1
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Straube H, Straube J, Rinne J, Fischer L, Niehaus M, Witte CP, Herde M. An inosine triphosphate pyrophosphatase safeguards plant nucleic acids from aberrant purine nucleotides. THE NEW PHYTOLOGIST 2023; 237:1759-1775. [PMID: 36464781 DOI: 10.1111/nph.18656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In plants, inosine is enzymatically introduced in some tRNAs, but not in other RNAs or DNA. Nonetheless, our data show that RNA and DNA from Arabidopsis thaliana contain (deoxy)inosine, probably derived from nonenzymatic adenosine deamination in nucleic acids and usage of (deoxy)inosine triphosphate (dITP and ITP) during nucleic acid synthesis. We combined biochemical approaches, LC-MS, as well as RNA-Seq to characterize a plant INOSINE TRIPHOSPHATE PYROPHOSPHATASE (ITPA) from A. thaliana, which is conserved in many organisms, and investigated the sources of deaminated purine nucleotides in plants. Inosine triphosphate pyrophosphatase dephosphorylates deaminated nucleoside di- and triphosphates to the respective monophosphates. ITPA loss-of-function causes inosine di- and triphosphate accumulation in vivo and an elevated inosine and deoxyinosine content in RNA and DNA, respectively, as well as salicylic acid (SA) accumulation, early senescence, and upregulation of transcripts associated with immunity and senescence. Cadmium-induced oxidative stress and biochemical inhibition of the INOSINE MONOPHOSPHATE DEHYDROGENASE leads to more IDP and ITP in the wild-type (WT), and this effect is enhanced in itpa mutants, suggesting that ITP originates from ATP deamination and IMP phosphorylation. Inosine triphosphate pyrophosphatase is part of a molecular protection system in plants, preventing the accumulation of (d)ITP and its usage for nucleic acid synthesis.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Straube
- Department of Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Lisa Fischer
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| |
Collapse
|
3
|
Chen TC, Chou SY, Chen MC, Lin JS. IbTLD modulates reactive oxygen species scavenging and DNA protection to confer salinity stress tolerance in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111415. [PMID: 35963494 DOI: 10.1016/j.plantsci.2022.111415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plants accumulate reactive oxygen species (ROS) that may damage the cells under prolonged stress conditions. Reduction of the excessive ROS production can alleviate oxidative damage and enhance the survival rates under stress. TLDc-containing protein (TLD) was reported to confer tolerance to oxidative stress, but the regulatory mechanism of TLD remains unclear. In this study, we ectopically overexpressed the Ipomoea batatas TLDc gene (IbTLD) in tobacco and characterized its functions. RNA-sequencing analysis and Gene Ontology term enrichment analysis revealed that IbTLD up-regulates auxin-responsive genes in response to oxidative stress. Under salinity stress, the IbTLD transgenic lines showed higher germination rates, chlorophyll contents, and root lengths than wild type (W38). In addition, the IbTLD transgenic lines showed higher expression of ROS scavenging genes, nudix hydrolases, ROS scavenging enzyme activity, and lesser DNA damage compared to W38 under salinity stress. Therefore, our results suggest that IbTLD activates the expression of ROS scavenging genes and confers tolerance to salinity stress in planta.
Collapse
Affiliation(s)
- Tsung-Chi Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Si-Yun Chou
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
4
|
Kondo Y, Rikiishi K, Sugimoto M. Rice Nudix Hydrolase OsNUDX2 Sanitizes Oxidized Nucleotides. Antioxidants (Basel) 2022; 11:antiox11091805. [PMID: 36139879 PMCID: PMC9495418 DOI: 10.3390/antiox11091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nudix hydrolase (NUDX) hydrolyzes 8-oxo-(d)GTP to reduce the levels of oxidized nucleotides in the cells. 8-oxo-(d)GTP produced by reactive oxygen species (ROS) is incorporated into DNA/RNA and mispaired with adenine, causing replicational and transcriptional errors. Here, we identified a rice OsNUDX2 gene, whose expression level was increased 15-fold under UV-C irradiation. The open reading frame of the OsNUDX2 gene, which encodes 776 amino acid residues, was cloned into Escherichia coli cells to produce the protein of 100 kDa. The recombinant protein hydrolyzed 8-oxo-dGTP, in addition to dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), as did Arabidopsis AtNUDX1; whereas the amino acid sequence of OsNUDX2 had 18% identity with AtNUDX1. OsNUDX2 had 14% identity with barley HvNUDX12, which hydrolyzes 8-oxo-dGTP and diadenosine tetraphosphates. Suppression of the lacZ amber mutation caused by the incorporation of 8-oxo-GTP into mRNA was prevented to a significant degree when the OsNUDX2 gene was expressed in mutT-deficient E. coli cells. These results suggest that the different substrate specificity and identity among plant 8-oxo-dGTP-hydrolyzing NUDXs and OsNUDX2 reduces UV stress by sanitizing the oxidized nucleotides.
