1
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
2
|
García-González J, Lacek J, Weckwerth W, Retzer K. Throttling Growth Speed: Evaluation of aux1-7 Root Growth Profile by Combining D-Root system and Root Penetration Assay. PLANTS 2022; 11:plants11050650. [PMID: 35270119 PMCID: PMC8912881 DOI: 10.3390/plants11050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/16/2023]
Abstract
Directional root growth control is crucial for plant fitness. The degree of root growth deviation depends on several factors, whereby exogenous growth conditions have a profound impact. The perception of mechanical impedance by wild-type roots results in the modulation of root growth traits, and it is known that gravitropic stimulus influences distinct root movement patterns in concert with mechanoadaptation. Mutants with reduced shootward auxin transport are described as being numb towards mechanostimulus and gravistimulus, whereby different growth conditions on agar-supplemented medium have a profound effect on how much directional root growth and root movement patterns differ between wild types and mutants. To reduce the impact of unilateral mechanostimulus on roots grown along agar-supplemented medium, we compared the root movement of Col-0 and auxin resistant 1-7 in a root penetration assay to test how both lines adjust the growth patterns of evenly mechanostimulated roots. We combined the assay with the D-root system to reduce light-induced growth deviation. Moreover, the impact of sucrose supplementation in the growth medium was investigated because exogenous sugar enhances root growth deviation in the vertical direction. Overall, we observed a more regular growth pattern for Col-0 but evaluated a higher level of skewing of aux1-7 compared to the wild type than known from published data. Finally, the tracking of the growth rate of the gravistimulated roots revealed that Col-0 has a throttling elongation rate during the bending process, but aux1-7 does not.
Collapse
Affiliation(s)
- Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
- Correspondence:
| |
Collapse
|
3
|
Clark G, Brown KA, Tripathy MK, Roux SJ. Recent Advances Clarifying the Structure and Function of Plant Apyrases (Nucleoside Triphosphate Diphosphohydrolases). Int J Mol Sci 2021; 22:ijms22063283. [PMID: 33807069 PMCID: PMC8004787 DOI: 10.3390/ijms22063283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/22/2023] Open
Abstract
Studies implicating an important role for apyrase (NTPDase) enzymes in plant growth and development began appearing in the literature more than three decades ago. After early studies primarily in potato, Arabidopsis and legumes, especially important discoveries that advanced an understanding of the biochemistry, structure and function of these enzymes have been published in the last half-dozen years, revealing that they carry out key functions in diverse other plants. These recent discoveries about plant apyrases include, among others, novel findings on its crystal structures, its biochemistry, its roles in plant stress responses and its induction of major changes in gene expression when its expression is suppressed or enhanced. This review will describe and discuss these recent advances and the major questions about plant apyrases that remain unanswered.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA; (G.C.); (K.A.B.)
| | - Katherine A. Brown
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA; (G.C.); (K.A.B.)
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Stanley J. Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA; (G.C.); (K.A.B.)
- Correspondence: ; Tel.: +1-512-471-4238
| |
Collapse
|
4
|
A Salt-Signaling Network Involving Ethylene, Extracellular ATP, Hydrogen Peroxide, and Calcium Mediates K +/Na + Homeostasis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21228683. [PMID: 33213111 PMCID: PMC7698765 DOI: 10.3390/ijms21228683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023] Open
Abstract
This work aimed at investigating the interactive effects of salt-signaling molecules, i.e., ethylene, extracellular ATP (eATP), H2O2, and cytosolic Ca2+ ([Ca2+]cyt), on the regulation of K+/Na+ homeostasis in Arabidopsisthaliana. The presence of eATP shortened Col-0 hypocotyl length under no-salt conditions. Moreover, eATP decreased relative electrolyte leakage and lengthened root length significantly in salt-treated Col-0 plants but had no obvious effects on the ethylene-insensitive mutants etr1-1 and ein3-1eil1-1. Steady-state ionic flux kinetics showed that exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) and eATP-Na2 (an eATP donor) significantly increased Na+ extrusion and suppressed K+ loss during short-term NaCl treatment. Moreover, ACC remarkably raised the fluorescence intensity of salt-elicited H2O2 and cytosolic Ca2+. Our qPCR data revealed that during 12 h of NaCl stress, application of ACC increased the expression of AtSOS1 and AtAHA1, which encode the plasma membrane (PM) Na+/H+ antiporters (SOS1) and H+-ATPase (H+ pumps), respectively. In addition, eATP markedly increased the transcription of AtEIN3, AtEIL1, and AtETR1, and ACC treatment of Col-0 roots under NaCl stress conditions caused upregulation of AtRbohF and AtSOS2/3, which directly contribute to the H2O2 and Ca2+ signaling pathways, respectively. Briefly, ethylene was triggered by eATP, a novel upstream signaling component, which then activated and strengthened the H2O2 and Ca2+ signaling pathways to maintain K+/Na+ homeostasis under salinity.
Collapse
|
5
|
Dong X, Zhu R, Kang E, Shang Z. RRFT1 (Redox Responsive Transcription Factor 1) is involved in extracellular ATP-regulated gene expression in Arabidopsis thaliana seedlings. PLANT SIGNALING & BEHAVIOR 2020; 15:1748282. [PMID: 32248742 PMCID: PMC7238875 DOI: 10.1080/15592324.2020.1748282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
As an apoplast signal molecule, extracellular ATP (eATP) is involved in the growth regulation of Arabidopsis thaliana seedlings. Recently, RRFT1 was revealed to be involved in eATP- regulated seedling growth. To further verify the role of RRTF1 in seedlings' eATP response, expression of 20 eATP-responsive genes in wild type (Col-0) and RRTF1 null mutant (rrtf1-1) seedlings were investigated by using realtime quantitative PCR. After 0.5 mM ATP stimulation, the response of these genes' expression in rrtf1-1 seedlings was significantly different from that in Col-0 seedlings. Proteins which are encoded by these genes include transcription factors, plasma membrane receptors like kinases, ion influx/efflux transporters and hormone signaling components. The results indicated that RRTF1 may be involved in eATP regulated physiological responses via regulating the expression of some functional genes.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Liu W, Ni J, Shah FA, Ye K, Hu H, Wang Q, Wang D, Yao Y, Huang S, Hou J, Liu C, Wu L. Genome-wide identification, characterization and expression pattern analysis of APYRASE family members in response to abiotic and biotic stresses in wheat. PeerJ 2019; 7:e7622. [PMID: 31565565 PMCID: PMC6744936 DOI: 10.7717/peerj.7622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
APYRASEs, which directly regulate intra- and extra-cellular ATP homeostasis, play a pivotal role in the regulation of various stress adaptations in mammals, bacteria and plants. In the present study, we identified and characterized wheat APYRASE family members at the genomic level in wheat. The results identified a total of nine APY homologs with conserved ACR domains. The sequence alignments, phylogenetic relations and conserved motifs of wheat APYs were bioinformatically analyzed. Although they share highly conserved secondary and tertiary structures, the wheat APYs could be mainly categorized into three groups, according to phylogenetic and structural analysis. Additionally, these APYs exhibited similar expression patterns in the root and shoot, among which TaAPY3-1, TaAPY3-3 and TaAPY3-4 had the highest expression levels. The time-course expression patterns of the eight APYs in response to biotic and abiotic stress in the wheat seedlings were also investigated. TaAPY3-2, TaAPY3-3, TaAPY3-4 and TaAPY6 exhibited strong sensitivity to all kinds of stresses in the leaves. Some APYs showed specific expression responses, such as TaAPY6 to heavy metal stress, and TaAPY7 to heat and salt stress. These results suggest that the stress-inducible APYs could have potential roles in the regulation of environmental stress adaptations. Moreover, the catalytic activity of TaAPY3-1 was further analyzed in the in vitro system. The results showed that TaAPY3-1 protein exhibited high catalytic activity in the degradation of ATP and ADP, but with low activity in degradation of TTP and GTP. It also has an extensive range of temperature adaptability, but preferred relatively acidic pH conditions. In this study, the genome-wide identification and characterization of APYs in wheat were suggested to be useful for further genetic modifications in the generation of high-stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Wenbo Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Faheem Afzal Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qiaojian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongdong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinyan Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
7
|
Scheerer U, Trube N, Netzer F, Rennenberg H, Herschbach C. ATP as Phosphorus and Nitrogen Source for Nutrient Uptake by Fagus sylvatica and Populus x canescens Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:378. [PMID: 31019519 PMCID: PMC6458296 DOI: 10.3389/fpls.2019.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
