1
|
Sanmartín M, Rojo E, Kurenda A, Larruy-García B, Zamarreño ÁM, Delgadillo MO, Brito-Gutiérrez P, García-Mina JM, Farmer EE, Sánchez-Serrano JJ. GLR-dependent calcium and electrical signals are not coupled to systemic, oxylipin-based wound-induced gene expression in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:870-882. [PMID: 38725409 DOI: 10.1111/nph.19803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 10/04/2024]
Abstract
In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.
Collapse
Affiliation(s)
- Maite Sanmartín
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - Enrique Rojo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Beatriz Larruy-García
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - M Otilia Delgadillo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Pavel Brito-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jose J Sánchez-Serrano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| |
Collapse
|
2
|
Dierschke T, Levins J, Lampugnani ER, Ebert B, Zachgo S, Bowman JL. Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Curr Biol 2024:S0960-9822(24)01329-0. [PMID: 39447574 DOI: 10.1016/j.cub.2024.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Land plants evolved from an ancestral alga around 470 mya, evolving complex multicellularity in both haploid gametophyte and diploid sporophyte generations. The evolution of water-conducting tissues in the sporophyte generation was crucial for the success of land plants, paving the way for the colonization of a variety of terrestrial habitats. Class II KNOX (KNOX2) genes are major regulators of secondary cell wall formation and seed mucilage (pectin) deposition in flowering plants. Here, we show that, in the liverwort Marchantia polymorpha, loss-of-function alleles of the KNOX2 ortholog, MpKNOX2, or its dimerization partner, MpBELL1, have defects in capsule wall secondary cell wall and spore pectin biosynthesis. Both genes are expressed in the gametophytic calyptra surrounding the sporophyte and exert maternal effects, suggesting intergenerational regulation from the maternal gametophyte to the sporophytic embryo. These findings also suggest the presence of a secondary wall genetic program in the non-vascular liverwort capsule wall, with attributes of secondary walls in vascular tissues.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia; Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; School of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, 49076 Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Sakai Y, Ueno A, Yonetsuka H, Goh T, Kato H, Kondo Y, Fukaki H, Ishizaki K. Regulation of ROP GTPase cycling between active and inactive states is essential for vegetative organogenesis in Marchantia polymorpha. Development 2024; 151:dev202928. [PMID: 39133134 DOI: 10.1242/dev.202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Rho/Rac of plant (ROP) GTPases are plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs [ROPGEF and SPIKE (SPK)] and GAPs [ROPGAP and ROP ENHANCER (REN)]. MpROP regulates the development of various tissues and organs, such as rhizoids, gemmae and air chambers. The ROPGEF KARAPPO (MpKAR) is essential for gemma initiation, but the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air-chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in processes involving MpREN. Overexpression of MpROPGAP and MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, likely by controlling MpROP activation in M. polymorpha.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Aki Ueno
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Hiroki Yonetsuka
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192Japan
| | - Hirotaka Kato
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Science and Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, 560-0043Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| |
Collapse
|
4
|
Berger F. Meiosis as a mechanism for epigenetic reprogramming and cellular rejuvenation. Development 2024; 151:dev203046. [PMID: 39399899 DOI: 10.1242/dev.203046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meiosis is a hallmark of sexual reproduction because it represents the transition from one life cycle to the next and, in animals, meiosis produces gametes. Why meiosis evolved has been debated and most studies have focused on recombination of the parental alleles as the main function of meiosis. However, 40 years ago, Robin Holliday proposed that an essential function of meiosis is to oppose the consequence of successive mitoses that cause cellular aging. Cellular aging results from accumulated defective organelles and proteins and modifications of chromatin in the form of DNA methylation and histone modifications referred to collectively as epigenetic marks. Here, recent findings supporting the hypothesis that meiosis opposes cellular aging are reviewed and placed in the context of the diversity of the life cycles of eukaryotes, including animals, yeast, flowering plants and the bryophyte Marchantia.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
5
|
Wallner ES, Dolan L. Reproducibly oriented cell divisions pattern the prothallus to set up dorsoventrality and de novo meristem formation in Marchantia polymorpha. Curr Biol 2024; 34:4357-4367.e4. [PMID: 39191253 PMCID: PMC11466075 DOI: 10.1016/j.cub.2024.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Land plant bodies develop from stem cells located in meristems. However, we know little about how meristems initiate from non-meristematic cells. The haploid body of bryophytes develops from unicellular spores in isolation from the parental plant, which allows all stages of development to be observed. We discovered that the Marchantia spore undergoes a series of reproducibly oriented cell divisions to generate a flat prothallus on which a meristem later develops de novo. The young sporeling comprises an early cell mass. One cell of the early cell mass elongates and undergoes a formative division that produces the prothalloblast, which initiates prothallus formation. A symmetric division of the prothalloblast followed by two transverse divisions generates a four-celled plate that expands into a flat disc through oblique divisions in three of the four plate-cell-derived quadrants. One quadrant gives rise to a flat flabellum. A notch with a meristem and apical stem cell develops at the margin of the flabellum. The transcription factor Marchantia class III homeodomain-leucine-zipper (MpC3HDZ) is a marker of the first flat prothallus structure and polarizes to the dorsal tissues of flabella and meristems. Mpc3hdz mutants are defective in setting up dorsoventrality and thallus body flatness. We report how a regular set of cell divisions forms the prothallus-the first dorsoventral structure-and how cells on the margin of the prothallus develop a dorsoventralized meristem de novo.