Collapse
|
5
|
Liu K, Sun Q. Intragenic tRNA-promoted R-loops orchestrate transcription interference for plant oxidative stress responses. THE PLANT CELL 2021; 33:3574-3591. [PMID: 34463741 PMCID: PMC8566210 DOI: 10.1093/plcell/koab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Eukaryotic genomes are transcribed by at least three RNA polymerases, RNAPI, II, and III. Co-transcriptional R-loops play diverse roles in genome regulation and maintenance. However, little is known about how R-loops regulate transcription interference, the transcriptional event that is caused by different RNA polymerases transcribing the same genomic templates. Here, we established that the intragenic transfer RNA (tRNA) genes can promote sense R-loop enrichment (named intra-tR-loops) in Arabidopsis thaliana, and found that intra-tR-loops are decreased in an RNAPIII mutant, NUCLEAR RNA POLYMERASE C, SUBUNIT 7(nrpc7-1). NRPC7 is co-localized with RNAPIIS2P at intragenic tRNA genes and interferes with RNAPIIS2P elongation. Conversely, the binding of NRPC7 at intragenic tRNA genes is increased following inhibition of RNAPII elongation. The transcription of specific tRNA host genes is inhibited by RNAPIII, and the inhibition of tRNA host genes is intra-tR-loop dependent. Moreover, alleviating the inhibition of tRNAPro-induced intra-tR-loops on its host gene AtNUDX1 promotes oxidative stress tolerance in A. thaliana. Our work suggests intra-tR-loops regulate host gene expression by modulating RNA polymerases interference.
Collapse
Affiliation(s)
- Kunpeng Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | | |
Collapse
|
6
|
Koh E, Cohen D, Brandis A, Fluhr R. Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. PLANT, CELL & ENVIRONMENT 2021; 44:3597-3615. [PMID: 34370334 DOI: 10.1111/pce.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Singlet oxygen (1 O2 ) production is associated with stress signalling. Here, using Arabidopsis as a model system, we study the effects of the accumulation of 8-hydroxyguanosine (8-oxoG), a major product of 1 O2 -mediated RNA oxidation. We show that 8-oxoG can accumulate in vivo when 1 O2 is produced in the cytoplasm. Conditions for such production include the application of RB in the light, dark-to-light transitions in the flu mutant, or subjecting plants to combined dehydration/light exposure. Transcriptomes of these treatments displayed a significant overlap with transcripts stimulated by the cytosolic 80S ribosomal translation inhibitors, cycloheximide and homoharringtonine. We demonstrate that 8-oxoG accumulation correlates with a decrease in RNA translatability, resulting in the rapid decrease of the levels of labile gene repressor elements such as IAA1 and JAZ1 in a proteasome-dependent manner. Indeed, genes regulated by the labile repressors of the jasmonic acid signalling pathway were induced by cycloheximide, RB or dehydration/light treatment independently of the hormone. The results suggest that 1 O2 , by oxidizing RNA, attenuated cellular translatability and caused specific genes to be released from the repression of their cognate short half-life repressors. The findings here describe a novel means of gene regulation via the direct interaction of 1 O2 with RNA.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dekel Cohen
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
|
8
|
Sheng L, Zang S, Wang J, Wei T, Xu Y, Feng L. Overexpression of a Rosa rugosa Thunb. NUDX gene enhances biosynthesis of scent volatiles in petunia. PeerJ 2021; 9:e11098. [PMID: 33859875 PMCID: PMC8020868 DOI: 10.7717/peerj.11098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Rosa rugosa is an important natural perfume plant in China. Rose essential oil is known as ‘liquid gold’ and has high economic and health values. Monoterpenes are the main fragrant components of R. rugosa flower and essential oil. In this study, a member of the hydrolase gene family RrNUDX1 was cloned from Chinese traditional R. rugosa ‘Tang Hong’. Combined analysis of RrNUDX1 gene expression and the aroma components in different development stages and different parts of flower organ, we found that the main aroma component content was consistent with the gene expression pattern. The RrNUDX1 overexpressed Petunia hybrida was acquired via Agrobacterium-mediated genetic transformation systems. The blades of the transgenic petunias became wider and its growth vigor became strong with stronger fragrance. Gas chromatography with mass spectrometry analysis showed that the contents of the main aroma components of the transgenic petunias including methyl benzoate significantly increased. These findings indicate that the RrNUDX1 gene plays a role in enhancing the fragrance of petunia flowers, and they could lay an important foundation for the homeotic transformation of RrNUDX1 in R. rugosa for cultivating new R. rugosa varieties of high-yield and -quality essential oil.
Collapse
Affiliation(s)
- Lixia Sheng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Shu Zang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Jianwen Wang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Tiantian Wei
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Yong Xu
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Liguo Feng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC PLANT BIOLOGY 2021; 21:38. [PMID: 33430784 PMCID: PMC7802178 DOI: 10.1186/s12870-020-02796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.
Collapse
Affiliation(s)
- Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Indrani K Baruah
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
10
|
Sun P, Dégut C, Réty S, Caissard JC, Hibrand-Saint Oyant L, Bony A, Paramita SN, Conart C, Magnard JL, Jeauffre J, Abd-El-Haliem AM, Marie-Magdelaine J, Thouroude T, Baltenweck R, Tisné C, Foucher F, Haring M, Hugueney P, Schuurink RC, Baudino S. Functional diversification in the Nudix hydrolase gene family drives sesquiterpene biosynthesis in Rosa × wichurana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:185-199. [PMID: 32639596 DOI: 10.1111/tpj.14916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 05/25/2023]
Abstract
Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpenes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. 'Old Blush' with R. x wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers. The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was refined to 1.7 Å. By molecular modeling of different rose NUDX1 protein complexes with their respective substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.
