1
|
Fujiwara MT, Yoshioka Y, Kazama Y, Hirano T, Niwa Y, Moriyama T, Sato N, Abe T, Yoshida S, Itoh RD. Principles of amyloplast replication in the ovule integuments of Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:137-152. [PMID: 38829834 PMCID: PMC11376375 DOI: 10.1093/plphys/kiae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
- Department of Biology, Graduate School of Science and Technology, Sophia University, Kioicho, Chiyoda 102-8554, Japan
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yasushi Yoshioka
- Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Yusuke Kazama
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Tomonari Hirano
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuo Niwa
- Laboratory of Plant Cell Technology, University of Shizuoka, Yada, Shizuoka 422-8526, Japan
| | - Takashi Moriyama
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Naoki Sato
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
2
|
Yan H, Ren Y, Zhang B, Jin J, Du F, Shan Z, Fu Y, Zhu Y, Wang X, Zhu C, Cai Y, Zhang J, Wang F, Zhang X, Wang R, Wang Y, Xu H, Jiang L, Liu X, Zhu S, Lin Q, Lei C, Cheng Z, Wang Y, Zhang W, Wan J. SUBSTANDARD STARCH GRAIN7 regulates starch grain size and endosperm development in rice. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39180364 DOI: 10.1111/pbi.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/26/2024]
Abstract
Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binglei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feilong Du
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yun Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Fan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| |
Collapse
|
3
|
Haxhari F, Savorani F, Rondanelli M, Cantaluppi E, Campanini L, Magnani E, Simonelli C, Gavoci G, Chiadò A, Sozzi M, Cavallini N, Chiodoni A, Gasparri C, Barrile GC, Cavioni A, Mansueto F, Mazzola G, Moroni A, Patelli Z, Pirola M, Tartara A, Guido D, Perna S, Magnaghi R. Endosperm structure and Glycemic Index of Japonica Italian rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 14:1303771. [PMID: 38250450 PMCID: PMC10796725 DOI: 10.3389/fpls.2023.1303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Introduction Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. Methods 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique. Using an ad-hoc developed algorithm, morphological features were extracted from the FESEM images, to be then inspected by means of multivariate data analysis methods. Results and Discussion Large variability was observed in GI values (49 to 92 with respect to glucose), as well as in endosperm morphological features. According to the percentage of porosity is possible to distinguish approximately among rice varieties having a crystalline grain (< 1.7%), those intended for the preparation of risotto (> 5%), and a third group having intermediate characteristics. Waxy rice varieties were not united by a certain porosity level, but they shared a low starch granules eccentricity. With reference to morphological features, rice varieties with low GI (<55) seem to be characterized by large starch granules and low porosity values. Our data testify the wide variability of Italian rice cultivation giving interesting information for future breeding programs, finding that the structure of the endosperm can be regarded as a specific characteristic of each variety.
Collapse
Affiliation(s)
- Filip Haxhari
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Francesco Savorani
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Enrico Cantaluppi
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Luigi Campanini
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Edoardo Magnani
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Cinzia Simonelli
- Centro Ricerche sul Riso, Ente Nazionale Risi, Castello D’Agogna, Italy
| | - Gentian Gavoci
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Mattia Sozzi
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Nicola Cavallini
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Torino, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Torino, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Francesca Mansueto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia, Italy
| | - Davide Guido
- Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| | | |
Collapse
|
4
|
Esch L, Ngai QY, Barclay JE, McNelly R, Hayta S, Smedley MA, Smith AM, Seung D. Increasing amyloplast size in wheat endosperm through mutation of PARC6 affects starch granule morphology. THE NEW PHYTOLOGIST 2023; 240:224-241. [PMID: 37424336 PMCID: PMC10952435 DOI: 10.1111/nph.19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.
