1
|
Dierschke T, Levins J, Lampugnani ER, Ebert B, Zachgo S, Bowman JL. Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Curr Biol 2024:S0960-9822(24)01329-0. [PMID: 39447574 DOI: 10.1016/j.cub.2024.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Land plants evolved from an ancestral alga around 470 mya, evolving complex multicellularity in both haploid gametophyte and diploid sporophyte generations. The evolution of water-conducting tissues in the sporophyte generation was crucial for the success of land plants, paving the way for the colonization of a variety of terrestrial habitats. Class II KNOX (KNOX2) genes are major regulators of secondary cell wall formation and seed mucilage (pectin) deposition in flowering plants. Here, we show that, in the liverwort Marchantia polymorpha, loss-of-function alleles of the KNOX2 ortholog, MpKNOX2, or its dimerization partner, MpBELL1, have defects in capsule wall secondary cell wall and spore pectin biosynthesis. Both genes are expressed in the gametophytic calyptra surrounding the sporophyte and exert maternal effects, suggesting intergenerational regulation from the maternal gametophyte to the sporophytic embryo. These findings also suggest the presence of a secondary wall genetic program in the non-vascular liverwort capsule wall, with attributes of secondary walls in vascular tissues.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia; Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; School of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, 49076 Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Sakai Y, Ueno A, Yonetsuka H, Goh T, Kato H, Kondo Y, Fukaki H, Ishizaki K. Regulation of ROP GTPase cycling between active and inactive states is essential for vegetative organogenesis in Marchantia polymorpha. Development 2024; 151:dev202928. [PMID: 39133134 DOI: 10.1242/dev.202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Rho/Rac of plant (ROP) GTPases are plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs [ROPGEF and SPIKE (SPK)] and GAPs [ROPGAP and ROP ENHANCER (REN)]. MpROP regulates the development of various tissues and organs, such as rhizoids, gemmae and air chambers. The ROPGEF KARAPPO (MpKAR) is essential for gemma initiation, but the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air-chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in processes involving MpREN. Overexpression of MpROPGAP and MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, likely by controlling MpROP activation in M. polymorpha.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Aki Ueno
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Hiroki Yonetsuka
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192Japan
| | - Hirotaka Kato
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Science and Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, 560-0043Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| |
Collapse
|
3
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Bao H, Sun R, Iwano M, Yoshitake Y, Aki SS, Umeda M, Nishihama R, Yamaoka S, Kohchi T. Conserved CKI1-mediated signaling is required for female germline specification in Marchantia polymorpha. Curr Biol 2024; 34:1324-1332.e6. [PMID: 38295795 DOI: 10.1016/j.cub.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
In land plants, gametes derive from a small number of dedicated haploid cells.1 In angiosperms, one central cell and one egg cell are differentiated in the embryo sac as female gametes for double fertilization, while in non-flowering plants, only one egg cell is generated in the female sexual organ, called the archegonium.2,3 The central cell specification of Arabidopsis thaliana is controlled by the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1), which is a two-component signaling (TCS) activator sharing downstream regulatory components with the cytokinin signaling pathway.4,5,6,7 Our phylogenetic analysis suggested that CKI1 orthologs broadly exist in land plants. However, the role of CKI1 in non-flowering plants remains unclear. Here, we found that the sole CKI1 ortholog in the liverwort Marchantia polymorpha, MpCKI1, which functions through conserved downstream TCS components, regulates the female germline specification for egg cell development in the archegonium. In M. polymorpha, the archegonium develops three-dimensionally from a single cell accumulating MpBONOBO (MpBNB), a master regulator for germline initiation and differentiation.8 We visualized female germline specification by capturing the distribution pattern of MpBNB in discrete stages of early archegonium development, and found that MpBNB accumulation is restricted to female germline cells. MpCKI1 is required for the proper MpBNB accumulation in the female germline, and is critical for the asymmetric cell divisions that specify the female germline cells. These results suggest that CKI1-mediated TCS originated during early land plant evolution and participates in female germ cell specification in deeply diverged plant lineages.
Collapse
Affiliation(s)
- Haonan Bao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Flores-Sandoval E, Nishihama R, Bowman JL. Hormonal and genetic control of pluripotency in bryophyte model systems. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102486. [PMID: 38041967 DOI: 10.1016/j.pbi.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023]
Abstract
Land plant meristems are reservoirs of pluripotent stem cells where new tissues emerge, grow and eventually differentiate into specific cell identities. Compared to algae, where cells are produced in two-dimensional tissues via tip or marginal growth, land plants have meristems that allow three-dimensional growth for successful exploration of the terrestrial environment. In land plants, meristem maintenance leads to indeterminate growth and the production of new meristems leads to branching or regeneration via reprogramming of wounded somatic cells. Emerging model systems in the haploid dominant and monophyletic bryophytes are allowing comparative analyses of meristem gene regulatory networks to address whether all plants use common or diverse programs to organise, maintain, and regenerate meristems. In this piece we aim to discuss recent advances in genetic and hormonal control of bryophyte meristems and possible convergence or discrepancies in an exciting and emerging field in plant biology.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia.