Collapse
Affiliation(s)
- Pulu Sun
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Clément Dégut
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), Paris, 75005, France
| | - Stéphane Réty
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 Allée d'Italie Site Jacques Monod, Lyon, F-69007, France
| | - Jean-Claude Caissard
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| | | | - Aurélie Bony
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| | - Saretta N Paramita
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| | - Corentin Conart
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| | - Jean-Louis Magnard
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| | - Julien Jeauffre
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Ahmed M Abd-El-Haliem
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Jordan Marie-Magdelaine
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Tatiana Thouroude
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | | | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), Paris, 75005, France
| | - Fabrice Foucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Michel Haring
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, Colmar, F-68000, France
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sylvie Baudino
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, Saint-Etienne, F-42023, France
| |
Collapse
|
11
|
Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2020; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
|
12
|
Jemth AS, Scaletti E, Carter M, Helleday T, Stenmark P. Crystal Structure and Substrate Specificity of the 8-oxo-dGTP Hydrolase NUDT1 from Arabidopsis thaliana. Biochemistry 2019; 58:887-899. [PMID: 30614695 DOI: 10.1021/acs.biochem.8b00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms.
Collapse
Affiliation(s)
- Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm S-171 21 , Sweden
| | - Emma Scaletti
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden
| | - Megan Carter
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm S-171 21 , Sweden.,Sheffield Cancer Centre, Department of Oncology and Metabolism , University of Sheffield , Sheffield S10 2RX , United Kingdom
| | - Pål Stenmark
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden.,Department of Experimental Medical Science , Lund University , Lund 221 00 , Sweden
| |
Collapse
|
13
|
Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlmann J, Noel JP, Dudareva N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. NATURE PLANTS 2018; 4:721-729. [PMID: 30127411 DOI: 10.1038/s41477-018-0220-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Plant genomes encode isopentenyl phosphate kinases (IPKs) that reactivate isopentenyl phosphate (IP) via ATP-dependent phosphorylation, forming the primary metabolite isopentenyl diphosphate (IPP) used generally for isoprenoid/terpenoid biosynthesis. Therefore, the existence of IPKs in plants raises unanswered questions concerning the origin and regulatory roles of IP in plant terpenoid metabolism. Here, we provide genetic and biochemical evidence showing that IP forms during specific dephosphorylation of IPP catalysed by a subset of Nudix superfamily hydrolases. Increasing metabolically available IP by overexpression of a bacterial phosphomevalonate decarboxylase (MPD) in Nicotiana tabacum resulted in significant enhancement in both monoterpene and sesquiterpene production. These results indicate that perturbing IP metabolism results in measurable changes in terpene products derived from both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways. Moreover, the unpredicted peroxisomal localization of bacterial MPD led us to discover that the step catalysed by phosphomevalonate kinase (PMK) imposes a hidden constraint on flux through the classical MVA pathway. These complementary findings fundamentally alter conventional views of metabolic regulation of terpenoid metabolism in plants and provide new metabolic engineering targets for the production of high-value terpenes in plants.
Collapse
Affiliation(s)
- Laura K Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Suzanne T Thomas
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Thomas C Davis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Sharon A Kessler
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Joseph P Noel
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Soto-Suárez M, Serrato AJ, Rojas-González JA, Bautista R, Sahrawy M. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation. BMC PLANT BIOLOGY 2016; 16:258. [PMID: 27905870 PMCID: PMC5134223 DOI: 10.1186/s12870-016-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/22/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. RESULTS We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. CONCLUSION This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.
Collapse
Affiliation(s)
- Mauricio Soto-Suárez
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
- Present address: Corporación Colombiana de Investigación Agropecuaria, CORPOICA, Km 14 vía Mosquera, Mosquera, Cundinamarca Colombia
| | - Antonio J. Serrato
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - José A. Rojas-González
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática/SCBI, Edificio de Bioinnovación, Parque Tecnológico de Andalucía, Universidad de Málaga, C/ Severo Ochoa 34, 29590 Campanillas, Spain
| | - Mariam Sahrawy
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
15
|
Hanson AD, Henry CS, Fiehn O, de Crécy-Lagard V. Metabolite Damage and Metabolite Damage Control in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:131-52. [PMID: 26667673 DOI: 10.1146/annurev-arplant-043015-111648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.
Collapse
Affiliation(s)
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439;
- Computation Institute, University of Chicago, Chicago, Illinois 60637
| | - Oliver Fiehn
- Genome Center, University of California, Davis, California 95616;
| | - Valérie de Crécy-Lagard
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611; ,
| |
Collapse
|
16
|
Tanaka H, Maruta T, Ogawa T, Tanabe N, Tamoi M, Yoshimura K, Shigeoka S. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5797-808. [PMID: 26049160 PMCID: PMC4566977 DOI: 10.1093/jxb/erv281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min(-1) mg(-1) protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University,1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
17
|
Trésaugues L, Lundbäck T, Welin M, Flodin S, Nyman T, Silvander C, Gräslund S, Nordlund P. Structural Basis for the Specificity of Human NUDT16 and Its Regulation by Inosine Monophosphate. PLoS One 2015; 10:e0131507. [PMID: 26121039 PMCID: PMC4485890 DOI: 10.1371/journal.pone.0131507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an “housecleaning” enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PN); (LT)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Flodin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (PN); (LT)
| |
Collapse
|
18
|
Nota F, Cambiagno DA, Ribone P, Alvarez ME. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:122-9. [PMID: 25900572 DOI: 10.1016/j.plantsci.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 05/21/2023]
Abstract
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress.