Collapse
Affiliation(s)
| | - Liam Dolan
- Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
6
|
Duckett JG. Plant biology: Mapping meristem morphogenesis in Marchantia. Curr Biol 2024; 34:R909-R910. [PMID: 39378852 DOI: 10.1016/j.cub.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The use of state-of-the-art imaging, underpinned by molecular data, for the first time provides a clear understanding of two fundamental processes in liverworts - the establishment of dorsoventrality and origin of apical meristems. This work opens the door to exploring many new facets of plant morphogenesis.
Collapse
Affiliation(s)
- Jeffrey G Duckett
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
7
|
Fortin JP, Friedman WE. A stomate by any other name? The open question of hornwort gametophytic pores, their homology, and implications for the evolution of stomates. THE NEW PHYTOLOGIST 2024. [PMID: 39256934 DOI: 10.1111/nph.20094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Advances in bryophyte genomics and the phylogenetic recovery of hornworts, mosses, and liverworts as a clade have spurred considerable recent interest in character evolution among early embryophytes. Discussion of stomatal evolution, however, has been incomplete; the result of the neglect of certain potential stomate homologues, namely the two-celled epidermal gametophytic pores of hornworts (typically referred to as 'mucilage clefts'). Confusion over the potential homology of these structures is the consequence of a relatively recent consensus that hornwort gametophytic pores ('HGPs' - our term) are not homologous to stomates. We explore the occurrence and diverse functions of stomates throughout the evolutionary history and diversity of extinct and extant embryophytes. We then address arguments for and against homology between known sporophyte- and gametophyte-borne stomates and HGPs and conclude that there is little to no evidence that contradicts the hypothesis of homology. We propose that 'intergenerational heterotopy' might well account for the novel expression of stomates in gametophytes of hornworts, if stomates first evolved in the sporophyte generation of embryophytes. We then explore phylogenetically based hypotheses for the evolution of stomates in both the gametophyte and sporophyte generations of early lineages of embryophytes.
Collapse
Affiliation(s)
- James Paul Fortin
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
| | - William E Friedman
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
8
|
Fu J, Zhou C, Ma F, Zhao J, Yu F, Cui H. The PLETHORA Homolog in Marchantia polymorpha is Essential for Meristem Maintenance, Developmental Progression, and Redox Homeostasis. PLANT & CELL PHYSIOLOGY 2024; 65:1231-1244. [PMID: 38757817 DOI: 10.1093/pcp/pcae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.
Collapse
Affiliation(s)
- Jing Fu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Congye Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Cui
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Ren X, Zhang X, Qi X, Zhang T, Wang H, Twell D, Gong Y, Fu Y, Wang B, Kong H, Xu B. The BNB-GLID module regulates germline fate determination in Marchantia polymorpha. THE PLANT CELL 2024; 36:3824-3837. [PMID: 39041486 PMCID: PMC11371191 DOI: 10.1093/plcell/koae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.
Collapse
Affiliation(s)
- Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaotong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yu Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baichen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
10
|
Klaassen van Oorschot B, Bryson KA, Danner O, Eklof JF, Lopez A, Wah-Blumberg J, Pepper RE. Dispersal distances from splash-cup plants depend on the cup's angle and contents. J R Soc Interface 2024; 21:20240129. [PMID: 39240250 PMCID: PMC11463230 DOI: 10.1098/rsif.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
Splash-cup plants disperse propagules via raindrops striking cup-shaped fruiting bodies. The seeds are ejected at velocities up to five times the impact speed of the raindrop and are dispersed up to 1 m from the parent plant. Here, we examine the effects of cup angles and the presence of seed mimics to understand the dynamics of this unique method of dispersal. Our findings demonstrate that: (i) cup angles that launched seeds the furthest ranged from approximately 30° to 50°, matching the range of angles seen in splash-cup plants. (ii) Seeds travel shorter distances than water droplets alone, and this distance depends on the number of seeds in the cup. (iii) Not all seeds are ejected from initially dry cups, leaving cups with some seeds and some water. (iv) Nearly all seeds are ejected from cups that contain both water and seeds, and those that are ejected travel significantly further than those from dry cups. These results confirm the possibility that the conical shape of splash cup plants may be adapted to maximize dispersal distance and benefit from multiple splash events. Our results also illustrate that future work on these plants should include seeds rather than water droplets alone.