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia
| |
Collapse
|
6
|
Hisanaga T, Romani F, Wu S, Kowar T, Wu Y, Lintermann R, Fridrich A, Cho CH, Chaumier T, Jamge B, Montgomery SA, Axelsson E, Akimcheva S, Dierschke T, Bowman JL, Fujiwara T, Hirooka S, Miyagishima SY, Dolan L, Tirichine L, Schubert D, Berger F. The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes. Curr Biol 2023; 33:4367-4380.e9. [PMID: 37738971 DOI: 10.1016/j.cub.2023.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Shuangyang Wu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Teresa Kowar
- Epigenetics of Plants, Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Yue Wu
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Ruth Lintermann
- Epigenetics of Plants, Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Arie Fridrich
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Chung Hyun Cho
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Bhagyshree Jamge
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sean A Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Liam Dolan
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Daniel Schubert
- Epigenetics of Plants, Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Chang G, Ma J, Wang S, Tang M, Zhang B, Ma Y, Li L, Sun G, Dong S, Liu Y, Zhou Y, Hu X, Song CP, Huang J. Liverwort bHLH transcription factors and the origin of stomata in plants. Curr Biol 2023:S0960-9822(23)00682-6. [PMID: 37321212 DOI: 10.1016/j.cub.2023.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Stomata are distributed in nearly all major groups of land plants, with the only exception being liverworts. Instead of having stomata on sporophytes, many complex thalloid liverworts possess air pores in their gametophytes. At present, whether stomata in land plants are derived from a common origin remains under debate.1,2,3 In Arabidopsis thaliana, a core regulatory module for stomatal development comprises members of the bHLH transcription factor (TF) family, including AtSPCH, AtMUTE, and AtFAMA of subfamily Ia and AtSCRM1/2 of subfamily IIIb. Specifically, AtSPCH, AtMUTE, and AtFAMA each successively form heterodimers with AtSCRM1/2, which in turn regulate the entry, division, and differentiation of stomatal lineages.4,5,6,7 In the moss Physcomitrium patens, two SMF (SPCH, MUTE and FAMA) orthologs have been characterized, one of which is functionally conserved in regulating stomatal development.8,9 We here provide experimental evidence that orthologous bHLH TFs in the liverwort Marchantia polymorpha affect air pore spacing as well as the development of the epidermis and gametangiophores. We found that the bHLH Ia and IIIb heterodimeric module is highly conserved in plants. Genetic complementation experiments showed that liverwort SCRM and SMF genes weakly restored a stomata phenotype in atscrm1, atmute, and atfama mutant backgrounds in A. thaliana. In addition, homologs of stomatal development regulators FLP and MYB88 also exist in liverworts and weakly rescued the stomatal phenotype of atflp/myb88 double mutant. These results provide evidence not only for a common origin of all stomata in extant plants but also for relatively simple stomata in the ancestral plant.
Collapse
Affiliation(s)
- Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mengmeng Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yadi Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lijuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shanshan Dong
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiangyang Hu
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
8
|
Guan Y, Chang G, Zhao J, Wang Q, Qin J, Tang M, Wang S, Ma L, Ma J, Sun G, Zhou Y, Huang J. Parallel evolution of two AIM24 protein subfamilies and their conserved functions in ER stress tolerance in land plants. PLANT COMMUNICATIONS 2023; 4:100513. [PMID: 36578211 DOI: 10.1016/j.xplc.2022.100513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 05/11/2023]
Abstract
Despite decades of efforts in genome sequencing and functional characterization, some important protein families remain poorly understood. In this study, we report the classification, evolution, and functions of the largely uncharacterized AIM24 protein family in plants, including the identification of a novel subfamily. We show that two AIM24 subfamilies (AIM24-A and AIM24-B) are commonly distributed in major plant groups. These two subfamilies not only have modest sequence similarities and different gene structures but also are of independent bacterial ancestry. We performed comparative functional investigations on the two AIM24 subfamilies using three model plants: the moss Physcomitrium patens, the liverwort Marchantia polymorpha, and the flowering plant Arabidopsis thaliana. Intriguingly, despite their significant differences in sequence and gene structure, both AIM24 subfamilies are involved in ER stress tolerance and the unfolded protein response (UPR). In addition, transformation of the AIM24-A gene from P. patens into the AIM24-B null mutant of A. thaliana could at least partially rescue ER stress tolerance and the UPR. We also discuss the role of AIM24 genes in plant development and other cellular activities. This study provides a unique example of parallel evolution in molecular functions and can serve as a foundation for further investigation of the AIM24 family in plants.
Collapse
Affiliation(s)
- Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiali Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mengmeng Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
9
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
10
|
Aki SS, Morimoto T, Ohnishi T, Oda A, Kato H, Ishizaki K, Nishihama R, Kohchi T, Umeda M. R2R3-MYB transcription factor GEMMA CUP-ASSOCIATED MYB1 mediates the cytokinin signal to achieve proper organ development in Marchantia polymorpha. Sci Rep 2022; 12:21123. [PMID: 36477255 PMCID: PMC9729187 DOI: 10.1038/s41598-022-25684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cytokinin, a plant hormone, plays essential roles in organ growth and development. The type-B response regulator-mediated cytokinin signaling is repressed by type-A response regulators and is conserved in the liverwort Marchantia polymorpha. Its signal coordinates the development of diverse organs on the thallus body, such as the gemma cup, rhizoid, and air pores. Here we report that the type-B response regulator MpRRB upregulates the expression of the R2R3-MYB transcription factor GEMMA CUP-ASSOCIATED MYB1 (MpGCAM1) in M. polymorpha. Whereas both Mpgcam1 and Mprrb knockout mutants exhibited defects in gemma cup formation, the Mpgcam1 Mprra double mutant, in which cytokinin signaling is activated due to the lack of type-A response regulator, also formed no gemma cups. This suggests that MpGCAM1 functions downstream of cytokinin signaling. Inducible overexpression of MpGCAM1 produced undifferentiated cell clumps on the thalli of both wild-type and Mprrb. However, smaller thalli were formed in Mprrb compared to the wild-type after the cessation of overexpression. These results suggest that cytokinin signaling promotes gemma cup formation and cellular reprogramming through MpGCAM1, while cytokinin signals also participate in activating cell division during thallus development.
