 DOI: 10.3732/ajb.0800277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
How does a plant cell sense and respond to the status of its cell wall? Intercourse between cell wall and cytoplasm has long been supposed to involve arabinogalactan proteins, in part because many of them are anchored to the plasma membrane. Disrupting arabinogalactan proteins has recently been shown to disrupt the array of cortical microtubules present just inside the plasma membrane, implying that microtubules and arabinogalactan proteins interact. In this article, we assess possibilities for how this interaction might be mediated. First, we consider microdomains in the plasma membrane (lipid rafts), which have been alleged to link internal and external regions of the plasma membrane; however, the characteristics and even the existence of these domains remains controversial. Next, we point out that disrupting the synthesis of cellulose also can disrupt microtubules and consider whether arabinogalactan proteins are part of a network linking microtubules and nascent microfibrils. Finally, we outline several signaling cascades that could transmit information from arabinogalactan proteins to microtubules through channels of cellular communication. These diverse possibilities highlight the work that remains to be done before we can understand how plant cells communicate across their membranes.
Collapse
Affiliation(s)
- Azeddine Driouich
- UMR 6037 CNRS-Institut Fédératif de Recherche Multidisciplinaire des Peptides (IFRMP 23), Plateforme de Recherche en Imagerie Cellulaire de Haute Normandie (PRIMACEN)-Université de Rouen, 76821 Mont Saint Aignan, France
| | | |
Collapse
|
27
|
Kawamura E, Wasteneys GO. MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 2008; 121:4114-23. [PMID: 19033380 DOI: 10.1242/jcs.039065] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MOR1, the Arabidopsis thaliana homologue of the Xenopus microtubule-associated protein MAP215, is required for spatial organization of the acentrosomal microtubule arrays of plant cells. To determine how loss of MOR1 function affects microtubule dynamics, we compared various parameters of microtubule dynamics in the temperature-sensitive mor1-1 mutant at its permissive and restrictive temperatures, 21 degrees C and 31 degrees C, respectively. Dynamic events were tracked in live cells expressing either GFP-tagged beta-tubulin or the plus end tracking EB1. Microtubule growth and shrinkage velocities were both dramatically reduced in mor1-1 at 31 degrees C and the incidence and duration of pause events increased. Interestingly, the association of EB1 with microtubule plus ends was reduced in mor1-1 whereas side wall binding increased, suggesting that MOR1 influences the association of EB1 with microtubules either by modulating microtubule plus end structure or by interacting with EB1. Although mor1-1 microtubules grew and shrank more slowly than wild-type microtubules at 21 degrees C, the incidence of pause was not altered, suggesting that pause events, which occur more frequently at 31 degrees C, have a major detrimental role in the spatial organization of cortical microtubules. Extensive increases in microtubule dynamics in wild-type cells when shifted from 21 degrees C to 31 degrees C underline the importance of careful temperature control in live cell imaging.
Collapse
Affiliation(s)
- Eiko Kawamura
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
28
|
RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc Natl Acad Sci U S A 2008; 105:18637-42. [PMID: 19011093 DOI: 10.1073/pnas.0806157105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the "molecular memory" that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division.
Collapse
|
29
|
Xu SL, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. THE PLANT CELL 2008; 20:3065-79. [PMID: 19017745 PMCID: PMC2613664 DOI: 10.1105/tpc.108.063354] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant cell wall is a dynamic structure that changes in response to developmental and environmental cues through poorly understood signaling pathways. We identified two Leu-rich repeat receptor-like kinases in Arabidopsis thaliana that play a role in regulating cell wall function. Mutations in these FEI1 and FEI2 genes (named for the Chinese word for fat) disrupt anisotropic expansion and the synthesis of cell wall polymers and act additively with inhibitors or mutations disrupting cellulose biosynthesis. While FEI1 is an active protein kinase, a kinase-inactive version of FEI1 was able to fully complement the fei1 fei2 mutant. The expansion defect in fei1 fei2 roots was suppressed by inhibition of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, an enzyme that converts Ado-Met to ACC in ethylene biosynthesis, but not by disruption of the ethylene response pathway. Furthermore, the FEI proteins interact directly with ACC synthase. These results suggest that the FEI proteins define a novel signaling pathway that regulates cell wall function, likely via an ACC-mediated signal.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
30
|
Ehrhardt DW. Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr Opin Cell Biol 2008; 20:107-16. [PMID: 18243678 DOI: 10.1016/j.ceb.2007.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 11/28/2022]
Abstract
Live cell imaging and genetic studies are demonstrating that cortical microtubule arrays in plant cells are dynamic structures in which microtubule (MT) bundles play a key role in creating array organization and function. Steps important for creating and organizing these arrays include recruitment of nucleation complexes to the cell cortex and to the lattices of previously established MTs, association of newly created MTs to the cell cortex, release of MTs from sites of nucleation, transport of released MTs by polymer treadmilling, and subsequent interactions between treadmilling MTs. The results of MT interactions include induced catastrophe, severing, and the capture and reorientation of growing polymer ends by bundling interactions. Together, these properties predict a capacity for self-ordering that is likely to play an important role in establishing the parallel organization of the arrays.