The present study elucidated whether roots of temperate forest trees can take up organic phosphorus in the form of ATP. Detached non-mycorrhizal roots of beech (Fagus sylvatica) and gray poplar (Populus x canescens) were exposed under controlled conditions to 33P-ATP and/or 13C/15N labeled ATP in the presence and absence of the acid phosphatase inhibitor MoO4 2-. Accumulation of the respective label in the roots was used to calculate 33P, 13C and 15N uptake rates in ATP equivalents for comparison reason. The present data shown that a significant part of ATP was cleaved outside the roots before phosphate (Pi) was taken up. Furthermore, nucleotide uptake seems more reasonable after cleavage of at least one Pi unit as ADP, AMP and/or as the nucleoside adenosine. Similar results were obtained when still attached mycorrhizal roots of adult beech trees and their natural regeneration of two forest stands were exposed to ATP in the presence or absence of MoO4 2-. Cleavage of Pi from ATP by enzymes commonly present in the rhizosphere, such as extracellular acid phosphatases, ecto-apyrase and/or nucleotidases, prior ADP/AMP/adenosine uptake is highly probable but depended on the soil type and the pH of the soil solution. Although uptake of ATP/ADP/AMP cannot be excluded, uptake of the nucleoside adenosine without breakdown into its constituents ribose and adenine is highly evident. Based on the 33P, 13C, and 15N uptake rates calculated as equivalents of ATP the 'pro and contra' for the uptake of nucleotides and nucleosides is discussed. Short Summary Roots take up phosphorus from ATP as Pi after cleavage but might also take up ADP and/or AMP by yet unknown nucleotide transporter(s) because at least the nucleoside adenosine as N source is taken up without cleavage into its constituents ribose and adenine.
Collapse
Affiliation(s)
- Ursula Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Niclas Trube
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
9
|
Clark G, Roux SJ. Role of Ca 2+ in Mediating Plant Responses to Extracellular ATP and ADP. Int J Mol Sci 2018; 19:E3590. [PMID: 30441766 PMCID: PMC6274673 DOI: 10.3390/ijms19113590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Schultz ER, Zupanska AK, Sng NJ, Paul AL, Ferl RJ. Skewing in Arabidopsis roots involves disparate environmental signaling pathways. BMC PLANT BIOLOGY 2017; 17:31. [PMID: 28143395 PMCID: PMC5286820 DOI: 10.1186/s12870-017-0975-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/12/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Skewing root patterns provide key insights into root growth strategies and mechanisms that produce root architectures. Roots exhibit skewing and waving when grown on a tilted, impenetrable surface. The genetics guiding these morphologies have been examined, revealing that some Arabidopsis ecotypes skew and wave (e.g. WS), while others skew insignificantly but still wave (e.g. Col-0). The underlying molecular mechanisms of skewing and waving remain unclear. In this study, transcriptome data were derived from two Arabidopsis ecotypes, WS and Col-0, under three tilted growth conditions in order to identify candidate genes involved in skewing. RESULTS This work identifies a number of genes that are likely involved in skewing, using growth conditions that differentially affect skewing and waving. Comparing the gene expression profiles of WS and Col-0 in different tilted growth conditions identified 11 candidate genes as potentially involved in the control of skewing. These 11 genes are involved in several different cellular processes, including sugar transport, salt signaling, cell wall organization, and hormone signaling. CONCLUSIONS This study identified 11 genes whose change in expression level is associated with root skewing behavior. These genes are involved in signaling and perception, rather than the physical restructuring of root. Future work is needed to elucidate the potential role of these candidate genes during root skewing.
Collapse
Affiliation(s)
- Eric R. Schultz
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
- Present address: Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Agata K. Zupanska
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Natasha J. Sng
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Robert J. Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
11
|
Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z. Heterotrimeric G Protein-Regulated Ca 2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP. FRONTIERS IN PLANT SCIENCE 2017; 8:1522. [PMID: 28919907 PMCID: PMC5585194 DOI: 10.3389/fpls.2017.01522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance response was reduced in loss-of-function mutants of heterotrimeric G protein α subunit (Gα) (gpa1-1 and gpa1-2) and enhanced in Gα-over-expression (OE) lines (wGα and cGα). Ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) and Gd3+ remarkably suppressed eATP-induced root bending. ATP-stimulated Ca2+ influx was impaired in Gα null mutants and increased in its OE lines. DR5-GFP and PIN2 were asymmetrically distributed in ATP-stimulated root tips, this effect was strongly suppressed by EGTA and diminished in Gα null mutants. In addition, some eATP-induced genes' expression was also impaired in Gα null mutants. Based on these results, we propose that heterotrimeric Gα-regulated Ca2+ influx and PIN2 distribution may be key signaling events in eATP sensing and avoidance response in Arabidopsis thaliana roots.
Collapse
|