Collapse
Affiliation(s)
- Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Damián A Cambiagno
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Pamela Ribone
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María E Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
19
|
Delgado de la Torre MP, Priego-Capote F, Luque de Castro MD. Characterization and Comparison of Wine Lees by Liquid Chromatography-Mass Spectrometry in High-Resolution Mode. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1116-1125. [PMID: 25584703 DOI: 10.1021/jf505331f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wine lees from 11 different wineries pertaining to two denominations of origin in Spain (La Rioja and Ribera del Duero) have been characterized in this research by LC-MS/MS in high-resolution mode. For this purpose, the wine lees were separated into the liquid phase (imbibed wine from lees) and the solid residue, which was dried and subjected to solid-liquid extraction assisted by microwaves (dried lees). Both fractions were separately analyzed and the fractions from the 11 wineries compared to find similarity in their patterns. The statistical analysis enabled both differences and common aspects in the composition of imbibed wine from lees and dried lees from all wineries to be found. MS/MS tentative identification of representative compounds in each fraction revealed the varied composition of wine lees with special emphasis on flavonoids such as quercetin, myricetin, and malvidin 3-galactoside, identified in extracts of dried lees, or other compounds such as kaempferol 3-(2',3'-diacetylrhamnoside)-7″-rhamnoside, aminocaproic acid, and citric acid, exclusively identified in imbibed wine from lees. The adsorbent capacity of the solid residue justified the high concentration of phenolic compounds in the extracts from solid lees. The differences found in the composition of the two phases support the separated exploitation of them.
Collapse
Affiliation(s)
- M P Delgado de la Torre
- Department of Analytical Chemistry, University of Córdoba , Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain
- Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba , 14071 Córdoba, Spain
- Agroalimentary Excellence Campus, ceiA3, University of Córdoba , Campus of Rabanales, 14071 Córdoba, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, University of Córdoba , Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain
- Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba , 14071 Córdoba, Spain
- Agroalimentary Excellence Campus, ceiA3, University of Córdoba , Campus of Rabanales, 14071 Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, University of Córdoba , Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain
- Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba , 14071 Córdoba, Spain
- Agroalimentary Excellence Campus, ceiA3, University of Córdoba , Campus of Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
20
|
Muthuramalingam M, Zeng X, Iyer NJ, Klein P, Mahalingam R. A GCC-box motif in the promoter of nudix hydrolase 7 (AtNUDT7) gene plays a role in ozone response of Arabidopsis ecotypes. Genomics 2015; 105:31-8. [PMID: 25451743 DOI: 10.1016/j.ygeno.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/15/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Arabidopsis nudix hydrolase 7 (AtNudt7) plays an important role in regulating redox homeostasis during stress/defense signaling and seed germination. The early responsiveness of AtNudt7 provides a useful marker especially during oxidative cell death in plants. Nuclear run-on assays demonstrate that AtNudt7 is transcriptionally regulated. AtNUDT7 promoter-GUS transgenic plants show rapid inducibility in response to ozone and pathogens. A 16-bp insertion containing a GCC-box motif was identified in the promoter of a Ws-2 ecotype and was absent in Col-0. The 16-bp sequence was identified in 5% of the Arabidopsis ecotypes used in the 1001 genome sequencing project. The kinetics of expression of Ethylene Response Factor 1 (ERF1), a GCC-box binding factor is in synchrony with expression of AtNudt7 in response to ozone stress. ERF1 protein binds to the GCC-box motif in the AtNUDT7 promoter. In silico analysis of erf1 mutant and overexpressor lines supports a role for this protein in regulating AtNUDT7 expression.
Collapse
Affiliation(s)
| | - Xin Zeng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Niranjani J Iyer
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Peter Klein
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
21
|
Yoshimura K, Shigeoka S. Versatile physiological functions of the Nudix hydrolase family in Arabidopsis. Biosci Biotechnol Biochem 2014; 79:354-66. [PMID: 25483172 DOI: 10.1080/09168451.2014.987207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nudix hydrolases are widely distributed in all kingdoms of life and have the potential to hydrolyze a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, nucleotide coenzymes, nucleotide sugars, and RNA caps. However, except for E. coli MutT and its orthologs in other organisms that sanitize oxidized nucleotides to prevent DNA and RNA mutations, the functions of Nudix hydrolases had largely remained unclear until recently, because many members of this enzyme family exhibited broad substrate specificities. There is now increasing evidence to show that their functions extend into many aspects of the regulation of cellular responses. This review summarizes current knowledge on the molecular and enzymatic properties as well as physiological functions of Arabidopsis Nudix hydrolases. The information presented here may provide novel insights into the physiological roles of these enzymes in not only plant species, but also other organisms.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- a Department of Food and Nutritional Science , College of Bioscience and Biotechnology, Chubu University , Kasugai , Japan
| | | |
Collapse
|
22
|
Fonseca JP, Dong X. Functional characterization of a Nudix hydrolase AtNUDX8 upon pathogen attack indicates a positive role in plant immune responses. PLoS One 2014; 9:e114119. [PMID: 25436909 PMCID: PMC4250199 DOI: 10.1371/journal.pone.0114119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/04/2014] [Indexed: 01/04/2023] Open
Abstract
Nudix hydrolases comprise a large gene family of twenty nine members in Arabidopsis, each containing a conserved motif capable of hydrolyzing specific substrates like ADP-glucose and NADH. Until now only two members of this family, AtNUDX6 and AtNUDX7, have been shown to be involved in plant immunity. RPP4 is a resistance gene from a multigene family that confers resistance to downy mildew. A time course expression profiling after Hyaloperonospora arabidopsidis inoculation in both wild-type (WT) and the rpp4 mutant was carried out to identify differentially expressed genes in RPP4-mediated resistance. AtNUDX8 was one of several differentially expressed, downregulated genes identified. A T-DNA knockout mutant (KO-nudx8) was obtained from a Salk T-DNA insertion collection, which exhibited abolished AtNUDX8 expression. The KO-nudx8 mutant was infected separately from the oomycete pathogen Hpa and the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. The mutant displayed a significantly enhanced disease susceptibility to both pathogens when compared with the WT control. We observed a small, stunted phenotype for KO-nudx8 mutant plants when grown over a 12/12 hour photoperiod but not over a 16/8 hour photoperiod. AtNUDX8 expression peaked at 8 hours after the lights were turned on and this expression was significantly repressed four-fold by salicylic acid (SA). The expression of three pathogen-responsive thioredoxins (TRX-h2, TRX-h3 and TRX-h5) were downregulated at specific time points in the KO-nudx8 mutant when compared with the WT. Furthermore, KO-nudx8 plants like the npr1 mutant, displayed SA hypersensitivity. Expression of a key SA biosynthetic gene ICS1 was repressed at specific time points in the KO-nudx8 mutant suggesting that AtNUDX8 is involved in SA signaling in plants. Similarly, NPR1 and PR1 transcript levels were also downregulated at specific time points in the KO-nudx8 mutant. This study shows that AtNUDX8 is involved in plant immunity as a positive regulator of defense in Arabidopsis.