Collapse
Affiliation(s)
- David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Jaramillo AM, Weil TT, Goodhouse J, Gavis ER, Schupbach T. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J Cell Sci 2008; 121:887-94. [PMID: 18303053 PMCID: PMC2327291 DOI: 10.1242/jcs.019091] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Drosophila oogenesis, the targeted localization of gurken (grk) mRNA leads to the establishment of the axis polarity of the egg. In early stages of oogenesis, grk mRNA is found at the posterior of the oocyte, whereas in the later stages grk mRNA is positioned at the dorsal anterior corner of the oocyte. In order to visualize the real-time localization and anchorage of endogenous grk mRNA in living oocytes, we have utilized the MS2-MCP system. We show that MCP-GFP-tagged endogenous grk mRNA localizes properly within wild-type oocytes and behaves aberrantly in mutant backgrounds. Fluorescence recovery after photobleaching (FRAP) experiments of localized grk mRNA in egg chambers reveal a difference in the dynamics of grk mRNA between young and older egg chambers. grk mRNA particles, as a population, are highly dynamic molecules that steadily lose their dynamic nature as oogenesis progresses. This difference in dynamics is attenuated in K10 and sqd(1) mutants such that mislocalized grk mRNA in older stages is much more dynamic compared with that in wild-type controls. By contrast, in flies with compromised dynein activity, properly localized grk mRNA is much more static. Taken together, we have observed the nature of localized grk mRNA in live oocytes and propose that its maintenance changes from a dynamic to a static process as oogenesis progresses.
Collapse
|
32
|
Lucas J, Shaw SL. Cortical microtubule arrays in the Arabidopsis seedling. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:94-98. [PMID: 18226578 DOI: 10.1016/j.pbi.2007.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 05/25/2023]
Abstract
Advances in live-cell imaging technology have provided an unprecedented look at the dynamic behaviors of the plant microtubule cytoskeleton. Recent studies revisit the classic question of how plants create cell shape through the patterned construction of the cell wall. Visualization of the cellulose synthase complex traveling in the plasma membrane has brought a watershed of new information about cellulose deposition. Observation of the cellulose synthase complex tracking precisely over the underlying cortical microtubules has provided clear evidence that the microtubule array pattern serves as a spatial template for cellulose microfibril extrusion. Understanding how the microtubules are organized into specific array patterns remains a challenge, though new ideas are arising from genetic and cell biological studies. Long-term time-lapse observations of the microtubule arrays in light-grown hypocotyl cells have revealed a striking process of microtubule patterning possibly linked to the creation of polylamellate cell walls.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
33
|
Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A. Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:240-51. [PMID: 17672840 DOI: 10.1111/j.1365-313x.2007.03224.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. Cortical microtubules were markedly disorganized by 1 microM beta-D-glucosyl (active) Yariv but not by up to 10 microM beta-D-mannosyl (inactive) Yariv. This was observed for 24-h treatments in wild-type roots, fixed and stained with anti-tubulin antibodies, as well as in living roots expressing a green fluorescent protein (GFP) reporter for microtubules. Using the reporter line, microtubule disorganization was evident within 10 min of treatment with 5 microM active Yariv and extensive by 30 min. Active Yariv (5 microM) disorganized cortical microtubules after gadolinium pre-treatment, suggesting that this effect is independent of calcium influx across the plasma membrane. Similar effects on cortical microtubules, over a similar time scale, were induced by two anti-arabinogalactan-protein antibodies (JIM13 and JIM14) but not by antibodies recognizing pectin or xyloglucan epitopes. Active Yariv, JIM13, and JIM14 caused arabinogalactan proteins to aggregate rapidly, as assessed either in fixed wild-type roots or in the living cells of a line expressing a plasma membrane-anchored arabinogalactan protein from tomato fused to GFP. Finally, electron microscopy of roots prepared by high-pressure freezing showed that treatment with 5 microM active Yariv for 2 h significantly increased the distance between cortical microtubules and the plasma membrane. These findings demonstrate that cell surface arabinogalactan proteins influence the organization of cortical microtubules.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- UMR CNRS 6037, IFRMP 23, Plate Forme de Recherche en Imagerie Cellulaire, Université de Rouen, 76 821 Mont Saint Aignan, France
| | | | | | | | | |
Collapse
|
34
|
Bannigan A, Scheible WR, Lukowitz W, Fagerstrom C, Wadsworth P, Somerville C, Baskin TI. A conserved role for kinesin-5 in plant mitosis. J Cell Sci 2007; 120:2819-27. [PMID: 17652157 DOI: 10.1242/jcs.009506] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotic spindle of vascular plants is assembled and maintained by processes that remain poorly explored at a molecular level. Here, we report that AtKRP125c, one of four kinesin-5 motor proteins in arabidopsis, decorates microtubules throughout the cell cycle and appears to function in both interphase and mitosis. In a temperature-sensitive mutant, interphase cortical microtubules are disorganized at the restrictive temperature and mitotic spindles are massively disrupted, consistent with a defect in the stabilization of anti-parallel microtubules in the spindle midzone, as previously described in kinesin-5 mutants from animals and yeast. AtKRP125c introduced into mammalian epithelial cells by transfection decorates microtubules throughout the cell cycle but is unable to complement the loss of the endogenous kinesin-5 motor (Eg5). These results are among the first reports of any motor with a major role in anastral spindle structure in plants and demonstrate that the conservation of kinesin-5 motor function throughout eukaryotes extends to vascular plants.