Collapse
Affiliation(s)
- Shiori S. Aki
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Tomoyo Morimoto
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Taiki Ohnishi
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Ayumi Oda
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Hirotaka Kato
- grid.31432.370000 0001 1092 3077Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan ,grid.255464.40000 0001 1011 3808Present Address: Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-Cho, Matsuyama, Ehime 790-8577 Japan
| | - Kimitsune Ishizaki
- grid.31432.370000 0001 1092 3077Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan
| | - Ryuichi Nishihama
- grid.143643.70000 0001 0660 6861Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278‐8510 Japan
| | - Takayuki Kohchi
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Masaaki Umeda
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| |
Collapse
|
11
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
12
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
13
|
Montgomery SA, Hisanaga T, Wang N, Axelsson E, Akimcheva S, Sramek M, Liu C, Berger F. Polycomb-mediated repression of paternal chromosomes maintains haploid dosage in diploid embryos of Marchantia. eLife 2022; 11:79258. [PMID: 35996955 PMCID: PMC9402228 DOI: 10.7554/elife.79258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
Complex mechanisms regulate gene dosage throughout eukaryotic life cycles. Mechanisms controlling gene dosage have been extensively studied in animals, however it is unknown how generalizable these mechanisms are to diverse eukaryotes. Here, we use the haploid plant Marchantia polymorpha to assess gene dosage control in its short-lived diploid embryo. We show that throughout embryogenesis, paternal chromosomes are repressed resulting in functional haploidy. The paternal genome is targeted for genomic imprinting by the Polycomb mark H3K27me3 starting at fertilization, rendering the maternal genome in control of embryogenesis. Maintaining haploid gene dosage by this new form of imprinting is essential for embryonic development. Our findings illustrate how haploid-dominant species can regulate gene dosage through paternal chromosome inactivation and initiates the exploration of the link between life cycle history and gene dosage in a broader range of organisms.
Collapse
Affiliation(s)
- Sean Akira Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Milos Sramek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
14
|
PIF-independent regulation of growth by an evening complex in the liverwort Marchantia polymorpha. PLoS One 2022; 17:e0269984. [PMID: 35709169 PMCID: PMC9202859 DOI: 10.1371/journal.pone.0269984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Previous studies in the liverwort Marchantia polymorpha have shown that the putative evening complex (EC) genes LUX ARRHYTHMO (LUX) and ELF4-LIKE (EFL) have a function in the liverwort circadian clock. Here, we studied the growth phenotypes of MpLUX and MpEFL loss-of-function mutants, to establish if PHYTOCHROME-INTERACTING FACTOR (PIF) and auxin act downstream of the M. polymorpha EC in a growth-related pathway similar to the one described for the flowering plant Arabidopsis. We examined growth rates and cell properties of loss-of-function mutants, analyzed protein-protein interactions and performed gene expression studies using reporter genes. Obtained data indicate that an EC can form in M. polymorpha and that this EC regulates growth of the thallus. Altered auxin levels in Mplux mutants could explain some of the phenotypes related to an increased thallus surface area. However, because MpPIF is not regulated by the EC, and because Mppif mutants do not show reduced growth, the growth phenotype of EC-mutants is likely not mediated via MpPIF. In Arabidopsis, the circadian clock regulates elongation growth via PIF and auxin, but this is likely not an evolutionarily conserved growth mechanism in land plants. Previous inventories of orthologs to Arabidopsis clock genes in various plant lineages showed that there is high levels of structural differences between clocks of different plant lineages. Here, we conclude that there is also variation in the output pathways used by the different plant clocks to control growth and development.
Collapse
|
15
|
Abstract
The liverwort Marchantia polymorpha has been known to man for millennia due to its inclusion Greek herbals. Perhaps due to its familiarity and association with growth in, often, man-made disturbed habitats, it was readily used to address fundamental biological questions of the day, including elucidation of land plant life cycles in the late 18th century, the formulation of cell theory early in the 19th century and the discovery of the alternation of generations in land plants in the mid-19th century. Subsequently, Marchantia was used as model in botany classes. With the arrival of the molecular era, its organellar genomes, the chloroplast and mitochondrial, were some of the first to be sequenced from any plant. In the past two decades, molecular genetic tools have been applied such that genes may be manipulated seemingly at will. Here, are past, present, and some views to the future of Marchantia as a model.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
17
|
Kanazawa T, Nishihama R, Ueda T. Normal oil body formation in Marchantia polymorpha requires functional coat protein complex I proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:979066. [PMID: 36046592 PMCID: PMC9420845 DOI: 10.3389/fpls.2022.979066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 05/13/2023]
Abstract
Eukaryotic cells possess endomembrane organelles equipped with specific sets of proteins, lipids, and polysaccharides that are fundamental for realizing each organelle's specific function and shape. A tightly regulated membrane trafficking system mediates the transportation and localization of these substances. Generally, the secretory/exocytic pathway is responsible for transporting cargo to the plasma membrane and/or the extracellular space. However, in the case of oil body cells in the liverwort Marchantia polymorpha, the oil body, a liverwort-unique organelle, is thought to be formed by secretory vesicle fusion through redirection of the secretory pathway inside the cell. Although their formation mechanism remains largely unclear, oil bodies exhibit a complex and bumpy surface structure. In this study, we isolated a mutant with spherical oil bodies through visual screening of mutants with abnormally shaped oil bodies. This mutant harbored a mutation in a coat protein complex I (COPI) subunit MpSEC28, and a similar effect on oil body morphology was also detected in knockdown mutants of other COPI subunits. Fluorescently tagged MpSEC28 was localized to the periphery of the Golgi apparatus together with other subunits, suggesting that it is involved in retrograde transport from and/or in the Golgi apparatus as a component of the COPI coat. The Mpsec28 mutants also exhibited weakened stiffness of the thalli, suggesting impaired cell-cell adhesion and cell wall integrity. These findings suggest that the mechanism of cell wall biosynthesis is also involved in shaping the oil body in M. polymorpha, supporting the redirection of the secretory pathway inward the cell during oil body formation.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