Collapse
Affiliation(s)
- Jose Pedro Fonseca
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
23
|
Tanaka S, Kihara M, Sugimoto M. Structure and molecular characterization of barley nudix hydrolase genes. Biosci Biotechnol Biochem 2014; 79:394-401. [PMID: 25379607 DOI: 10.1080/09168451.2014.978259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Putative nudix hydrolase (NUDX) genes, which encode amino acid sequences showing homology with those of Arabidopsis NUDXs and conserve nudix motif, were identified from barley. The 14 deduced barley NUDXs (HvNUDX1-14) were classified into established subfamilies, except for 8-oxo-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) pyrophosphohydrolase and mRNA decapping enzyme subfamilies, and three substrate-unknown subfamilies. Drought and UV-C stresses, respectively, up-regulated 7 and 4 HvNUDX genes, but some homologs of Arabidopsis NUDXs showed different responses to abiotic stress. HvNUDX12 gene, belonging to diadenosine tetraphosphates (Ap₄A) pyrophosphohydrolase subfamily gene and up-regulated by UV-C, was expressed in Escherichia coli cells. The recombinant protein showed 8-oxo-dGTP, Ap₄A, and guanosine-3',5'-tetraphosphate (ppGpp) pyrophosphohydrolase activities, and the suppression of the lacZ amber mutation in a mutT-deficient E. coli cells caused by the incorporation of 8-oxo-GTP into mRNA was prevented to a significant degree. These results suggest that barley NUDXs have unique constitution and response of NUDX to abiotic stress.
Collapse
Affiliation(s)
- Sayuri Tanaka
- a Institute of Plant Science and Resources , Okayama University , Okayama , Japan
| | | | | |
Collapse
|
24
|
Gordon AJE, Satory D, Wang M, Halliday JA, Golding I, Herman C. Removal of 8-oxo-GTP by MutT hydrolase is not a major contributor to transcriptional fidelity. Nucleic Acids Res 2014; 42:12015-26. [PMID: 25294823 PMCID: PMC4231768 DOI: 10.1093/nar/gku912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Living in an oxygen-rich environment is dangerous for a cell. Reactive oxygen species can damage DNA, RNA, protein and lipids. The MutT protein in Escherichia coli removes 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine triphosphate (8-oxo-GTP) from the nucleotide pools precluding incorporation into DNA and RNA. While 8-oxo-dGTP incorporation into DNA is mutagenic, it is not clear if 8-oxo-GTP incorporation into RNA can have phenotypic consequences for the cell. We use a bistable epigenetic switch sensitive to transcription errors in the Escherichia coli lacI transcript to monitor transient RNA errors. We do not observe any increase in epigenetic switching in mutT cells. We revisit the original observation of partial phenotypic suppression of a lacZamber allele in a mutT background that was attributed to RNA errors. We find that Lac+ revertants can completely account for the increase in β-galactosidase levels in mutT lacZamber cultures, without invoking participation of transient transcription errors. Moreover, we observe a fluctuation type of distribution of β-galactosidase appearance in a growing culture, consistent with Lac+ DNA revertant events. We conclude that the absence of MutT produces a DNA mutator but does not equally create an RNA mutator.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominik Satory
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengyu Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
25
|
Yoshimura K, Ogawa T, Tsujimura M, Ishikawa K, Shigeoka S. Ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, confers enhanced tolerance to oxidative stress in arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:1534-1543. [PMID: 24928220 DOI: 10.1093/pcp/pcu083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidized nucleotides produced by oxidative stress cause DNA mutations and the production of abnormal proteins. Thus, mammalian cells have developed multiple MutT-type Nudix hydrolases that exhibit pyrophosphohydrolase activity toward oxidized nucleotides in the cytosol, mitochondria and nucleus. On the other hand, AtNUDX1 is the only MutT-type Nudix hydrolase in the cytosol of Arabidopsis plants. To clarify the physiological significance of the defenses against oxidatively induced DNA damage in plant organelles, we analyzed the effects of the ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, which was localized in the cytosol (cyt-hMTH1), chloroplasts (chl-hMTH1) and mitochondria (mit-hMTH1) of Arabidopsis cells, on tolerance to oxidative stress. Tolerance to oxidative stress caused by heating and paraquat (PQ) treatment was higher in the mit-hMTH1 and chl-hMTH1 plants than in the control and cyt-hMTH1 plants. The accumulation of H2O2 and the frequency of dead cells were lower in the mit-hMTH1 and chl-hMTH1 plants under stressful conditions. The poly(ADP-ribosyl)ation (PAR) reaction, which regulates repair systems for damaged DNA, was activated in the mit-hMTH1 and chl-hMTH1 plants under heat stress and PQ treatment. Furthermore, DNA fragmentation, which caused programmed cell death, was clearly suppressed in the mit-hMTH1 and chl-hMTH1 plants under heat stress. These results demonstrated that the ectopic expression of hMTH1 in the chloroplasts and mitochondria of Arabidopsis enhanced oxidative stress tolerance by activating the PAR reaction and suppressing programmed cell death.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