Collapse
Affiliation(s)
- Alex Bannigan
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI. Auxin, actin and growth of the Arabidopsis thaliana primary root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:514-28. [PMID: 17419848 DOI: 10.1111/j.1365-313x.2007.03068.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organization. Indole acetic acid (IAA), 1-naphthalene acetic acid (NAA) and tri-iodobenzoic acid (TIBA) inhibit root growth primarily through reducing the length of the growth zone rather than the maximal rate of elemental elongation and they do not reduce cell production rate. These three compounds have little effect on the extent of filamentous actin, as imaged in living cells or by chemical fixation and immuno-cytochemistry, but tend to increase actin bundling. In contrast, 2,4-dichlorophenoxy-acetic acid (2,4-D) and naphthylphthalamic acid (NPA) inhibit root growth primarily by reducing cell production rate. These compounds remove actin and slow down cytoplasmic streaming, but do not lead to mislocalization of the auxin-efflux proteins, PIN1 or PIN2. The effects of 2,4-D and NPA were mimicked by the actin inhibitor, latrunculin B. The effects of these compounds on actin were also elicited by a 2 h treatment at higher concentration but were not seen in two mutants, eir1-1 and aux1-7, with deficient auxin transport. Our results show that IAA regulates the size of the root elongation zone whereas 2,4-D affects cell production and actin-dependent processes; and, further, that elemental elongation and localization of PINs are appreciably independent of actin.
Collapse
Affiliation(s)
- Abidur Rahman
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kramer EM, Frazer NL, Baskin TI. Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3005-15. [PMID: 17728296 DOI: 10.1093/jxb/erm155] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To quantify the diffusion constant of small molecules in the plant cell wall, fluorescence from carboxyfluorescein (CF) in the intact roots of Arabidopsis thaliana was recorded. Roots were immersed in a solution of the fluorescent dye and viewed through a confocal fluorescence microscope. These roots are sufficiently transparent that much of the apoplast can be imaged. The diffusion coefficient, D(cw), of CF in the cell wall was probed using two protocols: fluorescence recovery after photobleaching and fluorescence loss following perfusion with dye-free solution. Diffusion coefficients were obtained from the kinetics of the fluorescent transients and modelling apoplast geometry. Apoplastic diffusion constants varied spatially in the root. In the elongation zone and mature cortex, D(cw)=(3.2+/-1.4)x10(-11) m(2) s(-1), whereas in mature epidermis, D(cw)=(2.5+/-0.7)x10(-12) m(2) s(-1), at least an order of magnitude lower. Relative to the diffusion coefficient of CF in water, these represent reductions by approximately 1/15 and 1/195, respectively. The low value for mature epidermis is correlated with a suberin-like permeability barrier that was detected with either autofluorescence or berberine staining. This study provides a quantitative estimate of the permeability of plant cell walls to small organic acids-a class of compounds that includes auxin and other plant hormones. These measurements constrain models of solute transport, and are important for quantitative models of hormone signalling during plant growth and development.
Collapse
Affiliation(s)
- Eric M Kramer
- Biology Department, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
37
|
Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:571-8. [PMID: 17010658 DOI: 10.1016/j.pbi.2006.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/15/2006] [Indexed: 05/04/2023]
Abstract
Plant cell cortical microtubule arrays attain a high degree of order without the benefit of an organizing center such as a centrosome. New assays for molecular behaviors in living cells and gene discovery are yielding insight into the mechanisms by which acentrosomal microtubule arrays are created and organized, and how microtubule organization functions to modify cell form by regulating cellulose deposition. Surprising and potentially important behaviors of cortical microtubules include nucleation from the walls of established microtubules, and treadmilling-driven motility leading to polymer interaction, reorientation, and microtubule bundling. These behaviors suggest activities that can act to increase or decrease the local level of order in the array. The SPIRAL1 (SPR1) and SPR2 microtubule-localized proteins and the radial swollen 6 (rsw-6) locus are examples of new molecules and genes that affect both microtubule array organization and cell growth pattern. Functional tagging of cellulose synthase has now allowed the dynamic relationship between cortical microtubules and the cell-wall-synthesizing machinery to be visualized, providing direct evidence that cortical microtubules can organize cellulose synthase complexes and guide their movement through the plasma membrane as they create the cell wall.
Collapse
Affiliation(s)
- Alex Paradez
- Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA
| | | | | |
Collapse
|