18
|
Iwakawa H, Melkonian K, Schlüter T, Jeon HW, Nishihama R, Motose H, Nakagami H. Agrobacterium-Mediated Transient Transformation of Marchantia Liverworts. PLANT & CELL PHYSIOLOGY 2021; 62:1718-1727. [PMID: 34383076 DOI: 10.1093/pcp/pcab126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying β-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Titus Schlüter
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Hyung-Woo Jeon
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| |
Collapse
|
19
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
20
|
The BES1/BZR1-family transcription factor MpBES1 regulates cell division and differentiation in Marchantia polymorpha. Curr Biol 2021; 31:4860-4869.e8. [PMID: 34529936 DOI: 10.1016/j.cub.2021.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Brassinosteroids (BRs) play essential roles in growth and development in seed plants;1 disturbances in BR homeostasis lead to altered mitotic activity in meristems2,3 and organ boundaries4,5 and to changes in meristem determinacy.6 An intricate signaling cascade linking the perception of BRs at the plasma membrane to the regulation of master transcriptional regulators belonging to the BEH, for BES1 homologues, family7 has been described in great detail in model angiosperms. Homologs of these transcription factors are present in streptophyte algae and in land plant lineages where BR signaling or function is absent or has not yet been characterized. The genome of the bryophyte Marchantia polymorpha does not encode for BR receptors but includes one close ortholog of Arabidopsis thaliana BRI1-EMS-SUPPRESSOR 1 (AtBES1)8 and Arabidopsis thaliana BRASSINAZOLE-RESISTANT 1 (AtBZR1),9 MpBES1. Altered levels of MpBES1 severely compromised cell division and differentiation, resulting in stunted thalli that failed to differentiate adult tissues and reproductive organs. The transcriptome of Mpbes1 knockout plants revealed a significant overlap with homologous functions controlled by AtBES1 and AtBZR1, suggesting that members of this gene family share a subset of common targets. Indeed, MpBES1 behaved as a gain-of-function substitute of AtBES1/AtBZR1 when expressed in Arabidopsis, probably because it mediates conserved functions but evades the regulatory mechanisms that native counterparts are subject to. Our results show that this family of transcription factors plays an ancestral role in the control of cell division and differentiation in plants and that BR signaling likely co-opted this function and imposed additional regulatory checkpoints upon it.
Collapse
|
21
|
Lagercrantz U, Billhardt A, Rousku SN, Leso M, Reza SH, Eklund DM. DE-ETIOLATED1 has a role in the circadian clock of the liverwort Marchantia polymorpha. THE NEW PHYTOLOGIST 2021; 232:595-609. [PMID: 34320227 DOI: 10.1111/nph.17653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Previous studies of plant circadian clock evolution have often relied on clock models and genes defined in Arabidopsis. These studies identified homologues with seemingly conserved function, as well as frequent gene loss. In the present study, we aimed to identify candidate clock genes in the liverwort Marchantia polymorpha using a more unbiased approach. To identify genes with circadian rhythm we sequenced the transcriptomes of gemmalings in a time series in constant light conditions. Subsequently, we performed functional studies using loss-of-function mutants and gene expression reporters. Among the genes displaying circadian rhythm, a homologue to the transcriptional co-repressor Arabidopsis DE-ETIOLATED1 showed high amplitude and morning phase. Because AtDET1 is arrhythmic and associated with the morning gene function of AtCCA1/LHY, that lack a homologue in liverworts, we functionally studied DET1 in M. polymorpha. We found that the circadian rhythm of MpDET1 expression is disrupted in loss-of-function mutants of core clock genes and putative evening-complex genes. MpDET1 knock-down in turn results in altered circadian rhythm of nyctinastic thallus movement and clock gene expression. We could not detect any effect of MpDET1 knock-down on circadian response to light, suggesting that MpDET1 has a yet unknown function in the M. polymorpha circadian clock.
Collapse
Affiliation(s)
- Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anja Billhardt
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Sabine N Rousku
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Martina Leso
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Salim Hossain Reza
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - D Magnus Eklund
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Physiological Botany, Department of Organismal Biology, Linnean Centre for Plant Biology in Uppsala, Uppsala University, Ulls Väg 24E, SE-756 51, Uppsala, Sweden
| |
Collapse
|
22
|
Dierschke T, Flores-Sandoval E, Rast-Somssich MI, Althoff F, Zachgo S, Bowman JL. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. eLife 2021; 10:57088. [PMID: 34533136 PMCID: PMC8476127 DOI: 10.7554/elife.57088] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Australia.,Botany Department, University of Osnabrück, Osnabrück, Germany
| | | | | | - Felix Althoff
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
24
|
Marchetti F, Cainzos M, Cascallares M, Distéfano AM, Setzes N, López GA, Zabaleta E, Pagnussat GC. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. PLANT, CELL & ENVIRONMENT 2021; 44:2134-2149. [PMID: 33058168 DOI: 10.1111/pce.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
25
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
26
|
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. THE NEW PHYTOLOGIST 2021; 230:1345-1353. [PMID: 33368298 DOI: 10.1111/nph.17161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) are key components of the transcriptional regulation machinery. In plants, they accompanied the evolution from unicellular aquatic algae to complex flowering plants that dominate the land environment. The adaptations of the body plan and physiological responses required changes in the biological functions of TFs. Some ancestral gene regulatory networks are highly conserved, while others evolved more recently and only exist in particular lineages. The recent emergence of novel model organisms provided the opportunity for comparative studies, producing new insights to infer these evolutionary trajectories. In this review, we comprehensively revisit the recent literature on TFs of nonseed plants and algae, focusing on the molecular mechanisms driving their functional evolution. We discuss the particular contribution of changes in DNA-binding specificity, protein-protein interactions and cis-regulatory elements to gene regulatory networks. Current advances have shown that these evolutionary processes were shaped by changes in TF expression pattern, not through great innovation in TF protein sequences. We propose that the role of TFs associated with environmental and developmental regulation was unevenly conserved during land plant evolution.
Collapse
Affiliation(s)
- Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Javier E Moreno
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
27
|
Szövényi P, Gunadi A, Li FW. Charting the genomic landscape of seed-free plants. NATURE PLANTS 2021; 7:554-565. [PMID: 33820965 DOI: 10.1038/s41477-021-00888-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.
Collapse
Affiliation(s)
- Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland.
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Wang N, Karaaslan ES, Faiss N, Berendzen KW, Liu C. Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort. FRONTIERS IN PLANT SCIENCE 2021; 12:670306. [PMID: 34025705 PMCID: PMC8139558 DOI: 10.3389/fpls.2021.670306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/01/2021] [Indexed: 05/19/2023]
Abstract
The nuclear lamina (NL) is a complex network of nuclear lamins and lamina-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In animals, type V intermediate filaments are the main constituents of NL. Plant genomes do not encode any homologs of these intermediate filaments, yet plant nuclei contain lamina-like structures that are present in their nuclei. In Arabidopsis thaliana, CROWDED NUCLEI (CRWN), which are required for maintaining structural integrity of the nucleus and specific perinuclear chromatin anchoring, are strong candidates for plant lamin proteins. Recent studies revealed additional roles of Arabidopsis Nuclear Matrix Constituent Proteins (NMCPs) in modulating plants' response to pathogen and abiotic stresses. However, detailed analyses of Arabidopsis NMCP activities are challenging due to the presence of multiple homologs and their functional redundancy. In this study, we investigated the sole NMCP gene in the liverwort Marchantia polymorpha (MpNMCP). We found that MpNMCP proteins preferentially were localized to the nuclear periphery. Using CRISPR/Cas9 techniques, we generated an MpNMCP loss-of-function mutant, which displayed reduced growth rate and curly thallus lobes. At an organelle level, MpNMCP mutants did not show any alteration in nuclear morphology. Transcriptome analyses indicated that MpNMCP was involved in regulating biotic and abiotic stress responses. Additionally, a highly repetitive genomic region on the male sex chromosome, which was preferentially tethered at the nuclear periphery in wild-type thalli, decondensed in the MpNMCP mutants and located in the nuclear interior. This perinuclear chromatin anchoring, however, was not directly controlled by MpNMCP. Altogether, our results unveiled that NMCP in plants have conserved functions in modulating stress responses.
Collapse
Affiliation(s)
- Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | | | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Chang Liu,
| |
Collapse
|
29
|
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin Cell Dev Biol 2021; 109:31-38. [DOI: 10.1016/j.semcdb.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
|
30
|
Kato H, Yasui Y, Ishizaki K. Gemma cup and gemma development in Marchantia polymorpha. THE NEW PHYTOLOGIST 2020; 228:459-465. [PMID: 32390245 DOI: 10.1111/nph.16655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
The basal land plant Marchantia polymorpha efficiently propagates in favourable environments through clonal progeny called gemmae. Gemmae develop in cup-shaped receptacles known as gemma cups, which are formed on the gametophyte body. Anatomical studies have described the developmental processes involved over a century ago; however, little is known about the underlying molecular mechanisms. Recent studies have started to unravel the mechanism underlying genetic and hormonal regulation of gemma cup and gemma development, showing that it shares some regulatory mechanisms with several sporophytic organs in angiosperms. Further study of these specialized organs will contribute to our understanding of the core regulatory modules underlying organ development in land plants and how these became so diversified morphologically over the course of evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | | |
Collapse
|
31
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|
32
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Matsui H, Iwakawa H, Hyon GS, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H. Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort-Fungus Interactions. PLANT & CELL PHYSIOLOGY 2020; 61:265-275. [PMID: 31560390 DOI: 10.1093/pcp/pcz187] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 05/16/2023]
Abstract
The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.
Collapse
Affiliation(s)
- Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gang-Su Hyon
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Izumi Yotsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano, 399-4598 Japan
| | - Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Rainer Franzen
- Central Microscopy, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
34
|
Hiwatashi T, Goh H, Yasui Y, Koh LQ, Takami H, Kajikawa M, Kirita H, Kanazawa T, Minamino N, Togawa T, Sato M, Wakazaki M, Yamaguchi K, Shigenobu S, Fukaki H, Mimura T, Toyooka K, Sawa S, Yamato KT, Ueda T, Urano D, Kohchi T, Ishizaki K. The RopGEF KARAPPO Is Essential for the Initiation of Vegetative Reproduction in Marchantia polymorpha. Curr Biol 2019; 29:3525-3531.e7. [PMID: 31607537 DOI: 10.1016/j.cub.2019.08.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/07/2018] [Accepted: 08/28/2019] [Indexed: 10/25/2022]
Abstract
Many plants can reproduce vegetatively, producing clonal progeny from vegetative cells; however, little is known about the molecular mechanisms underlying this process. Liverwort (Marchantia polymorpha), a basal land plant, propagates asexually via gemmae, which are clonal plantlets formed in gemma cups on the dorsal side of the vegetative thallus [1]. The initial stage of gemma development involves elongation and asymmetric divisions of a specific type of epidermal cell, called a gemma initial, which forms on the floor of the gemma cup [2, 3]. To investigate the regulatory mechanism underlying gemma development, we focused on two allelic mutants in which no gemma initial formed; these mutants were named karappo, meaning "empty." We used whole-genome sequencing of both mutants and molecular genetic analysis to identify the causal gene, KARAPPO (KAR), which encodes a ROP guanine nucleotide exchange factor (RopGEF) carrying a plant-specific ROP nucleotide exchanger (PRONE) catalytic domain. In vitro GEF assays showed that the full-length KAR protein and the PRONE domain have significant GEF activity toward MpROP, the only ROP GTPase in M. polymorpha. Moreover, genetic complementation experiments showed a significant role for the N- and C-terminal variable regions in gemma development. Our investigation demonstrates an essential role for KAR/RopGEF in the initiation of plantlet development from a differentiated cell, which may involve cell-polarity formation and subsequent asymmetric cell division via activation of ROP signaling, implying a similar developmental mechanism in vegetative reproduction of various land plants.
Collapse
Affiliation(s)
- Takuma Hiwatashi
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Honzhen Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Yukiko Yasui
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Li Quan Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hideyuki Takami
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Hiroyuki Kirita
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | - Taisuke Togawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | - Hidehiro Fukaki
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsuro Mimura
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
35
|
Aki SS, Nishihama R, Kohchi T, Umeda M. Cytokinin signaling coordinates development of diverse organs in Marchantia polymorpha. PLANT SIGNALING & BEHAVIOR 2019; 14:1668232. [PMID: 31532299 PMCID: PMC6804708 DOI: 10.1080/15592324.2019.1668232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Cytokinins play an essential role in plant growth and development. A recent study showed that the cytokinin signaling pathway was conserved in the liverwort Marchantia polymorpha, and that it controlled gemma cup and rhizoid formation during thallus development. Here we show that the type-B response regulator, MpRRB, is mainly localized in the nucleus. Moreover, observations of thalli revealed that the distribution of air pores and the shape of the thallus margin are impaired in cytokinin-deficient lines and those defective in cytokinin signaling. This suggests that cytokinins regulate cell division and/or differentiation of precursor cells derived from the apical cell, thereby coordinating development of various organs produced on the thallus.
Collapse
Affiliation(s)
- Shiori S. Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
36
|
Aki SS, Mikami T, Naramoto S, Nishihama R, Ishizaki K, Kojima M, Takebayashi Y, Sakakibara H, Kyozuka J, Kohchi T, Umeda M. Cytokinin Signaling Is Essential for Organ Formation in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2019; 60:1842-1854. [PMID: 31135032 DOI: 10.1093/pcp/pcz100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/22/2019] [Indexed: 05/05/2023]
Abstract
Cytokinins are known to regulate various physiological events in plants. Cytokinin signaling is mediated by the phosphorelay system, one of the most ancient mechanisms controlling hormonal pathways in plants. The liverwort Marchantia polymorpha possesses all components necessary for cytokinin signaling; however, whether they respond to cytokinins and how the signaling is fine-tuned remain largely unknown. Here, we report cytokinin function in Marchantia development and organ formation. Our measurement of cytokinin species revealed that cis-zeatin is the most abundant cytokinin in Marchantia. We reduced the endogenous cytokinin level by overexpressing the gene for cytokinin oxidase, MpCKX, which inactivates cytokinins, and generated overexpression and knockout lines for type-A (MpRRA) and type-B (MpRRB) response regulators to manipulate the signaling. The overexpression lines of MpCKX and MpRRA, and the knockout lines of MpRRB, shared phenotypes such as inhibition of gemma cup formation, enhanced rhizoid formation and hyponastic thallus growth. Conversely, the knockout lines of MpRRA produced more gemma cups and exhibited epinastic thallus growth. MpRRA expression was elevated by cytokinin treatment and reduced by knocking out MpRRB, suggesting that MpRRA is upregulated by the MpRRB-mediated cytokinin signaling, which is antagonized by MpRRA. Our findings indicate that when plants moved onto land they already deployed the negative feedback loop of cytokinin signaling, which has an indispensable role in organogenesis.
Collapse
Affiliation(s)
- Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, Japan
| | - Tatsuya Mikami
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Japan
| | | | | | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, Japan
| |
Collapse
|
37
|
Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. Something ancient and something neofunctionalized-evolution of land plant hormone signaling pathways. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:64-72. [PMID: 30339930 DOI: 10.1016/j.pbi.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The evolution of land plants from a charophycean algal ancestor was accompanied by an increased diversity of regulatory networks, including signaling pathways mediating cellular communication within plants and between plants and the environment. Canonical land plant hormone signaling pathways were originally identified in angiosperms, and comparative studies in basal taxa show that they have been assembled from both ancient and newly evolved components, both before and during land plant evolution. In this review we present our current understanding, and highlight several uncertainties, of the evolution of hormone signaling pathways, focusing on the biosynthetic pathways generating putative ligands and the downstream perception and signaling pathways often leading to transcriptional responses.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
38
|
Lin SS, Bowman JL. MicroRNAs in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 220:409-416. [PMID: 29959894 DOI: 10.1111/nph.15294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 409 I. Introduction 409 II. RNA silencing machinery in Marchantia polymorpha 410 III. miRNA prediction by integrating omics approach 410 IV. miRNAs and their targets in Marchantia polymorpha 410 V. Mpo-miR390-mediated MpTAS3 tasiRNA biogenesis and potential tasiARF target MpARF2 414 VI. Artificial miRNA and CRISPR-CAS9 edited MIR gene in Marchantia polymorpha 414 VII. Conclusions 415 Acknowledgements 415 References 415 SUMMARY: The liverwort Marchantia polymorpha occupies an important phylogenetic position for comparative studies of land plant gene regulation. Multiple gene regulatory pathways mediated by small RNAs, including microRNAs (miRNAs), trans-acting short-interfering RNAs, and heterochromatic siRNAs often associated with RNA-dependent DNA methylation, have been characterized in flowering plants. Genes for essential components for all of these small RNA-mediated gene silencing pathways are found in M. polymorpha as well as the moss Phsycomitrella patens, indicating that these pathways existed in the ancestral land plant. However, only seven miRNAs are conserved across land plants, with both ancestral and novel targets identified in M. polymorpha. There is little or no evidence that any of these conserved miRNAs are present in algae. As with other plants investigated, most miRNAs in M. polypmorpha exhibit lineage-specific evolution. Application of artificial miRNA and CRISPR-Cas9 technologies in genetic studies of M. polymorpha provide avenues to further investigate miRNA biology.