26
|
Yoshihara R, Nozawa S, Hase Y, Narumi I, Hidema J, Sakamoto AN. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings. JOURNAL OF RADIATION RESEARCH 2013; 54:1050-6. [PMID: 23728320 PMCID: PMC3823791 DOI: 10.1093/jrr/rrt074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV (12)C(6+)), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV (12)C(6+). Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV (12)C(6+) than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV (12)C(6+), however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shigeki Nozawa
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292, Japan
| | - Yoshihiro Hase
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292, Japan
| | - Issay Narumi
- Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, 374-0193, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Ayako N. Sakamoto
- Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292, Japan
- Corresponding author. Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292, Japan. Tel: +81-27-346-9537; Fax: +81-27-346-9688;
| |
Collapse
|
27
|
Sørhagen K, Laxa M, Peterhänsel C, Reumann S. The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:723-36. [PMID: 23506300 DOI: 10.1111/j.1438-8677.2012.00723.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 05/06/2023]
Abstract
Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2 O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2 O2 -producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.
Collapse
Affiliation(s)
- K Sørhagen
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | | | | |
Collapse
|
28
|
McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell Mol Life Sci 2013; 70:373-85. [PMID: 23184251 PMCID: PMC11113851 DOI: 10.1007/s00018-012-1210-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022]
Abstract
Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap(4)A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap(4)A hydrolases also efficiently remove pyrophosphate from the 5' termini of mRNAs, suggesting a potential role for Ap(4)A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.
Collapse
Affiliation(s)
- Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown St., Liverpool, L69 7ZB, UK.
| |
Collapse
|
29
|
Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26. Biosci Biotechnol Biochem 2012; 76:2236-41. [PMID: 23221701 DOI: 10.1271/bbb.120523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Not only in bacteria but also in plant cells, guanosine-3',5'-tetraphosphate (ppGpp) is an important signaling molecule, that affects various cellular processes. In this study, we identified nucleoside diphosphates linked to some moiety X (Nudix) hydrolases, AtNUDX11, 15, 25, and 26, having ppGpp pyrophosphohydrolase activity from Arabidopsis plants. Among these, AtNUDX26 localized in chloroplasts had the highest Vmax and kcat values, leading to high catalytic efficiency, kcat/Km. The activity of AtNUDX26 required Mg2+ or Mn2+ ions as cofactor and was optimal at pH 9.0 and 50 °C. The expression of AtNUDX26 and of ppGpp metabolism-associated genes was regulated by various types of stress, suggesting that AtNUDX26 regulates cellular ppGpp levels in response to stress and impacts gene expression in chloroplasts. This is the first report on the molecular properties of ppGpp pyrophosphohydrolases in plants.
Collapse
|
30
|
Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crécy-Lagard V, Hanson AD. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5379-95. [PMID: 22915736 DOI: 10.1093/jxb/ers208] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. PLANT & CELL PHYSIOLOGY 2012; 53:1596-606. [PMID: 22773682 DOI: 10.1093/pcp/pcs100] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A family of eight genes with homology to mammalian glutathione peroxidase (GPX) isoenzymes, designated AtGPX1-AtGPX8, has been identified in Arabidopsis thaliana. In this study we demonstrated the functional analysis of Arabidopsis AtGPX8 with peroxidase activity toward H(2)O(2) and lipid hydroperoxides using thioredoxin as an electron donor. The transcript and protein levels of AtGPX8 in Arabidopsis were up-regulated coordinately in response to oxidative damage caused by high-light (HL) stress or treatment with paraquat (PQ). Furthermore, the knockout Arabidopsis mutants of AtGPX8 (KO-gpx8) exhibited increased sensitivity to oxidative damage caused by PQ treatment in root elongation compared with the wild-type plants. In contrast, transgenic lines overexpressing AtGPX8 (Ox-AtGPX8) were less sensitive to oxidative damage than the wild-type plants. The levels of oxidized proteins in the KO-gpx8 and Ox-AtGPX8 lines were enhanced and suppressed, respectively, compared with the wild-type plants under HL stress or PQ treatment. The fusion protein of AtGPX8 tagged with green fluorescent protein was localized in the cytosol and nucleus of onion epidermal cells. In addition, the AtGPX8 protein was detected in the cytosolic and nuclear fractions prepared from leaves of Arabidopsis plants using the AtGPX8 antibody. Oxidative DNA damage under treatment with PQ increased in the wild-type and KO-gpx8 plants, while it decreased in the OX-AtGPX8 plants. These results suggest that AtGPX8 plays an important role in the protection of cellular components including nuclear DNA against oxidative stress.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Arabidopsis/drug effects