Collapse
Affiliation(s)
- Lara Esch
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Qi Yang Ngai
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - Rose McNelly
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Sadiye Hayta
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - David Seung
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
5
|
Three Diverse Granule Preparation Methods for Proteomic Analysis of Mature Rice (Oryza sativa L.) Starch Grain. Molecules 2022; 27:molecules27103307. [PMID: 35630784 PMCID: PMC9144640 DOI: 10.3390/molecules27103307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Starch is the primary form of reserve carbohydrate storage in plants. Rice (Oryza sativa L.) is a monocot whose reserve starch is organized into compounded structures within the amyloplast, rather than a simple starch grain (SG). The mechanism governing the assembly of the compound SG from polyhedral granules in apposition, however, remains unknown. To further characterize the proteome associated with these compounded structures, three distinct methods of starch granule preparation (dispersion, microsieve, and flotation) were performed. Phase separation of peptides (aqueous trypsin-shaving and isopropanol solubilization of residual peptides) isolated starch granule-associated proteins (SGAPs) from the distal proteome of the amyloplast and the proximal ‘amylome’ (the amyloplastic proteome), respectively. The term ‘distal proteome’ refers to SGAPs loosely tethered to the amyloplast, ones that can be rapidly proteolyzed, while proximal SGAPs are those found closer to the remnant amyloplast membrane fragments, perhaps embedded therein—ones that need isopropanol solvent to be removed from the mature organelle surface. These two rice starch-associated peptide samples were analyzed using nano-liquid chromatography–tandem mass spectrometry (Nano-HPLC-MS/MS). Known and novel proteins, as well as septum-like structure (SLS) proteins, in the mature rice SG were found. Data mining and gene ontology software were used to categorize these putative plastoskeletal components as a variety of structural elements, including actins, tubulins, tubulin-like proteins, and cementitious elements such as reticulata related-like (RER) proteins, tegument proteins, and lectins. Delineating the plastoskeletal proteome begins by understanding how each starch granule isolation procedure affects observed cytoplasmic and plastid proteins. The three methods described herein show how the technique used to isolate SGs differentially impacts the subsequent proteomic analysis and results obtained. It can thus be concluded that future investigations must make judicious decisions regarding the methodology used in extracting proteomic information from the compound starch granules being assessed, since different methods are shown to yield contrasting results herein. Data are available via ProteomeXchange with identifier PXD032314.
Collapse
|
6
|
Cai Y, Chen H, Xiao N, Wu Y, Yu L, Chen Z, Liu J, Shi W, Pan C, Li Y, Zhou C, Ji H, Huang N, Zhang X, Zhang Y, Li A. Substandard starch grain4 may function in amyloplast development by influencing starch and lipid metabolism in rice endosperm. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153638. [PMID: 35149441 DOI: 10.1016/j.jplph.2022.153638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 05/02/2023]
Abstract
The amyloplast is a specialized plastid in rice endosperm cells where starch is synthesized and stored as starch granules (SGs). However, little is known about the molecular mechanism underlying amyloplast and SG development. In this study, a novel mutant (c134) demonstrating a floury endosperm with enlarged SGs and amyloplasts was identified. The floury endosperm was caused by rounder, loosely packed SG. Grain-quality profile and expression analysis showed reduced contents of total starch and amylose in the c134 mutant, as well as reduced expression of a number of genes involved in starch biosynthesis. Galactosyldiacylglycerol (GDG) content and fatty acid synthesis play important roles in plastid development, and in the c134 endosperm, an obvious decrease in GDG and various fatty acids was observed, with down-regulated expression of various genes involved in lipid biosynthesis. Furthermore, map-based cloning revealed an amino acid substitution (glycine to aspartic acid) in the substandard starch grain4 (SSG4) protein. The results of this study suggest that SSG4 influences the regulation of starch and lipid metabolism as well as amyloplast development, a finding that is useful for potential genetic improvement of rice grain quality in future starch and lipid breeding and biotechnology.
Collapse
Affiliation(s)
- Yue Cai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China; Yangzhou University, Yangzhou, 225009, China.
| | - Haiyuan Chen
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Zichun Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Jianju Liu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Wei Shi
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Changhai Zhou
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Hongjuan Ji
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Phumichai C, Aiemnaka P, Nathaisong P, Hunsawattanakul S, Fungfoo P, Rojanaridpiched C, Vichukit V, Kongsil P, Kittipadakul P, Wannarat W, Chunwongse J, Tongyoo P, Kijkhunasatian C, Chotineeranat S, Piyachomkwan K, Wolfe MD, Jannink JL, Sorrells ME. Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:145-171. [PMID: 34661695 DOI: 10.1007/s00122-021-03956-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
GWAS identified eight yield-related, peak starch type of waxy and wild-type starch and 21 starch pasting property-related traits (QTLs). Prediction ability of eight GS models resulted in low to high predictability, depending on trait, heritability, and genetic architecture. Cassava is both a food and an industrial crop in Africa, South America, and Asia, but knowledge of the genes that control yield and starch pasting properties remains limited. We carried out a genome-wide association study to clarify the molecular mechanisms underlying these traits and to explore marker-based breeding approaches. We estimated the predictive ability of genomic selection (GS) using parametric, semi-parametric, and nonparametric GS models with a panel of 276 cassava genotypes from Thai Tapioca Development Institute, International Center for Tropical Agriculture, International Institute of Tropical Agriculture, and other breeding programs. The cassava panel was genotyped via genotyping-by-sequencing, and 89,934 single-nucleotide polymorphism (SNP) markers were identified. A total of 31 SNPs associated with yield, starch type, and starch properties traits were detected by the fixed and random model circulating probability unification (FarmCPU), Bayesian-information and linkage-disequilibrium iteratively nested keyway and compressed mixed linear model, respectively. GS models were developed, and forward predictabilities using all the prediction methods resulted in values of - 0.001-0.71 for the four yield-related traits and 0.33-0.82 for the seven starch pasting property traits. This study provides additional insight into the genetic architecture of these important traits for the development of markers that could be used in cassava breeding programs.
Collapse
Affiliation(s)
- Chalermpol Phumichai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand.
| | - Pornsak Aiemnaka
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Piyaporn Nathaisong
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Sirikan Hunsawattanakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Phasakorn Fungfoo
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Vichan Vichukit
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Wannasiri Wannarat
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Julapark Chunwongse
- Department of Horticulture, Faculty of Agriculture Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Chookiat Kijkhunasatian
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Sunee Chotineeranat
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Kuakoon Piyachomkwan
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Marnin D Wolfe
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- United States Department of Agriculture - Agriculture Research Service, Ithaca, NY, 14850, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
8
|
Qiu L, Hu S, Wang Y, Qu H. Accumulation of Abnormal Amyloplasts in Pulp Cells Induces Bitter Pit in Malus domestica. FRONTIERS IN PLANT SCIENCE 2021; 12:738726. [PMID: 34630490 PMCID: PMC8496688 DOI: 10.3389/fpls.2021.738726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Apple bitter pit primarily occurs during fruit ripening and storage; however, its formation mechanism remains unclear. Although it is considered that Ca2+ deficiency causes metabolic disorders in apples, there have been few studies on the mechanism of the bitter pit from the perspective of cell structure. At the fruit ripening stage, the fruit with a bitter pit on the tree was taken as the research material. In this study, the microscopic observation revealed numerous amyloplasts in the pulp cells of apples affected with bitter pit, but not in the healthy pulp. Furthermore, the results of fluorescence staining and transmission electron microscopy (TEM) revealed that the bitter pit pulp cells undergo programmed cell death (PCD), their nuclear chromosomes condense, and amyloplast forms autophagy. The cytoplasmic Ca2+ concentration in the healthy fruits was lowest near the peduncle, followed by that in the calyx, whereas it was highest at the equator. In contrast, the cytoplasmic Ca2+ concentration in apple fruits showing bitter pit disorder was lowest near the peduncle and highest in the calyx. Moreover, the cytosolic Ca2+ concentration in the flesh cells of apples with the bitter pit was much lower than that in the healthy apple flesh cells; however, the concentration of Ca2+ in the vacuoles of fruits with the bitter pit was higher than that in the vacuoles of healthy fruits. In summary, bitter pit pulp cells contain a large number of amyloplasts, which disrupts the distribution of Ca2+ in the pulp cells and causes PCD. These two processes lead to an imbalance in cell metabolism and induce the formation of a bitter pit.