Collapse
Affiliation(s)
- Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
39
|
Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vázquez-Lobo A, Dierschke T, Lin SS, Bowman JL. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 218:1612-1630. [PMID: 29574879 DOI: 10.1111/nph.15090] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 05/08/2023]
Abstract
A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxin-insensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - D Magnus Eklund
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, 81, Chang-Xing ST., Taipei, 106, Taiwan
| | - John P Alvarez
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alejandra Vázquez-Lobo
- CIByC, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Colonia Chamilpa, CP 62209, Cuernavaca, Morelos, México
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, 81, Chang-Xing ST., Taipei, 106, Taiwan
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
40
|
Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts. PLANTS 2018; 7:plants7010006. [PMID: 29342939 PMCID: PMC5874595 DOI: 10.3390/plants7010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022]
Abstract
When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs) are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.
Collapse
|
41
|
Flores-Sandoval E, Romani F, Bowman JL. Co-expression and Transcriptome Analysis of Marchantia polymorpha Transcription Factors Supports Class C ARFs as Independent Actors of an Ancient Auxin Regulatory Module. FRONTIERS IN PLANT SCIENCE 2018; 9:1345. [PMID: 30327658 PMCID: PMC6174852 DOI: 10.3389/fpls.2018.01345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 05/07/2023]
Abstract
We performed differential gene expression (DGE) and co-expression analyses with genes encoding components of hormonal signaling pathways and the ∼400 annotated transcription factors (TFs) of M. polymorpha across multiple developmental stages of the life cycle. We identify a putative auxin-related co-expression module that has significant overlap with transcripts induced in auxin-treated tissues. Consistent with phylogenetic and functional studies, the class C ARF, MpARF3, is not part of the auxin-related co-expression module and instead is associated with transcripts enriched in gamete-producing gametangiophores. We analyze the Mparf3 and MpmiR160 mutant transcriptomes in the context of coexpression to suggest that MpARF3 may antagonize the reproductive transition via activating the MpMIR11671 and MpMIR529c precursors whose encoded microRNAs target SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcripts of MpSPL1 and MpSPL2. Both MpSPL genes are part of the MpARF3 co-expression group corroborating their functional significance. We provide evidence of the independence of MpARF3 from the auxin-signaling module and provide new testable hypotheses on the role of auxin-related genes in patterning meristems and differentiation events in liverworts.
Collapse
Affiliation(s)
| | - Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Santa Fe, Argentina
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- *Correspondence: John L. Bowman,
| |
Collapse
|
42
|
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 2017; 171:287-304.e15. [PMID: 28985561 DOI: 10.1016/j.cell.2017.09.030] [Citation(s) in RCA: 731] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023]
Abstract
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.
| | - Jerry Jenkins
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Catherine Adam
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Shiori Sugamata Aki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Felix Althoff
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mario A Arteaga-Vazquez
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | | | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Liam Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Juan Caballero-Perez
- National Laboratory of Genomics for Biodiversity, CINVESTAV-IPN, Km 9.6 Lib. Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shota Chiyoda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mansi Chovatia
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ana E Dorantes-Acosta
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | - D Magnus Eklund
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Stevie N Florent
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | | | - Asao Fujiyama
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bence Galik
- Bioinformatics & Scientific Computing, Vienna Biocenter Core Facilities (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), UMR232, Université de Montpellier, Montpellier 34394, France
| | - Jane Grimwood
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | | | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Hirakawa
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Hope N Hundley
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Qidong Jia
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitsuru Kakita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takehiko Kanazawa
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Bank Organization, Tohoku University, Aoba, Sendai 980-8573, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, 1405 Veterans Dr., Lexington, KY 40546, USA
| | - Megan Kennedy
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Keita Kinose
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuji Kohara
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Sarah Kopischke
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Minoru Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Erika Lindquist
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna M Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Efraín De Luna
- Instituto de Ecología, AC., Red de Biodiversidad y Sistemática, Xalapa, Veracruz, 91000, México
| | | | - Naoki Minamino
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Miya Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Isabel Monte
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Rebecca Mosher
- The School of Plant Sciences, The University of Arizona, Tuscon, AZ, USA
| | - Hideki Nagasaki
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan; Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jeremy Phillips
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Shinichiro Sawa
- Graduate school of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Roberto Solano
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Alexander Spunde
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | | | - Daisuke Takezawa
- Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| | - Hirokazu Tomogane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Ryusuke Yokoyama
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| |
Collapse
|
43
|
Dhaka N, Bhardwaj V, Sharma MK, Sharma R. Evolving Tale of TCPs: New Paradigms and Old Lacunae. FRONTIERS IN PLANT SCIENCE 2017; 8:479. [PMID: 28421104 PMCID: PMC5376618 DOI: 10.3389/fpls.2017.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/20/2017] [Indexed: 05/03/2023]
Abstract
Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative SciencesJawaharlal Nehru University, New Delhi, India
| | - Vasudha Bhardwaj
- Crop Genetics & Informatics Group, School of BiotechnologyJawaharlal Nehru University, New Delhi, India
| | - Manoj K. Sharma
- Crop Genetics & Informatics Group, School of BiotechnologyJawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative SciencesJawaharlal Nehru University, New Delhi, India
| |
Collapse
|
44
|
Jones VAS, Dolan L. Mp WIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 2017; 144:1472-1476. [PMID: 28174248 PMCID: PMC5399667 DOI: 10.1242/dev.144287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/26/2017] [Indexed: 11/20/2022]
Abstract
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. Highlighted Article: The MpWIP gene controls the development of the air pore complex – a multicellular structure that increases CO2 uptake – in the early-diverging land plant Marchantia polymorpha.