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Blotting, Western
- Cell Nucleus/enzymology
- Cytosol/drug effects
- Cytosol/enzymology
- Cytosol/radiation effects
- DNA Damage
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Green Fluorescent Proteins/metabolism
- Light
- Oxidation-Reduction/drug effects
- Oxidation-Reduction/radiation effects
- Oxidative Stress/drug effects
- Oxidative Stress/radiation effects
- Paraquat/toxicity
- Recombinant Proteins/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
- Subcellular Fractions/radiation effects
- Substrate Specificity/drug effects
- Substrate Specificity/radiation effects
Collapse
Affiliation(s)
- Ahmed Gaber
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | | | |
Collapse
|
32
|
Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. PLANT & CELL PHYSIOLOGY 2012; 53:1106-16. [PMID: 22505691 DOI: 10.1093/pcp/pcs054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although flavins, riboflavin (RF), FMN and FAD, are essential for primary and secondary metabolism in plants, the metabolic regulation of flavins is still largely unknown. Recently, we found that an Arabidopsis Nudix hydrolase, AtNUDX23, has FAD pyrophosphohydrolase activity and is distributed in plastids. Levels of RF and FAD but not FMN in Arabidopsis leaves significantly increased under continuous light and decreased in the dark. The transcript levels of AtNUDX23 as well as genes involved in flavin metabolism (AtFADS, AtRibF1, AtRibF2, AtFMN/FHy, LS and AtRibA) significantly increased under continuous light. The pyrophosphohydrolase activity toward FAD was enhanced in AtNUDX23-overexpressing (OX-NUDX23) plants and reduced in AtNUDX23-suppressed (KD-nudx23) plants, compared with the control plants. Interestingly intracellular levels of RF, FMN and FAD significantly decreased in not only OX-NUDX23 but also KD-nudx23 plants. The transcript levels of the flavin metabolic genes also decreased in both plants. Similarly, the increase in intracellular levels on treatment with flavins caused a reduction in the transcript levels of genes involved in flavin metabolism. These results suggest that negative feedback regulation of the metabolism of flavins through the hydrolysis of FAD by AtNUDX23 in plastids is involved in flavin homeostasis in plant cells.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1819-27. [PMID: 22201446 DOI: 10.1021/es202660k] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.
Collapse
Affiliation(s)
- Donald H Atha
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yonekura SI, Sanada U, Zhang-Akiyama QM. CiMutT, an asidian MutT homologue, has a 7, 8-dihydro-8-oxo-dGTP pyrophosphohydrolase activity responsible for sanitization of oxidized nucleotides in Ciona intestinalis. Genes Genet Syst 2011; 85:287-95. [PMID: 21178309 DOI: 10.1266/ggs.85.287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The oxidized nucleotide precursors 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) and 1, 2-dihydro-2-oxo-dATP (2-oxo-dATP) are readily incorporated into nascent DNA strands during replication, which would cause base substitution mutations. E. coli MutT and human homologue hMTH1 hydrolyze 8-oxo-dGTP, thereby preventing mutations. In this study, we searched for hMTH1 homologues in the ascidian Ciona intestinalis using the NCBI-BLAST database. Among several candidates, we focused on one open reading frame, designated as CiMutT, because of its high degree of identity (41.7%) and similarity (58.3%) to the overall amino acid sequence of hMTH1, including the Nudix box. CiMutT significantly suppressed the mutator activity of E. coli mutT mutant. Purified CiMutT had a pyrophosphohydrolase activity that hydrolyzed 8-oxo-dGTP to 8-oxo-dGMP and inorganic pyrophosphate. It had a pH optimum of 9.5 and Mg(++) requirement with optimal activity at 5 mM. The activity of CiMutT for 8-oxo-dGTP was comparable to that of hMTH1, while it was 100-fold lower for 2-oxo-dATP than that of hMTH1. These facts indicate that CiMutT is a functional homologue of E. coli MutT. In addition, the enzyme hydrolyzed all four of the unoxidized nucleoside triphosphates, with a preference for dATP. The specific activity for 8-oxo-dGTP was greater than that for unoxidized dATP and dGTP. These results suggest that CiMutT has the potential to prevent mutations by 8-oxo-dGTP in C. intestinalis.
Collapse
Affiliation(s)
- Shin-Ichiro Yonekura
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
35
|
Arczewska KD, Baumeier C, Kassahun H, Sengupta T, Bjørås M, Kuśmierek JT, Nilsen H. Caenorhabditis elegans NDX-4 is a MutT-type enzyme that contributes to genomic stability. DNA Repair (Amst) 2010; 10:176-87. [PMID: 21111690 DOI: 10.1016/j.dnarep.2010.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/04/2010] [Accepted: 10/22/2010] [Indexed: 12/11/2022]
Abstract
MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.