Collapse
Affiliation(s)
| | - Kelsy A. Bryson
- Department of Physics, University of Puget Sound, Tacoma, Washington, USA
| | - Olivia Danner
- Department of Physics, University of Puget Sound, Tacoma, Washington, USA
| | - Joel F. Eklof
- Department of Physics, University of Puget Sound, Tacoma, Washington, USA
| | - Alessandra Lopez
- Department of Physics, University of Puget Sound, Tacoma, Washington, USA
| | | | - Rachel E. Pepper
- Department of Physics, University of Puget Sound, Tacoma, Washington, USA
| |
Collapse
|
11
|
Hernández-Muñoz A, Agreda-Laguna KA, Ramírez-Bernabé IE, Oltehua-López O, Arteaga-Vázquez MA, Leon P. Marchantia polymorpha GOLDEN2-LIKE transcriptional factor; a central regulator of chloroplast and plant vegetative development. THE NEW PHYTOLOGIST 2024; 243:1406-1423. [PMID: 38922903 DOI: 10.1111/nph.19916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The GOLDEN2-LIKE (GLK) transcription factors act as a central regulatory node involved in both developmental processes and environmental responses. Marchantia polymorpha, a basal terrestrial plant with strategic evolutionary position, contains a single GLK representative that possesses an additional domain compared to spermatophytes. We analyzed the role of MpGLK in chloroplast biogenesis and development by altering its levels, preforming transcriptomic profiling and conducting chromatin immunoprecipitation. Decreased MpGLK levels impair chloroplast differentiation and disrupt the expression of photosynthesis-associated nuclear genes, while overexpressing MpGLK leads to ectopic chloroplast biogenesis. This demonstrates the MpGLK functions as a bona fide GLK protein, likely representing an ancestral GLK architecture. Altering MpGLK levels directly regulates the expression of genes involved in Chl synthesis and degradation, similar to processes observed in eudicots, and causes various developmental defects in Marchantia, including the formation of dorsal structures such as air pores and gemma cups. MpGLK, also directly activates MpMAX2 gene expression, regulating the timing of gemma cup development. Our study shows that MpGLK functions as a master regulator, potentially coupling chloroplast development with vegetative reproduction. This illustrates the complex regulatory networks governing chloroplast function and plant development communication and highlight the evolutionary conservation of GLK-mediated regulatory processes across plant species.
Collapse
Affiliation(s)
- Arihel Hernández-Muñoz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Kenny Alejandra Agreda-Laguna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ignacio E Ramírez-Bernabé
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Omar Oltehua-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Mario A Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Avenida de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, 91090, Mexico
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
12
|
Svriz M, Torres CD, Mongiat L, Aranda E, Spinedi N, Fracchia S, Scervino JM. Anthracene-Induced Alterations in Liverwort Architecture In Vitro: Potential for Bioindication of Environmental Pollution. PLANTS (BASEL, SWITZERLAND) 2024; 13:2060. [PMID: 39124178 PMCID: PMC11314002 DOI: 10.3390/plants13152060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread globally, primarily due to long-term anthropogenic pollution sources. Since PAHs tend to accumulate in soil sediments, liverwort plants, such as Lunularia cruciata, are susceptible to their adverse effects, making them good models for bioindicators. The aim of this study was to probe the impact of anthracene, a three-ring linear PAH, on the growth parameters of L. cruciata and the relationship established with the internalization of the pollutant throughout the phenology of the plant. Intrinsic plant responses, isolated from external factors, were assessed in vitro. L. cruciata absorbed anthracene from the culture medium, and its bioaccumulation was monitored throughout the entire process, from the gemma germination stage to the development of the adult plant, over a total period of 60 days. Consequently, plants exposed to concentrations higher than 50 μM anthracene, decreased the growth area of the thallus, the biomass and number of tips. Moreover, anthracene also impinged on plant symmetry. This concentration represented the maximum limit of bioaccumulation in the tissues. This study provides the first evidence that architectural variables in liverwort plants are suitable parameters for their use as bioindicators of PAHs.
Collapse
Affiliation(s)
- Maya Svriz
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Cristian D. Torres
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Lucas Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche 8400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Elisabet Aranda
- Department of Microbiology, Farmacy Faculty and Institute of Water Research, University of Granada, Ramón y Cajal, Bldg. Fray Luis 4, 18071 Granada, Spain;
| | - Nahuel Spinedi
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Sebastian Fracchia
- Instituto de Micología y Botánica (INMIBO), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina;
| | - José Martín Scervino
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| |
Collapse
|
13
|
Liu W, Yang Z, Cai G, Li B, Liu S, Willemsen V, Xu L. MpANT regulates meristem development in Marchantia polymorpha. Cell Rep 2024; 43:114466. [PMID: 38985681 DOI: 10.1016/j.celrep.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Zhengfei Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bingyu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shujing Liu
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China.
| |
Collapse
|
14
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
15
|
Cao MX, Li SZ, Li HJ. MpMLO1 controls sperm discharge in liverwort. NATURE PLANTS 2024; 10:1027-1038. [PMID: 38831045 DOI: 10.1038/s41477-024-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
In bryophytes, sexual reproduction necessitates the release of motile sperm cells from a gametophyte into the environment. Since 1856, this process, particularly in liverworts, has been known to depend on water. However, the molecular mechanism underlying this phenomenon has remained elusive. Here we identify the plasma membrane protein MpMLO1 in Marchantia polymorpha, a model liverwort, as critical for sperm discharge from antheridia. The MpMLO1-expressing tip cells among the sperm-wrapping jacket cells undergo programmed cell death upon antheridium maturation to facilitate sperm discharge after the application of water and even hypertonic solutions. The absence of MpMLO1 leads to reduced cytoplasmic Ca2+ levels in tip cells, preventing cell death and consequently sperm discharge. Our findings reveal that MpMLO1-mediated programmed cell death in antheridial tip cells, regulated by cytosolic Ca2+ dynamics, is essential for sperm release, elucidating a key mechanism in bryophyte sexual reproduction and providing insights into terrestrial plant evolution.