Collapse
Affiliation(s)
- Victor A S Jones
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
45
|
Ishizaki K. Evolution of land plants: insights from molecular studies on basal lineages. Biosci Biotechnol Biochem 2017; 81:73-80. [DOI: 10.1080/09168451.2016.1224641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
46
|
Ohyanagi H, Obayashi T, Yano K. Editorial: Plant and Cell Physiology's 2017 Database Issue. PLANT & CELL PHYSIOLOGY 2017; 58:1-3. [PMID: 28158372 DOI: 10.1093/pcp/pcw227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Hajime Ohyanagi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Yano
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
47
|
Ragupathy R, Ravichandran S, Mahdi MSR, Huang D, Reimer E, Domaratzki M, Cloutier S. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 2016; 6:39373. [PMID: 28004741 PMCID: PMC5177929 DOI: 10.1038/srep39373] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/15/2016] [Indexed: 01/30/2023] Open
Abstract
Understanding of plant adaptation to abiotic stresses has implications in plant breeding, especially in the context of climate change. MicroRNAs (miRNAs) and short interfering RNAs play a crucial role in gene regulation. Here, wheat plants were exposed to one of the following stresses: continuous light, heat or ultraviolet radiations over five consecutive days and leaf tissues from three biological replicates were harvested at 0, 1, 2, 3, 7 and 10 days after treatment (DAT). A total of 72 small RNA libraries were sequenced on the Illumina platform generating ~524 million reads corresponding to ~129 million distinct tags from which 232 conserved miRNAs were identified. The expression levels of 1, 2 and 79 miRNAs were affected by ultraviolet radiation, continuous light and heat, respectively. Approximately 55% of the differentially expressed miRNAs were downregulated at 0 and 1 DAT including miR398, miR528 and miR156 that control mRNAs involved in activation of signal transduction pathways and flowering. Other putative targets included histone variants and methyltransferases. These results suggest a temporal miRNA-guided post-transcriptional regulation that enables wheat to respond to abiotic stresses, particularly heat. Designing novel wheat breeding strategies such as regulatory gene-based marker assisted selection depends on accurate identification of stress induced miRNAs.
Collapse
Affiliation(s)
- Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | | | - Douglas Huang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Rövekamp M, Bowman JL, Grossniklaus U. Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization. Curr Biol 2016; 26:1782-1789. [PMID: 27345166 DOI: 10.1016/j.cub.2016.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Unlike in animals, the life cycle of land plants alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte [1]. Gamete differentiation initiates the transition from the gametophyte to the sporophyte generation and, upon maturation, the egg cell establishes a quiescent state that is maintained until fertilization. This quiescence represents a hallmark of the gametophyte-sporophyte transition. The underlying molecular mechanisms are complex and best characterized in the flowering plant Arabidopsis thaliana [2-4]. However, only few genes with egg cell-specific expression or defects have been identified [5-10]. Intriguingly, ectopic expression of members of a clade of RWP-RK domain (RKD)-containing transcription factors, which are absent from animal genomes [11-13], can induce an egg cell-like transcriptome in sporophytic cells of A. thaliana. Yet, to date, loss-of-function experiments have not produced phenotypes affecting the egg cell, likely due to genetic redundancy and/or cross-regulation among the five RKD genes of A. thaliana [10]. To reduce genetic complexity, we explored the genome of Marchantia polymorpha, a liverwort belonging to the basal lineage of extant land plants [14-17]. Based on sequence homology, we identified a single M. polymorpha RKD gene, MpRKD, which is orthologous to all five A. thaliana RKD genes. Analysis of the MpRKD expression pattern and characterization of lines with reduced MpRKD activity indicate that it functions as a regulator of gametophyte development and the gametophyte-sporophyte transition. In particular, MpRKD is required to establish and/or maintain the quiescent state of the egg cell in the absence of fertilization.
Collapse
Affiliation(s)
- Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland.
| |
Collapse
|
49
|
Breuninger H, Thamm A, Streubel S, Sakayama H, Nishiyama T, Dolan L. Diversification of a Transcription Factor Family Led to the Evolution of Antagonistically Acting Genetic Regulators of Root Hair Growth. Curr Biol 2016; 26:1622-1628. [PMID: 27265398 PMCID: PMC4920954 DOI: 10.1016/j.cub.2016.04.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 10/25/2022]
Abstract
Streptophytes colonized the land some time before 470 million years ago [1-3]. The colonization coincided with an increase in morphological and cellular diversity [4-7]. This increase in diversity is correlated with a proliferation in transcription factors encoded in genomes [8-10]. This suggests that gene duplication and subsequent diversification of function was instrumental in the generation of land plant diversity. Here, we investigate the diversification of the streptophyte-specific Lotus japonicus ROOTHAIRLESS LIKE (LRL) transcription factor (TF) [11, 12] subfamily of basic loop helix (bHLH) proteins by comparing gene function in early divergent and derived land plant species. We report that the single Marchantia polymorpha LRL gene acts as a general growth regulator required for rhizoid development, a function that has been partially conserved throughout multicellular streptophytes. In contrast, the five relatively derived Arabidopsis thaliana LRL genes comprise two antagonistically acting groups of differentially expressed genes. The diversification of LRL genes accompanied the evolution of an antagonistic regulatory element controlling root hair development.
Collapse
Affiliation(s)
- Holger Breuninger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Anna Thamm
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Susanna Streubel
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
50
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|