Collapse
Affiliation(s)
| | | | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyong Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
10
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, Wang Y, Zhang X, Guo X, Lin Q, Cheng Z, Lei C, Wang J, Jiang L, Wang Y, Wan J. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110831. [PMID: 33691965 DOI: 10.1016/j.plantsci.2021.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.
Collapse
Affiliation(s)
- Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
12
|
Yang Y, Lin G, Yu X, Wu Y, Xiong F. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int J Biol Macromol 2020; 160:328-339. [PMID: 32473221 DOI: 10.1016/j.ijbiomac.2020.05.210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
The quality of rice grain is characterized by the component, structure and physicochemical properties of starch accumulated in endosperm cell. Nitrogen uptake strongly affects rice growth and starch development. In this study, Nangeng 9108 was used to investigated the accumulation of starch in different positions of the endosperm and physical properties of starch under nitrogen treatment of panicle initiation (PI) stage. Compared with the control group (CG), nitrogen treatment group (NTG) featured a higher number of grains per panicle and 1000-grain weight. Nitrogen treatment significantly increased starch accumulation among different regions during endosperm development, which was expressed as central endosperm cells > sub-aleurone cells of abdominal endosperm > sub-aleurone cells of dorsal endosperm. The amyloplast increased by constricting and budding-type division, generated a bead-like structure and derived some vesicles. The particle size of the starch granules obtained from the NTG was smaller and the apparent amylose content was lower than those of the CG, resulting in higher relative crystallinity. Nitrogen treatment promoted double helical components and provided a higher degree of order at short-rang scale for the starch granules. This study indicated that nitrogen significantly affected the accumulation and physicochemical properties of starch in the endosperm.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Guoqiang Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, Li L. OR His, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. MOLECULAR PLANT 2020; 13:864-878. [PMID: 32222485 DOI: 10.1016/j.molp.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Chromoplasts are colored plastids that synthesize and store massive amounts of carotenoids. Chromoplast number and size define the sink strength for carotenoid accumulation in plants. However, nothing is known about the mechanisms controlling chromoplast number. Previously, a natural allele of Orange (OR), ORHis, was found to promote carotenoid accumulation by activating chromoplast differentiation and increasing carotenoid biosynthesis, but cells in orange tissues in melon fruit and cauliflower OR mutant have only one or two enlarged chromoplasts. In this study, we investigated an ORHis variant of Arabidopsis OR, genetically mimicking the melon ORHis allele, and found that it also constrains chromoplast number in Arabidopsis calli. Both in vitro and in vivo experiments demonstrate that ORHis specifically interacts with the Membrane Occupation and Recognition Nexus domain of ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), a crucial regulator of chloroplast division. We further showed that ORHis interferes with the interaction between ARC3 and PARALOG OF ARC6 (PARC6), another key regulator of chloroplast division, suggesting a role of ORHis in competing with PARC6 for binding to ARC3 to restrict chromoplast number. Overexpression or knockout of ARC3 in Arabidopsis ORHis plants significantly alters total carotenoid levels. Moreover, overexpression of the plastid division factor PLASTID DIVISION 1 greatly enhances carotenoid accumulation. These division factors likely alter carotenoid levels via their influence on chromoplast number and/or size. Taken together, our findings provide novel mechanistic insights into the machinery controlling chromoplast number and highlight a potential new strategy for enhancing carotenoid accumulation and nutritional value in food crops.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Zhong Y, Sagnelli D, Topbjerg HB, Hasler-Sheetal H, Andrzejczak OA, Hooshmand K, Gislum R, Jiang D, Møller IM, Blennow A, Hebelstrup KH. Expression of starch-binding factor CBM20 in barley plastids controls the number of starch granules and the level of CO2 fixation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:234-246. [PMID: 31494665 PMCID: PMC6913705 DOI: 10.1093/jxb/erz401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
The biosynthesis of starch granules in plant plastids is coordinated by the orchestrated action of transferases, hydrolases, and dikinases. These enzymes either contain starch-binding domain(s) themselves, or are dependent on direct interactions with co-factors containing starch-binding domains. As a means to competitively interfere with existing starch-protein interactions, we expressed the protein module Carbohydrate-Binding Motif 20 (CBM20), which has a very high affinity for starch, ectopically in barley plastids. This interference resulted in an increase in the number of starch granules in chloroplasts and in formation of compound starch granules in grain amyloplasts, which is unusual for barley. More importantly, we observed a photosystem-independent inhibition of CO2 fixation, with a subsequent reduced growth rate and lower accumulation of carbohydrates with effects throughout the metabolome, including lower accumulation of transient leaf starch. Our results demonstrate the importance of endogenous starch-protein interactions for controlling starch granule morphology and number, and plant growth, as substantiated by a metabolic link between starch-protein interactions and control of CO2 fixation in chloroplasts.
Collapse
Affiliation(s)
- Yingxin Zhong
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Domenico Sagnelli
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Henrik Bak Topbjerg
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Harald Hasler-Sheetal
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Olga Agata Andrzejczak
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - René Gislum
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
15
|
Imaging Amyloplasts in the Developing Endosperm of Barley and Rice. Sci Rep 2019; 9:3745. [PMID: 30842645 PMCID: PMC6403327 DOI: 10.1038/s41598-019-40424-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
Amyloplasts are plant-specific organelles responsible for starch biosynthesis and storage. Inside amyloplasts, starch forms insoluble particles, referred to as starch grains (SGs). SG morphology differs between species and SG morphology is particularly diverse in the endosperm of Poaceae plants, such as rice (Oryza sativa) and barley (Hordeum vulgare), which form compound SGs and simple SGs, respectively. SG morphology has been extensively imaged, but the comparative imaging of amyloplast morphology has been limited. In this study, SG-containing amyloplasts in the developing endosperm were visualized using stable transgenic barley and rice lines expressing amyloplast stroma-targeted green fluorescent protein fused to the transit peptide (TP) of granule-bound starch synthase I (TP-GFP). The TP-GFP barley and rice plants had elongated amyloplasts containing multiple SGs, with constrictions between the SGs. In barley, some amyloplasts were connected by narrow protrusions extending from their surfaces. Transgenic rice lines producing amyloplast membrane-localized SUBSTANDARD STARCH GRAIN6 (SSG6)-GFP were used to demonstrate that the developing amyloplasts contained multiple compound SGs. TP-GFP barley can be used to visualize the chloroplasts in leaves and other plastids in pollen and root in addition to the endosperm, therefore it provides as a useful tool to observe diverse plastids.
Collapse
|
16
|
Geng MT, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L, Wang YL, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Isolation and Characterization of Ftsz Genes in Cassava. Genes (Basel) 2017; 8:genes8120391. [PMID: 29244730 PMCID: PMC5748709 DOI: 10.3390/genes8120391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
Collapse
Affiliation(s)
- Meng-Ting Geng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xia Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shuai Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Fan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lu Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yun-Lin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
17
|
Affiliation(s)
- Yasunori Nakamura
- Akita Natural Science Laboratory; Tennoh, Katagami, Akita Japan
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo-Nakano, Akita Japan
| |
Collapse
|
18
|
Matsushima R, Maekawa M, Kusano M, Tomita K, Kondo H, Nishimura H, Crofts N, Fujita N, Sakamoto W. Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm. PLANT PHYSIOLOGY 2016; 170:1445-59. [PMID: 26792122 PMCID: PMC4775137 DOI: 10.1104/pp.15.01811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Miyako Kusano
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Katsura Tomita
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Naoko Crofts
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Naoko Fujita
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| |
Collapse
|
19
|
Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. ACTA ACUST UNITED AC 2015; 56:977-91. [DOI: 10.1093/pcp/pcv024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
|
21
|
Shu X, Sun J, Wu D. Effects of grain development on formation of resistant starch in rice. Food Chem 2014; 164:89-97. [PMID: 24996310 DOI: 10.1016/j.foodchem.2014.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Three rice mutants with different contents of resistant starch (RS) were selected to investigate the effects of grain filling process on the formation of resistant starch. During grain development, the content of RS was increased with grain maturation and showed negative correlations with the grain weight and the starch molecular weight (Mn, Mw) and a positive correlation with the distribution of molecular mass (polydispersity, Pd). The morphologies of starch granules in high-RS rice were almost uniform in single starch granules and exhibited different proliferation modes from common rice. The lower activities of ADP-glucose pyrophosphorylase and starch branching enzyme and the higher activity of starch synthase and starch de-branching enzyme observed in high-RS rice might be responsible for the formation of small irregular starch granules with large spaces between them. In addition, the lower molecular weight and the broad distribution of molecular weights lead to differences in the physiochemical properties of starch.
Collapse
Affiliation(s)
- Xiaoli Shu
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Jian Sun
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Dianxing Wu
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
22
|
Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. PLANT PHYSIOLOGY 2014; 164:623-36. [PMID: 24335509 PMCID: PMC3912094 DOI: 10.1104/pp.113.229591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology.
Collapse
|
23
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
24
|
Burrieza HP, López-Fernández MP, Maldonado S. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. FRONTIERS IN PLANT SCIENCE 2014; 5:546. [PMID: 25360139 PMCID: PMC4199267 DOI: 10.3389/fpls.2014.00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 05/09/2023]
Abstract
Quinoa seeds are highly nutritious due to the quality of their proteins and lipids and the wide range of minerals and vitamins they store. Three compartments can be distinguished within the mature seed: embryo, endosperm, and perisperm. The distribution of main storage reserves is clearly different in those areas: the embryo and endosperm store proteins, lipids, and minerals, and the perisperm stores starch. Tissues equivalent (but not homologous) to those found in grasses can be identified in quinoa, suggesting the effectiveness of this seed reserve distribution strategy; as in cells of grass starchy endosperm, the cells of the quinoa perisperm endoreduplicate, increase in size, synthesize starch, and die during development. In addition, both systems present an extra-embryonic tissue that stores proteins, lipids and minerals: in gramineae, the aleurone layer(s) of the endosperm; in quinoa, the micropylar endosperm; in both cases, the tissues are living. Moreover, the quinoa micropylar endosperm and the coleorhiza in grasses play similar roles, protecting the root in the quiescent seed and controlling dormancy during germination. This investigation is just the beginning of a broader and comparative study of the development of quinoa and grass seeds. Several questions arise from this study, such as: how are synthesis and activation of seed proteins and enzymes regulated during development and germination, what are the genes involved in these processes, and lastly, what is the genetic foundation justifying the analogy to grasses.
Collapse
Affiliation(s)
- Hernán P. Burrieza
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - María P. López-Fernández
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - Sara Maldonado
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
- *Correspondence: Sara Maldonado, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina e-mail:
| |
Collapse
|
25
|
Nayar S, Sharma R, Tyagi AK, Kapoor S. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4239-53. [PMID: 23929654 PMCID: PMC3808311 DOI: 10.1093/jxb/ert231] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis.
Collapse
Affiliation(s)
- Saraswati Nayar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- *Present address: Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Akhilesh Kumar Tyagi
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
26
|
TerBush AD, Yoshida Y, Osteryoung KW. FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 2013; 25:461-70. [DOI: 10.1016/j.ceb.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
|
27
|
Pyke KA. Divide and shape: an endosymbiont in action. PLANTA 2013; 237:381-7. [PMID: 22910876 DOI: 10.1007/s00425-012-1739-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 05/10/2023]
Abstract
The endosymbiotic evolution of the plastid within the host cell required development of a mechanism for efficient division of the plastid. Whilst a model for the mechanism of chloroplast division has been constructed, little is known of how other types of plastids divide, especially the proplastid, the progenitor of all plastid types in the cell. It has become clear that plastid shape is highly heterogeneous and dynamic, especially stromules. This article considers how such variation in morphology might be controlled and how such plastids might divide efficiently.
Collapse
Affiliation(s)
- Kevin A Pyke
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|
28
|
Nobusawa T, Umeda M. Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana. Genes Cells 2012; 17:709-19. [DOI: 10.1111/j.1365-2443.2012.01619.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/07/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama 8916-5; Ikoma; Nara; 630-0192; Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama 8916-5; Ikoma; Nara; 630-0192; Japan
| |
Collapse
|
29
|
Structure, regulation, and evolution of the plastid division machinery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:115-53. [PMID: 22017975 DOI: 10.1016/b978-0-12-386035-4.00004-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes. The division complex has retained certain components of the cyanobacterial division complex along with components developed by the host cell. Based on the information on the division complex at the molecular level, we are beginning to understand how the division complex has evolved and how it is assembled, constricted, and regulated in the host cell. This chapter reviews the current understanding of the plastid division machinery and some of the questions that will be addressed in the near future.
Collapse
|
30
|
Yun MS, Umemoto T, Kawagoe Y. Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. PLANT & CELL PHYSIOLOGY 2011; 52:1068-82. [PMID: 21551159 PMCID: PMC3110883 DOI: 10.1093/pcp/pcr058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/25/2011] [Indexed: 05/04/2023]
Abstract
Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3-green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice.
Collapse
Affiliation(s)
- Min-Soo Yun
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
- Present address: Food Resource Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, 305-8642 Japan
| | - Takayuki Umemoto
- Rice Quality Research Team, National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, 305-8518, Japan
- Present address: National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira, Sapporo, 062-8555 Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
| |
Collapse
|
31
|
Miyagishima SY. Mechanism of plastid division: from a bacterium to an organelle. PLANT PHYSIOLOGY 2011; 155:1533-44. [PMID: 21311032 PMCID: PMC3091088 DOI: 10.1104/pp.110.170688] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/02/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Shizuoka 411-8540, Japan.
| |
Collapse
|
32
|
Inaba T, Ito-Inaba Y. Versatile roles of plastids in plant growth and development. PLANT & CELL PHYSIOLOGY 2010; 51:1847-1853. [PMID: 20889507 DOI: 10.1093/pcp/pcq147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.
Collapse
Affiliation(s)
- Takehito Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192 Japan.
| | | |
Collapse
|
33
|
Pyke KA. Plastid division. AOB PLANTS 2010; 2010:plq016. [PMID: 22476074 PMCID: PMC2995336 DOI: 10.1093/aobpla/plq016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/19/2010] [Accepted: 09/28/2010] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Plastids undergo a process of binary fission in order to replicate. Plastid replication is required at two distinct stages of plant growth: during cell division to ensure correct plastid segregation, and during cell expansion and development to generate large populations of functional plastids, as in leaf mesophyll cells. This review considers some of the recent advances in the understanding of how plastids undergo binary fission, a process which uses several different proteins, both internal and external to the plastid, which have been derived from the original endosymbiont's genome as well as new proteins that have been recruited from the host genome. KEY POINTS Several of the proteins currently used in this process in higher plants have homologues in modern-day bacteria. An alternative mode of replication by a budding-type mechanism also appears to be used in some circumstances. The review also highlights how most of our knowledge of plastid division is centred on the chloroplast developing in leaf mesophyll cells and a role for plastid division during the development of other plastid types is poorly understood. Whilst models for a protein-based mechanism have been devised, exactly how the division process is controlled at the plastid level and at the plastid population level is poorly understood.
Collapse
Affiliation(s)
- Kevin Andrew Pyke
- Plant and Crop Sciences Division , School of Biosciences, University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD , UK
| |
Collapse
|
34
|
Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:56-70. [PMID: 20663087 DOI: 10.1111/j.1365-313x.2010.04308.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.
Collapse
Affiliation(s)
- Guangyan Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Hulst C, Mérida A. The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. THE NEW PHYTOLOGIST 2010; 188:13-21. [PMID: 20618917 DOI: 10.1111/j.1469-8137.2010.03361.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Starch is the main polymer in which carbon and energy are stored in land plants, algae and some cyanobacteria. It plays a crucial role in the physiology of these organisms and also represents an important polymer for humans, in terms of both diet and nonfood industry uses. Recent efforts have elucidated most of the steps involved in the synthesis of starch. However, the process that initiates the synthesis of the starch granule remains unclear. Here, we outline the similarities between the synthesis of starch and the synthesis of glycogen, the other widespread and abundant glucose-based polymer in living cells. We place special emphasis on the mechanisms of initiation of the glycogen granule and current knowledge concerning the initiation of the starch granule. We also discuss recent discoveries regarding the function of starch synthases in the priming of the starch granule and possible interactions with other elements of the starch synthesis machinery.
Collapse
Affiliation(s)
- Christophe D'Hulst
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
36
|
Yun MS, Kawagoe Y. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. PLANT & CELL PHYSIOLOGY 2010; 51:1469-79. [PMID: 20685968 DOI: 10.1093/pcp/pcq116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Storage tissues such as seed endosperm and tubers store starch in the form of granules in the amyloplast. In the rice (Oryza sativa) endosperm, each amyloplast produces compound granules consisting of several dozen polyhedral, sharp-edged and easily separable granules; whereas in other cereals, including wheat (Triticum aestivum), barley (Hordeum vulgare) and maize (Zea mays), each amyloplast synthesizes one granule. Despite extensive studies on mutants of starch synthesis in cereals, the molecular mechanisms involved in compound granule synthesis in rice have remained elusive. In this study, we expressed green fluorescent protein (GFP) fused to rice Brittle1 (BT1), an inner envelope membrane protein, to characterize dividing amyloplasts in the rice endosperm. Confocal microscopic analyses revealed that a septum-like structure, or cross-wall, containing BT1-GFP divides granules in the amyloplast. Plastid division proteins including FtsZ, Min and PDV2 play significant roles not only in amyloplast division, but also in septum synthesis, suggesting that amyloplast division and septum synthesis are related processes that share common factors. We propose that successive septum syntheses which create sections inside the amyloplast and de novo granule synthesis in each section are primarily responsible for the synthesis of compound granules.
Collapse
Affiliation(s)
- Min-Soo Yun
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | |
Collapse
|
37
|
Matsushima R, Maekawa M, Fujita N, Sakamoto W. A rapid, direct observation method to isolate mutants with defects in starch grain morphology in rice. PLANT & CELL PHYSIOLOGY 2010; 51:728-41. [PMID: 20360021 DOI: 10.1093/pcp/pcq040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Starch forms transparent grains, referred to as starch grains (SGs), in amyloplasts. Despite the simple glucose polymer composition of starch, SGs exhibit different morphologies depending on plant species, especially in the endosperm of the Poaceae family. This study reports a novel method for preparing thin sections of endosperm without chemical fixation or resin embedding that allowed us to visualize subcellular SGs clearly. Using this method, we observed the SG morphologies of >5,000 mutagenized rice seeds and were able to isolate mutants in which SGs were morphologically altered. In five mutants, named ssg (substandard starch grain), increased numbers of small SGs (ssg1-ssg3), enlarged SGs (ssg4) and abnormal interior structures of SGs (ssg5) were observed. Amylopectin chain length distribution analysis and identification of the mutated gene suggested a possible allelic relationship between ssg1, ssg2, ssg3 and the previously isolated amylose-extender (ae) mutants, while ssg4 and ssg5 seemed to be novel mutants. Compared with conventional observation methods, the methods developed here are more effective for obtaining fine images of subcellular SGs and are suitable for the observation of a large number of samples.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan.
| | | | | | | |
Collapse
|