Collapse
Affiliation(s)
- Meng-Xing Cao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Zhen Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
González-Itier S, Miranda M, Corrales-Orovio R, Vera C, Veloso-Giménez V, Cárdenas-Calderón C, Egaña JT. Plants as a cost-effective source for customizable photosynthetic wound dressings: A proof of concept study. Biotechnol Bioeng 2024; 121:1961-1972. [PMID: 38555480 DOI: 10.1002/bit.28705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Oxygen is essential for tissue regeneration, playing a crucial role in several processes, including cell metabolism and immune response. Therefore, the delivery of oxygen to wounds is an active field of research, and recent studies have highlighted the potential use of photosynthetic biomaterials as alternative oxygenation approach. However, while plants have traditionally been used to enhance tissue regeneration, their potential to produce and deliver local oxygen to wounds has not yet been explored. Hence, in this work we studied the oxygen-releasing capacity of Marchantia polymorpha explants, showing their capacity to release oxygen under different illumination settings and temperatures. Moreover, co-culture experiments revealed that the presence of these explants had no adverse effects on the viability and morphology of fibroblasts in vitro, nor on the viability of zebrafish larvae in vivo. Furthermore, oxygraphy assays demonstrate that these explants could fulfill the oxygen metabolic requirements of zebrafish larvae and freshly isolated skin biopsies ex vivo. Finally, the biocompatibility of explants was confirmed through a human skin irritation test conducted in healthy volunteers following the ISO-10993-10-2010. This proof-of-concept study provides valuable scientific insights, proposing the potential use of freshly isolated plants as biocompatible low-cost oxygen delivery systems for wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Sergio González-Itier
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Veterinary Medicine and Agronomy, Universidad de las Américas, Santiago, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Constanza Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Veloso-Giménez
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Cárdenas-Calderón
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Doll Y, Koga H, Tsukaya H. Beyond stomatal development: SMF transcription factors as versatile toolkits for land plant evolution. QUANTITATIVE PLANT BIOLOGY 2024; 5:e6. [PMID: 39220371 PMCID: PMC11363000 DOI: 10.1017/qpb.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 09/04/2024]
Abstract
As master transcription factors of stomatal development, SPEECHLESS, MUTE, and FAMA, collectively termed SMFs, are primary targets of molecular genetic analyses in the model plant Arabidopsis thaliana. Studies in other model systems identified SMF orthologs as key players in evolutionary developmental biology studies on stomata. However, recent studies on the astomatous liverwort Marchantia polymorpha revealed that the functions of these genes are not limited to the stomatal development, but extend to other types of tissues, namely sporophytic setal and gametophytic epidermal tissues. These studies provide insightful examples of gene-regulatory network co-opting, and highlight SMFs and related transcription factors as general toolkits for novel trait evolution in land plant lineages. Here, we critically review recent literature on the SMF-like gene in M. polymorpha and discuss their implications for plant evolutionary biology.
Collapse
Affiliation(s)
- Yuki Doll
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Duckett JG, Pressel S, Kowal J. The biology of Marchantia polymorpha subsp . ruderalis Bischl. & Boissel. Dub in nature. FRONTIERS IN PLANT SCIENCE 2024; 15:1339832. [PMID: 38872896 PMCID: PMC11169808 DOI: 10.3389/fpls.2024.1339832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Introduction Though used as the model liverwort in culture for several decades, the biology of Marchantia polymorpha subsp. ruderalis in nature has never been documented in detail in a single account. Methods Here we synthesize routine field observations documented with hundreds of images of M. ruderalis colonies (or groups) showing sex differentiation over 3 years on two populations of M. ruderalis after major heathland fires in 2020. Results Initial post-fire establishment is from airborne spores rather than a spore bank but thereafter spread is via gemmae which have less exacting germination requirements. Young sporelings are highly gemmiferous but gemmae production becomes less frequent after sex organ formation. Over the course of a year there are up to three waves of carpocephalum production with the overwhelming majority of antheridiophores appearing 2-3 months ahead of the archegoniophores though no differences in growth rates were apparent between male and female thalli. Spermatozoids are produced almost continuously throughout the year, whilst sporophyte maturation is restricted to the summer months. Discussion Because of the asynchrony between antheridiophore and archegoniophore production a 1:1 sex ratio is only apparent over this period. The spring months see an excess of males with more females in the summer. An almost 100% fertilization rate, with fertilization distances of up to 19 m far exceeding those in all other bryophytes, is attributed to vast spermatozoid production for most of the year, dispersal on surface oil films between thalli and highly effective intra-thallus spermatozoid transport via the pegged-rhizoid water-conducting system. Archegoniophores do develop on female-only populations but have shorter stalks than those where fertilization has occurred. Eventual disappearance post fires is attributed to a fall in topsoil nutrient levels preventing new sporeling establishment and competition from Ceratodon purpureus and Polytrichum spp. A major drought in the summer of 2022 almost wiped out the heathland Marchantia populations but all the other bryophytes survived.
Collapse
Affiliation(s)
| | - Silvia Pressel
- Research, The Natural History Museum, London, United Kingdom
| | - Jill Kowal
- Department of Ecosystem Stewardship, Royal Botanic Gardens Kew, London, United Kingdom
| |
Collapse
|
19
|
Romani F, Sauret-Güeto S, Rebmann M, Annese D, Bonter I, Tomaselli M, Dierschke T, Delmans M, Frangedakis E, Silvestri L, Rever J, Bowman JL, Romani I, Haseloff J. The landscape of transcription factor promoter activity during vegetative development in Marchantia. THE PLANT CELL 2024; 36:2140-2159. [PMID: 38391349 PMCID: PMC11132968 DOI: 10.1093/plcell/koae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024]
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.
Collapse
Affiliation(s)
- Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ignacio Romani
- Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, Bernal, Buenos Aires 1876, Argentina
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| |
Collapse
|
20
|
Watanabe K, Hashimoto K, Hasegawa K, Shindo H, Tsuruda Y, Kupisz K, Koselski M, Wasko P, Trebacz K, Kuchitsu K. Rapid Propagation of Ca2+ Waves and Electrical Signals in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:660-670. [PMID: 38195149 DOI: 10.1093/pcp/pcad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.
Collapse
Affiliation(s)
- Kenshiro Watanabe
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kota Hasegawa
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hiroki Shindo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yushin Tsuruda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kamila Kupisz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Zhang X, Bian A, Yang J, Liang Y, Zhang Z, Yan M, Yuan S, Zhang Q. Morphological Innovation Drives Sperm Release in Bryophytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306767. [PMID: 38552153 PMCID: PMC11132054 DOI: 10.1002/advs.202306767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/17/2024] [Indexed: 05/29/2024]
Abstract
Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Ang Bian
- College of Computer ScienceSichuan UniversityChengdu610065China
| | - Junbo Yang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdong518120China
| | - Ye Liang
- Core Facility of the State Key Laboratory of Membrane BiologyPeking UniversityBeijing100871China
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Meng Yan
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Siqi Yuan
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Qun Zhang
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
22
|
Furuya T, Saegusa N, Yamaoka S, Tomoita Y, Minamino N, Niwa M, Inoue K, Yamamoto C, Motomura K, Shimadzu S, Nishihama R, Ishizaki K, Ueda T, Fukaki H, Kohchi T, Fukuda H, Kasahara M, Araki T, Kondo Y. A non-canonical BZR/BES transcription factor regulates the development of haploid reproductive organs in Marchantia polymorpha. NATURE PLANTS 2024; 10:785-797. [PMID: 38605238 DOI: 10.1038/s41477-024-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Natsumi Saegusa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Tomoita
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Masaki Niwa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- GRA&GREEN Inc., Nagoya, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Kazuki Motomura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Japanese Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shunji Shimadzu
- Graduate School of Science, Kobe University, Kobe, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | | | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
23
|
Furumoto T, Yamaoka S, Kohchi T, Motose H, Takahashi T. Thermospermine Is an Evolutionarily Ancestral Phytohormone Required for Organ Development and Stress Responses in Marchantia Polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:460-471. [PMID: 38179828 PMCID: PMC11020214 DOI: 10.1093/pcp/pcae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.
Collapse
Affiliation(s)
- Takuya Furumoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| |
Collapse
|
24
|
Kajiwara T, Miyazaki M, Yamaoka S, Yoshitake Y, Yasui Y, Nishihama R, Kohchi T. Transcription of the Antisense Long Non-Coding RNA, SUPPRESSOR OF FEMINIZATION, Represses Expression of the Female-Promoting Gene FEMALE GAMETOPHYTE MYB in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:338-349. [PMID: 38174428 PMCID: PMC11020262 DOI: 10.1093/pcp/pcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.
Collapse
Affiliation(s)
- Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yoshihiro Yoshitake
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
25
|
Bao H, Sun R, Iwano M, Yoshitake Y, Aki SS, Umeda M, Nishihama R, Yamaoka S, Kohchi T. Conserved CKI1-mediated signaling is required for female germline specification in Marchantia polymorpha. Curr Biol 2024; 34:1324-1332.e6. [PMID: 38295795 DOI: 10.1016/j.cub.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
In land plants, gametes derive from a small number of dedicated haploid cells.1 In angiosperms, one central cell and one egg cell are differentiated in the embryo sac as female gametes for double fertilization, while in non-flowering plants, only one egg cell is generated in the female sexual organ, called the archegonium.2,3 The central cell specification of Arabidopsis thaliana is controlled by the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1), which is a two-component signaling (TCS) activator sharing downstream regulatory components with the cytokinin signaling pathway.4,5,6,7 Our phylogenetic analysis suggested that CKI1 orthologs broadly exist in land plants. However, the role of CKI1 in non-flowering plants remains unclear. Here, we found that the sole CKI1 ortholog in the liverwort Marchantia polymorpha, MpCKI1, which functions through conserved downstream TCS components, regulates the female germline specification for egg cell development in the archegonium. In M. polymorpha, the archegonium develops three-dimensionally from a single cell accumulating MpBONOBO (MpBNB), a master regulator for germline initiation and differentiation.8 We visualized female germline specification by capturing the distribution pattern of MpBNB in discrete stages of early archegonium development, and found that MpBNB accumulation is restricted to female germline cells. MpCKI1 is required for the proper MpBNB accumulation in the female germline, and is critical for the asymmetric cell divisions that specify the female germline cells. These results suggest that CKI1-mediated TCS originated during early land plant evolution and participates in female germ cell specification in deeply diverged plant lineages.
Collapse
Affiliation(s)
- Haonan Bao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
26
|
Levins J, Dierschke T, Bowman JL. A subclass II bHLH transcription factor in Marchantia polymorpha gives insight into the ancestral land plant trait of spore formation. Curr Biol 2024; 34:895-901.e5. [PMID: 38280380 DOI: 10.1016/j.cub.2024.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
Sporopollenin is often said to be one of the toughest biopolymers known to man. The shift in dormancy cell wall deposition from around the diploid zygotes of charophycean algae to sporopollenin around the haploid spores of land plants essentially imparted onto land plants the gift of passive motility, a key acquisition that contributed to their vast and successful colonization across terrestrial habitats.1,2 A putative transcription factor controlling the land plant mode of sporopollenin deposition is the subclass II bHLHs, which are conserved and novel to land plants, with mutants of genes in angiosperms and mosses divulging roles relating to tapetum degeneration and spore development.3,4,5,6,7 We demonstrate that a subclass II bHLH gene, MpbHLH37, regulates sporopollenin biosynthesis and deposition in the model liverwort Marchantia polymorpha. Mpbhlh37 sporophytes show a striking loss of secondary wall deposits of the capsule wall, the elaters, and the spore exine, all while maintaining spore viability, identifying MpbHLH37 as a master regulator of secondary wall deposits of the sporophyte. Localization of MpbHLH37 to the capsule wall and elaters of the sporophyte directly designates these tissue types as a bona fide tapetum in liverworts, giving support to the notion that the presence of a tapetum is an ancestral land plant trait. Finally, as early land plant spore walls exhibit evidence of tapetal deposition,8,9,10,11,12 a tapetal capsule wall could have provided these plants with a developmental mechanism for sporopollenin deposition.
Collapse
Affiliation(s)
- Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, VIC 3800, Australia
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, VIC 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
27
|
Lu YT, Loue-Manifel J, Bollier N, Gadient P, De Winter F, Carella P, Hoguin A, Grey-Switzman S, Marnas H, Simon F, Copin A, Fischer S, de Leau E, Schornack S, Nishihama R, Kohchi T, Depège Fargeix N, Ingram G, Nowack MK, Goodrich J. Convergent evolution of water-conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death. Curr Biol 2024; 34:793-807.e7. [PMID: 38295796 DOI: 10.1016/j.cub.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.
Collapse
Affiliation(s)
- Yen-Ting Lu
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jeanne Loue-Manifel
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK; Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | | | - Philippe Gadient
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Antoine Hoguin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shona Grey-Switzman
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Hugo Marnas
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Francois Simon
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alice Copin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shelby Fischer
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nathalie Depège Fargeix
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Moritz K Nowack
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
28
|
Tsuboyama S, Okumura T, Attri P, Koga K, Shiratani M, Kuchitsu K. Growth control of Marchantia polymorpha gemmae using nonthermal plasma irradiation. Sci Rep 2024; 14:3172. [PMID: 38326376 PMCID: PMC10850213 DOI: 10.1038/s41598-024-53104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Several studies have documented that treatment by cold atmospheric pressure plasma (CAPP) on plants foster seed germination and growth in recent years. However, the molecular processes that underlie the action of CAPP on the seeds and plants remain mostly enigmatic. We here introduce gemmae of Marchantia polymorpha, a basal liverwort, as a novel model plant material suitable for CAPP research. Treating the gemmae with CAPP for a constant time interval at low power resulted in consistent growth enhancement, while growth inhibition at higher power in a dose-dependent manner. These results distinctly demonstrate that CAPP irradiation can positively and negatively regulate plant growth depending on the plasma intensity of irradiation, offering a suitable experimental system for understanding the molecular mechanisms underlying the action of CAPP in plants.
Collapse
Affiliation(s)
- Shoko Tsuboyama
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takamasa Okumura
- Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motoka, Fukuoka City, Fukuoka, 819-0395, Japan
| | - Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motoka, Fukuoka City, Fukuoka, 819-0395, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motoka, Fukuoka City, Fukuoka, 819-0395, Japan
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
29
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
30
|
Flores-Sandoval E, Nishihama R, Bowman JL. Hormonal and genetic control of pluripotency in bryophyte model systems. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102486. [PMID: 38041967 DOI: 10.1016/j.pbi.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023]
Abstract
Land plant meristems are reservoirs of pluripotent stem cells where new tissues emerge, grow and eventually differentiate into specific cell identities. Compared to algae, where cells are produced in two-dimensional tissues via tip or marginal growth, land plants have meristems that allow three-dimensional growth for successful exploration of the terrestrial environment. In land plants, meristem maintenance leads to indeterminate growth and the production of new meristems leads to branching or regeneration via reprogramming of wounded somatic cells. Emerging model systems in the haploid dominant and monophyletic bryophytes are allowing comparative analyses of meristem gene regulatory networks to address whether all plants use common or diverse programs to organise, maintain, and regenerate meristems. In this piece we aim to discuss recent advances in genetic and hormonal control of bryophyte meristems and possible convergence or discrepancies in an exciting and emerging field in plant biology.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia.
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia
| |
Collapse
|
31
|
Montgomery SA, Berger F. Paternal imprinting in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1000-1006. [PMID: 37936346 DOI: 10.1111/nph.19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.
Collapse
Affiliation(s)
- Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), C/ del Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
32
|
Tang H, Lu KJ, Zhang Y, Cheng YL, Tu SL, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. PLANT COMMUNICATIONS 2024; 5:100669. [PMID: 37528584 PMCID: PMC10811345 DOI: 10.1016/j.xplc.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023]
Abstract
The phytohormone auxin, and its directional transport through tissues, plays a fundamental role in the development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using a radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In the Arabidopsis root epidermis, bryophytic PINs have no defined polarity. Pharmacological interference revealed a strong cytoskeletal dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal the divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and the co-evolution of PIN sequence-based and cell-based polarity mechanisms.
Collapse
Affiliation(s)
- Han Tang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Kuan-Ju Lu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 40227, Taiwan, R.O.C
| | - YuZhou Zhang
- College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, China
| | - You-Liang Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Tomizawa Y, Minamino N, Shimokawa E, Kawamura S, Komatsu A, Hiwatashi T, Nishihama R, Ueda T, Kohchi T, Kondo Y. Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1343-1355. [PMID: 37797211 DOI: 10.1093/pcp/pcad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M. polymorpha. This dioicous plant species exhibits morphological differences between male and female wild accessions at an early stage of gemmaling growth, although it remains elusive whether the differences are attributable to sex chromosomes. To isolate the effects of sex chromosomes from autosomal polymorphisms, we established a male and female set of recombinant inbred lines (RILs) from a set of male and female wild accessions. We then trained deep learning models to classify the sexes of the RILs and the wild accessions. Our results showed that the trained classifiers accurately classified male and female gemmalings of wild accessions in the first week of growth, confirming the intuition of researchers in a reproducible and objective manner. In contrast, the RILs were less distinguishable, indicating that the differences between the parental wild accessions arose from autosomal variations. Furthermore, we validated our trained models by an 'eXplainable AI' technique that highlights image regions relevant to the classification. Our findings demonstrate that the classifier-based approach provides a powerful tool for analyzing plant species that lack standardized phenotyping metrics.
Collapse
Affiliation(s)
- Yoko Tomizawa
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazak, Aichii, 444-8787 Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Eita Shimokawa
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Takuma Hiwatashi
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502 Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazak, Aichii, 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787 Japan
| |
Collapse
|
34
|
Takahashi G, Kiyosue T, Hirakawa Y. Control of stem cell behavior by CLE-JINGASA signaling in the shoot apical meristem in Marchantia polymorpha. Curr Biol 2023; 33:5121-5131.e6. [PMID: 37977139 DOI: 10.1016/j.cub.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Land plants undergo indeterminate growth by the activity of meristems in both gametophyte (haploid) and sporophyte (diploid) generations. In the sporophyte of the flowering plant Arabidopsis thaliana, the apical meristems are located at the shoot and root tips in which a number of regulatory gene homologs are shared for their development, implying deep evolutionary origins. However, little is known about their functional conservation with gametophytic meristems in distantly related land plants such as bryophytes, even though genomic studies have revealed that the subfamily-level diversity of regulatory genes is mostly conserved throughout land plants. Here, we show that a NAM/ATAF/CUC (NAC) domain transcription factor, JINGASA (MpJIN), acts downstream of CLAVATA3 (CLV3)/ESR-related (CLE) peptide signaling and controls stem cell behavior in the gametophytic shoot apical meristem of the liverwort Marchantia polymorpha. In the meristem, strong MpJIN expression was associated with the periclinal cell division at the periphery of the stem cell zone (SCZ), whereas faint MpJIN expression was found at the center of the SCZ. Time course observation indicates that the MpJIN-negative cells are lost from the SCZ and respecified de novo at two separate positions during the dichotomous branching event. Consistently, the induction of MpJIN results in ectopic periclinal cell division in the SCZ and meristem termination. Based on the comparative expression data, we speculate that the function of JIN/FEZ subfamily genes was shared among the shoot apical meristems in the gametophyte and sporophyte generations in early land plants but was lost in certain lineages, including the flowering plant A. thaliana.
Collapse
Affiliation(s)
- Go Takahashi
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan
| | - Tomohiro Kiyosue
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan
| | - Yuki Hirakawa
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan.
| |
Collapse
|
35
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
36
|
Saito M, Momiki R, Ebine K, Yoshitake Y, Nishihama R, Miyakawa T, Nakano T, Mitsuda N, Araki T, Kohchi T, Yamaoka S. A bHLH heterodimer regulates germ cell differentiation in land plant gametophytes. Curr Biol 2023; 33:4980-4987.e6. [PMID: 37776860 DOI: 10.1016/j.cub.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Land plants are a monophyletic group of photosynthetic eukaryotes that diverged from streptophyte algae about 470 million years ago. During both the alternating haploid and diploid stages of the life cycle, land plants form multicellular bodies.1,2,3,4 The haploid multicellular body (gametophyte) produces progenitor cells that give rise to gametes and the reproductive organs.5,6,7,8 In the liverwort Marchantia polymorpha, differentiation of the initial cells of gamete-producing organs (gametangia) from the gametophyte is regulated by MpBONOBO (MpBNB), a member of the basic helix-loop-helix (bHLH) transcription factor subfamily VIIIa. In Arabidopsis thaliana, specification of generative cells in developing male gametophytes (pollen) requires redundant action of BNB1 and BNB2.9 Subfamily XI bHLHs, such as LOTUS JAPONICUS ROOTHAIRLESS LIKE1 (LRL1)/DEFECTIVE REGION OF POLLEN1 (DROP1) and LRL2/DROP2 in A. thaliana and the single LRL/DROP protein MpLRL in M. polymorpha, are the evolutionarily conserved regulators of rooting system development.10 Although the role of LRL1/DROP1 and LRL2/DROP2 in gametogenesis remains unclear, their loss leads to the formation of abnormal pollen devoid of sperm cells.11 Here, we show that BNBs and LRL/DROPs co-localize to gametophytic cell nuclei and form heterodimers. LRL1/DROP1 and LRL2/DROP2 act redundantly to regulate BNB expression for generative cell specification in A. thaliana after asymmetric division of the haploid microspore. MpLRL is required for differentiation of MpBNB-expressing gametangium initial cells in M. polymorpha gametophytes. Our findings suggest that broadly expressed LRL/DROP stabilizes BNB expression, leading to the formation of an evolutionarily conserved bHLH heterodimer, which regulates germ cell differentiation in the haploid gametophyte of land plants.
Collapse
Affiliation(s)
- Misaki Saito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryosuke Momiki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuo Ebine
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan; The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | | | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
37
|
Kanesaka Y, Inoue K, Tomita Y, Yamaoka S, Araki T. Circadian clock does not play an essential role in daylength measurement for growth-phase transition in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 14:1275503. [PMID: 38023914 PMCID: PMC10673691 DOI: 10.3389/fpls.2023.1275503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Daylength is perceived as a seasonal cue to induce growth-phase transition at a proper time of a year. The core of the mechanism of daylength measurement in angiosperms lies in the circadian clock-controlled expression of regulators of growth-phase transition. However, the roles of the circadian clock in daylength measurement in basal land plants remain largely unknown. In this study, we investigated the contribution of circadian clock to daylength measurement in a basal land plant, the liverwort Marchantia polymorpha. In M. polymorpha, transition from vegetative to reproductive phase under long-day conditions results in differentiation of sexual branches called gametangiophores which harbor gametangia. First, we showed that a widely used wild-type accession Takaragaike-1 is an obligate long-day plant with a critical daylength of about 10 hours and requires multiple long days. Then, we compared the timing of gametangiophore formation between wild type and circadian clock mutants in long-day and short-day conditions. Mutations in two clock genes, MpTIMING OF CAB EXPRESSION 1 and MpPSEUDO-RESPONSE REGULATOR, had no significant effects on the timing of gametangiophore formation. In addition, when M. polymorpha plants were treated with a chemical which lengthens circadian period, there was no significant effect on the timing of gametangiophore formation, either. We next observed the timing of gametangiophore formation under various non-24-h light/dark cycles to examine the effect of phase alteration in circadian rhythms. The results suggest that daylength measurement in M. polymorpha is based on the relative amount of light and darkness within a cycle rather than the intrinsic rhythms generated by circadian clock. Our findings suggest that M. polymorpha has a daylength measurement system which is different from that of angiosperms centered on the circadian clock function.
Collapse
Affiliation(s)
- Yuki Kanesaka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Tomita
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
39
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Sun R, Okabe M, Miyazaki S, