1
|
Tyagi S, Sharma Y, Sharma A, Pandey A, Singh K, Upadhyay SK. Expression of TaNCL2-A ameliorates cadmium toxicity by increasing calcium and enzymatic antioxidants activities in arabidopsis. CHEMOSPHERE 2023; 329:138636. [PMID: 37040835 DOI: 10.1016/j.chemosphere.2023.138636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a heavy metal that occurs naturally in the environment and is toxic to both animals and plants. The impact of Cd toxicity is shown to be reduced by the exogenous application of calcium (Ca) in crop plants. The sodium/calcium exchanger-like (NCL) protein is involved in Ca enrichment in the cytoplasm by transporting it from the vacuole in the exchange of cytosolic sodium (Na). However, it has not been utilized to ameliorate the Cd toxicity, to date. An elevated expression of TaNCL2-A gene in the root and shoot tissues of bread wheat seedlings, and a higher growth rate of recombinant yeast cells, suggested its role in Cd stress response. The TaNCL2-A expressing transgenic Arabidopsis lines exhibited significant Cd tolerance with increased Ca (∼10-fold) accumulation. The proline content and antioxidant enzymes activities were increased while oxidative stress-related molecules such as H2O2 and MDA were reduced in the transgenic lines. In addition, the growth and yield parameters of transgenic lines such as seed germination rate, root length, leaf biomass, leaf area index, rosette diameter, leaf length and width, and silique count, along with various physiological indicators like chlorophyll, carotenoid, and relative water contents were also improved in comparison to the control plants. Further, the transgenic lines exhibited significant salinity and osmotic stress tolerance, as well. Taken together, these results suggested that the TaNCL2-A could mitigate Cd toxicity along with salinity and osmotic stress. This gene may also be utilized for phytoremediation and Cd sequestration in future studies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
2
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
3
|
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, Ma H. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development. PLANT & CELL PHYSIOLOGY 2022; 63:785-801. [PMID: 35348748 DOI: 10.1093/pcp/pcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - David Scheuring
- Department of Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Moshe A Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
5
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4085-4101. [PMID: 33462577 DOI: 10.1093/jxb/eraa603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in coordinating cell growth with light availability, the diurnal cycle, energy availability, and hormonal pathways. TOR Complex 1 (TORC1) controls cell proliferation, growth, metabolism, and defense in plants. Sugar availability is the main signal for activation of TOR in plants, as it also is in mammals and yeast. Specific regulators of the TOR kinase pathway in plants are inorganic compounds in the form of major nutrients in the soils, and light inputs via their impact on autotrophic metabolism. The lack of TOR is embryo-lethal in plants, whilst dysregulation of TOR signaling causes major alterations in growth and development. TOR exerts control as a regulator of protein translation via the action of proteins such as S6K, RPS6, and TAP46. Phytohormones are central players in the downstream systemic physiological TOR effects. TOR has recently been attributed to have roles in the control of DNA methylation, in the abundance of mRNA splicing variants, and in the variety of regulatory lncRNAs and miRNAs. In this review, we summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.
Collapse
Affiliation(s)
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cintia M Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
7
|
Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22095020. [PMID: 34065142 PMCID: PMC8126025 DOI: 10.3390/ijms22095020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
The study of subcellular membrane structure and function facilitates investigations into how biological processes are divided within the cell. However, work in this area has been hampered by the limited techniques available to fractionate the different membranes. Free Flow Electrophoresis (FFE) allows for the fractionation of membranes based on their different surface charges, a property made up primarily of their varied lipid and protein compositions. In this study, high-resolution plant membrane fractionation by FFE, combined with mass spectrometry-based proteomics, allowed the simultaneous profiling of multiple cellular membranes from the leaf tissue of the plant Mesembryanthemum crystallinum. Comparisons of the fractionated membranes’ protein profile to that of known markers for specific cellular compartments sheds light on the functions of proteins, as well as provides new evidence for multiple subcellular localization of several proteins, including those involved in lipid metabolism.
Collapse
|
8
|
Dreyer A, Treffon P, Basiry D, Jozefowicz AM, Matros A, Mock HP, Dietz KJ. Function and Regulation of Chloroplast Peroxiredoxin IIE. Antioxidants (Basel) 2021; 10:antiox10020152. [PMID: 33494157 PMCID: PMC7909837 DOI: 10.3390/antiox10020152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Peroxiredoxins (PRX) are thiol peroxidases that are highly conserved throughout all biological kingdoms. Increasing evidence suggests that their high reactivity toward peroxides has a function not only in antioxidant defense but in particular in redox regulation of the cell. Peroxiredoxin IIE (PRX-IIE) is one of three PRX types found in plastids and has previously been linked to pathogen defense and protection from protein nitration. However, its posttranslational regulation and its function in the chloroplast protein network remained to be explored. Using recombinant protein, it was shown that the peroxidatic Cys121 is subjected to multiple posttranslational modifications, namely disulfide formation, S-nitrosation, S-glutathionylation, and hyperoxidation. Slightly oxidized glutathione fostered S-glutathionylation and inhibited activity in vitro. Immobilized recombinant PRX-IIE allowed trapping and subsequent identification of interaction partners by mass spectrometry. Interaction with the 14-3-3 υ protein was confirmed in vitro and was shown to be stimulated under oxidizing conditions. Interactions did not depend on phosphorylation as revealed by testing phospho-mimicry variants of PRX-IIE. Based on these data it is proposed that 14-3-3υ guides PRX‑IIE to certain target proteins, possibly for redox regulation. These findings together with the other identified potential interaction partners of type II PRXs localized to plastids, mitochondria, and cytosol provide a new perspective on the redox regulatory network of the cell.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Patrick Treffon
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Daniel Basiry
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Anna Maria Jozefowicz
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
9
|
Yao L, Yu Q, Huang M, Song Z, Grosser J, Chen S, Wang Y, Gmitter FG. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. PLoS One 2020; 15:e0228876. [PMID: 32059041 PMCID: PMC7021301 DOI: 10.1371/journal.pone.0228876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Zhen Song
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Roustan V, Hilscher J, Weidinger M, Reipert S, Shabrangy A, Gebert C, Dietrich B, Dermendjiev G, Schnurer M, Roustan PJ, Stoger E, Ibl V. Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Sci Rep 2020; 10:1864. [PMID: 32024857 PMCID: PMC7002727 DOI: 10.1038/s41598-020-58740-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Cereal endosperm is a short-lived tissue adapted for nutrient storage, containing specialized organelles, such as protein bodies (PBs) and protein storage vacuoles (PSVs), for the accumulation of storage proteins. During development, protein trafficking and storage require an extensive reorganization of the endomembrane system. Consequently, endomembrane-modifying proteins will influence the final grain quality and yield. However, little is known about the molecular mechanism underlying endomembrane system remodeling during barley grain development. By using label-free quantitative proteomics profiling, we quantified 1,822 proteins across developing barley grains. Based on proteome annotation and a homology search, 94 proteins associated with the endomembrane system were identified that exhibited significant changes in abundance during grain development. Clustering analysis allowed characterization of three different development phases; notably, integration of proteomics data with in situ subcellular microscopic analyses showed a high abundance of cytoskeleton proteins associated with acidified PBs at the early development stages. Moreover, endosomal sorting complex required for transport (ESCRT)-related proteins and their transcripts are most abundant at early and mid-development. Specifically, multivesicular bodies (MVBs), and the ESCRT-III HvSNF7 proteins are associated with PBs during barley endosperm development. Together our data identified promising targets to be genetically engineered to modulate seed storage protein accumulation that have a growing role in health and nutritional issues.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Julia Hilscher
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Claudia Gebert
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Bianca Dietrich
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
- Medical University of Vienna, Department of Obstetrics and Gynecology Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, A-1090, Vienna, Austria
| | - Georgi Dermendjiev
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Madeleine Schnurer
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Eva Stoger
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
12
|
Goto-Yamada S, Oikawa K, Bizan J, Shigenobu S, Yamaguchi K, Mano S, Hayashi M, Ueda H, Hara-Nishimura I, Nishimura M, Yamada K. Sucrose Starvation Induces Microautophagy in Plant Root Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:1604. [PMID: 31850051 PMCID: PMC6901504 DOI: 10.3389/fpls.2019.01604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 05/26/2023]
Abstract
Autophagy is an essential system for degrading and recycling cellular components for survival during starvation conditions. Under sucrose starvation, application of a papain protease inhibitor E-64d to the Arabidopsis root and tobacco BY-2 cells induced the accumulation of vesicles, labeled with a fluorescent membrane marker FM4-64. The E-64d-induced vesicle accumulation was reduced in the mutant defective in autophagy-related genes ATG2, ATG5, and ATG7, suggesting autophagy is involved in the formation of these vesicles. To clarify the formation of these vesicles in detail, we monitored time-dependent changes of tonoplast, and vesicle accumulation in sucrose-starved cells. We found that these vesicles were derived from the tonoplast and produced by microautophagic process. The tonoplast proteins were excluded from the vesicles, suggesting that the vesicles are generated from specific membrane domains. Concanamycin A treatment in GFP-ATG8a transgenic plants showed that not all FM4-64-labeled vesicles, which were derived from the tonoplast, contained the ATG8a-containing structure. These results suggest that ATG8a may not always be necessary for microautophagy.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Jakub Bizan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Madina MH, Rahman MS, Zheng H, Germain H. Vacuolar membrane structures and their roles in plant-pathogen interactions. PLANT MOLECULAR BIOLOGY 2019; 101:343-354. [PMID: 31621005 DOI: 10.1007/s11103-019-00921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
14
|
Kuang L, Chen S, Guo Y, Ma H. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:641. [PMID: 31156689 PMCID: PMC6530609 DOI: 10.3389/fpls.2019.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
ESCRT-mediated sorting and intralumenal vesicle concatenation in plants. Biochem Soc Trans 2018; 46:537-545. [PMID: 29666213 DOI: 10.1042/bst20170439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
The degradation of plasma membrane and other membrane-associated proteins require their sorting at endosomes for delivery to the vacuole. Through the endocytic pathway, ubiquitinated membrane proteins (cargo) are delivered to endosomes where the ESCRT (endosomal sorting complex required for transport) machinery sorts them into intralumenal vesicles for degradation. Plants contain both conserved and plant-specific ESCRT subunits. In this review, I discuss the role of characterized plant ESCRT components, the evolutionary diversification of the plant ESCRT machinery, and a recent study showing that endosomal intralumenal vesicles form in clusters of concatenated vesicle buds by temporally uncoupling membrane constriction from membrane fission.
Collapse
|
16
|
Abstract
A large number of proteins in the vacuolar membrane (VM; tonoplast), including transporters and receptors, support the various functions of the vacuole. Molecular analysis of membrane proteins is an essential step in understanding how the vacuole operates but so far only a small number of tonoplast proteins have been identified at the molecular level. Accordingly, mutant lines with altered level of tonoplast proteins for characterizing their physiological roles have been developed sparsely. Also, detecting activities of tonoplast proteins remains difficult as it requires a certain degree of enrichment of this organelle fraction. In order to extend our understanding of the vacuole, several groups have turned to proteomic analysis of tonoplast membrane proteins. A primary requirement of any organelle analysis by proteomics is that the purity of the isolated organelle needs to be high so that its composition can be accurately analyzed with mass spectrometry. In this chapter, we describe a simple method for the isolation of intact vacuoles and subsequent proteome analysis of the VM fraction of cells from Arabidopsis suspension cultures.
Collapse
Affiliation(s)
- Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Katsuhisa Yoshida
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
17
|
Integrating cell biology and proteomic approaches in plants. J Proteomics 2017; 169:165-175. [DOI: 10.1016/j.jprot.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
18
|
Buono RA, Leier A, Paez-Valencia J, Pennington J, Goodman K, Miller N, Ahlquist P, Marquez-Lago TT, Otegui MS. ESCRT-mediated vesicle concatenation in plant endosomes. J Cell Biol 2017; 216:2167-2177. [PMID: 28592443 PMCID: PMC5496621 DOI: 10.1083/jcb.201612040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
ESCRT proteins play essential functions by remodeling cellular membranes. Buono et al. report on a novel ESCRT-dependent mechanism in plant endosomes that leads to sequential concatenation of vesicle buds by temporally uncoupling membrane constriction from membrane fission. During this process, ESCRT-III proteins remain inside endosomes after intralumenal vesicle release. Ubiquitinated plasma membrane proteins (cargo) are delivered to endosomes and sorted by endosomal sorting complex required for transport (ESCRT) machinery into endosome intralumenal vesicles (ILVs) for degradation. In contrast to the current model that postulates that ILVs form individually from inward budding of the endosomal limiting membrane, plant ILVs form as networks of concatenated vesicle buds by a novel vesiculation mechanism. We ran computational simulations based on experimentally derived diffusion coefficients of an ESCRT cargo protein and electron tomograms of Arabidopsis thaliana endosomes to measure cargo escape from budding ILVs. We found that 50% of the ESCRT cargo would escape from a single budding profile in 5–20 ms and from three concatenated ILVs in 80–200 ms. These short cargo escape times predict the need for strong diffusion barriers in ILVs. Consistent with a potential role as a diffusion barrier, we find that the ESCRT-III protein SNF7 remains associated with ILVs and is delivered to the vacuole for degradation.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - André Leier
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Kaija Goodman
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - Nathan Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI.,Departments of Oncology, University of Wisconsin-Madison, Madison, WI.,Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI.,Howard Hughes Medical Institute, Chevy Chase, MD.,Morgridge Institute for Research, Madison, WI
| | - Tatiana T Marquez-Lago
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI .,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI.,Department of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
Sharma SS, Yamamoto K, Hamaji K, Ohnishi M, Anegawa A, Sharma S, Thakur S, Kumar V, Uemura T, Nakano A, Mimura T. Cadmium-induced changes in vacuolar aspects of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:29-37. [PMID: 28257948 DOI: 10.1016/j.plaphy.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
We have examined the changes due to Cd treatment in the vacuolar form in root tip cortical cells in Arabidopsis thaliana employing a transformant with GFP fused to a tonoplast protein. A Cd-induced enhancement in complexity with general expansion of vacuolar system within 24 h was evident. The changes in the vacuolar form were dependent on the applied Cd concentrations. Concomitantly, as revealed through dithizone staining, Cd accumulated in the seedling roots exhibiting abundance of Cd-dithizone complexes in root tip, root hairs and vasculature. To get insight into the involvement of SNARE protein-mediated vesicle fusion in Cd detoxification, the magnitude of Cd toxicity in a couple of knock out mutants of the vacuolar Qa-SNARE protein VAM3/SYP22 was compared with that in the wild type. The Cd toxicity appeared to be comparable in the mutants and the wild type. In order to analyze the Cd effects at cellular level, we treated the Arabidopsis suspension-cultured cells with Cd. Cd, however, did not induce a change in the vacuolar form in suspension-cultured cells although Cd measured with ICP-MS was obviously taken up into the cell. The V-ATPase activity in the microsomal fractions from vacuoles isolated from A. thaliana suspension cultured cells remained unaffected by Cd. Changes in the levels of certain metabolites of Cd-treated cells were also not so distinct except for those of glutathione. The significance of findings is discussed.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Kotaro Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Kohei Hamaji
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan; Agilent Technologies Japan. Ltd., Hachioji, Tokyo 192-8510, Japan
| | - Shashi Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Sveta Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Tomohiro Uemura
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan; Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan.
| |
Collapse
|
20
|
Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J. Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:377-92. [PMID: 26296956 DOI: 10.1111/pce.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.