Collapse
|
36
|
Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S. Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:289-301. [PMID: 18798872 DOI: 10.1111/j.1365-313x.2008.03686.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mutant pqr-216 from an Arabidopsis activation-tagged line showed a phenotype of increased tolerance to oxidative stress after treatment with 3 mum paraquat (PQ). Based on the phenotype of transgenic plants overexpressing the genes flanking the T-DNA insert, it was clear that enhanced expression of a Nudix (nucleoside diphosphates linked to some moiety X) hydrolase gene, AtNUDX2 (At5g47650), was responsible for the tolerance. It has been reported that the AtNUDX2 protein has pyrophosphatase activities towards both ADP-ribose and NADH (Ogawa et al., 2005). Interestingly, the pyrophosphatase activity toward ADP-ribose, but not NADH, was increased in pqr-216 and Pro(35S):AtNUDX2 plants compared with control plants. The amount of free ADP-ribose was lower in the Pro(35S):AtNUDX2 plants, while the level of NADH was similar to those in control plants under both normal conditions and oxidative stress. Depletion of NAD(+) and ATP resulting from activation of poly(ADP-ribosyl)ation under oxidative stress was observed in the control Arabidopsis plants. Such alterations in the levels of these molecules were significantly suppressed in the Pro(35S):AtNUDX2 plants. The results indicate that overexpression of AtNUDX2, encoding ADP-ribose pyrophosphatase, confers enhanced tolerance of oxidative stress on Arabidopsis plants, resulting from maintenance of NAD(+) and ATP levels by nucleotide recycling from free ADP-ribose molecules under stress conditions.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631 8505, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Muñoz FJ, Baroja-Fernández E, Ovecka M, Li J, Mitsui T, Sesma MT, Montero M, Bahaji A, Ezquer I, Pozueta-Romero J. Plastidial localization of a potato 'Nudix' hydrolase of ADP-glucose linked to starch biosynthesis. PLANT & CELL PHYSIOLOGY 2008; 49:1734-46. [PMID: 18801762 DOI: 10.1093/pcp/pcn145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Escherichia coli and potato (Solanum tuberosum) ADP-sugar pyrophosphatases (EcASPP and StASPP, respectively) are 'Nudix' hydrolases of the bacterial glycogen and starch precursor molecule, ADP-glucose (ADPG). We have previously shown that potato leaves expressing EcASPP either in the cytosol or in the chloroplast exhibited large reductions in the levels of starch, suggesting the occurrence of cytosolic and plastidial pools of ADPG linked to starch biosynthesis. In this work, we produced and characterized potato and Arabidopsis plants expressing EcASPP and StASPP fused with green fluorescent protein (GFP). Confocal fluorescence microscopy analyses of these plants confirmed that EcASPP-GFP has a cytosolic localization, whereas StASPP-GFP occurs in the plastid stroma. Both source leaves and potato tubers from EcASPP-GFP-expressing plants showed a large reduction of the levels of both ADPG and starch. In contrast, StASPP-GFP-expressing leaves and tubers exhibited reduced starch and normal ADPG contents when compared with control plants. With the exception of starch synthase in StASPP-GFP-expressing plants, no pleiotropic changes in maximum catalytic activities of enzymes closely linked to starch metabolism could be detected in EcASPP-GFP- and StASPP-GFP-expressing plants. The overall data (i) show that potato plants possess a plastidial ASPP that has access to ADPG linked to starch biosynthesis and (ii) are consistent with the occurrence of plastidic and cytosolic pools of ADPG linked to starch biosynthesis.
Collapse
Affiliation(s)
- Francisco José Muñoz
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloako etorbidea zenbaki gabe, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ogawa T, Yoshimura K, Miyake H, Ishikawa K, Ito D, Tanabe N, Shigeoka S. Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1412-24. [PMID: 18815383 PMCID: PMC2577243 DOI: 10.1104/pp.108.128413] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/22/2008] [Indexed: 05/18/2023]
Abstract
Nudix (for nucleoside diphosphates linked to some moiety X) hydrolases act to hydrolyze ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or dinucleoside polyphosphates. Arabidopsis (Arabidopsis thaliana) contains 27 genes encoding Nudix hydrolase homologues (AtNUDX1 to -27) with a predicted distribution in the cytosol, mitochondria, and chloroplasts. Previously, cytosolic Nudix hydrolases (AtNUDX1 to -11 and -25) were characterized. Here, we conducted a characterization of organelle-type AtNUDX proteins (AtNUDX12 to -24, -26, and -27). AtNUDX14 showed pyrophosphohydrolase activity toward both ADP-ribose and ADP-glucose, although its K(m) value was approximately 100-fold lower for ADP-ribose (13.0+/-0.7 microm) than for ADP-glucose (1,235+/-65 microm). AtNUDX15 hydrolyzed not only reduced coenzyme A (118.7+/-3.4 microm) but also a wide range of its derivatives. AtNUDX19 showed pyrophosphohydrolase activity toward both NADH (335.3+/-5.4 microm) and NADPH (36.9+/-3.5 microm). AtNUDX23 had flavin adenine dinucleotide pyrophosphohydrolase activity (9.1+/-0.9 microm). Both AtNUDX26 and AtNUDX27 hydrolyzed diadenosine polyphosphates (n=4-5). A confocal microscopic analysis using a green fluorescent protein fusion protein showed that AtNUDX15 is distributed in mitochondria and AtNUDX14 -19, -23, -26, and -27 are distributed in chloroplasts. These AtNUDX mRNAs were detected ubiquitously in various Arabidopsis tissues. The T-DNA insertion mutants of AtNUDX13, -14, -15, -19, -20, -21, -25, -26, and -27 did not exhibit any phenotypical differences under normal growth conditions. These results suggest that Nudix hydrolases in Arabidopsis control a variety of metabolites and are pertinent to a wide range of physiological processes.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|