Collapse
Affiliation(s)
- Penghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Naomi Gonzales
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingqing Guo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Honghong Hu
- College of Life Science and technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
21
|
Tani M, Toume M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology (Reading) 2015; 161:2369-83. [DOI: 10.1099/mic.0.000187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Zhang C, Hicks GR, Raikhel NV. Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids. PLANTS 2015; 4:320-33. [PMID: 27135331 PMCID: PMC4844321 DOI: 10.3390/plants4020320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
Abstract
The vacuole is an essential organelle for plant growth and development. It is the location for the storage of nutrients; such as sugars and proteins; and other metabolic products. Understanding the mechanisms of vacuolar trafficking and molecule transport across the vacuolar membrane is of great importance in understanding basic plant development and cell biology and for crop quality improvement. Proteins play important roles in vacuolar trafficking; such proteins include Rab GTPase signaling proteins; cargo recognition receptors; and SNAREs (Soluble NSF Attachment Protein Receptors) that are involved in membrane fusion. Some vacuole membrane proteins also serve as the transporters or channels for transport across the tonoplast. Less understood but critical are the roles of lipids in vacuolar trafficking. In this review, we will first summarize molecular composition of plant vacuoles and we will then discuss our latest understanding on the role of lipids in plant vacuolar trafficking and a surprising connection to ribosome function through the study of ribosomal mutants.
Collapse
Affiliation(s)
- Chunhua Zhang
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Glenn R Hicks
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Natasha V Raikhel
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Ebine K, Ueda T. Roles of membrane trafficking in plant cell wall dynamics. FRONTIERS IN PLANT SCIENCE 2015; 6:878. [PMID: 26539200 PMCID: PMC4609830 DOI: 10.3389/fpls.2015.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/02/2015] [Indexed: 05/18/2023]
Abstract
The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuo Ebine,
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| |
Collapse
|
24
|
Guillier C, Cacas JL, Recorbet G, Deprêtre N, Mounier A, Mongrand S, Simon-Plas F, Wipf D, Dumas-Gaudot E. Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: comparison between floatation and sedimentation. BMC PLANT BIOLOGY 2014; 14:255. [PMID: 25267185 PMCID: PMC4193990 DOI: 10.1186/s12870-014-0255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/20/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.
Collapse
Affiliation(s)
- Christelle Guillier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Jean-Luc Cacas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Ghislaine Recorbet
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Nicolas Deprêtre
- />UMR CSGA: Centre des Sciences du Goût et de l’alimentation, UMR 6265 CNRS, 1324 INRA-uB, Dijon, France
| | - Arnaud Mounier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Sébastien Mongrand
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Françoise Simon-Plas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Daniel Wipf
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
25
|
Langhans M, Meckel T. Single-molecule detection and tracking in plants. PROTOPLASMA 2014; 251:277-91. [PMID: 24385216 DOI: 10.1007/s00709-013-0601-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Combining optical properties with a limited choice of fluorophores turns single-molecule imaging in plants into a challenging task. This explains why the technique, despite its success in the field of animal cell biology, is far from being routinely applied in plant cell research. The same challenges, however, also apply to the application of single-molecule microscopy to any intact tissue or multicellular 3D cell culture. As recent and upcoming progress in fluorescence microscopy will permit single-molecule detection in the context of multicellular systems, plant tissue imaging will experience a huge benefit from this progress. In this review, we address every step of a single-molecule experiment, highlight the critical aspects of each and elaborate on optimizations and developments required for improvements. We relate each step to recent achievements, which have so far been conducted exclusively on the root epidermis of Arabidopsis thaliana seedlings with inclined illumination and show examples of single-molecule measurements using different cells or illumination schemes.
Collapse
Affiliation(s)
- Markus Langhans
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | | |
Collapse
|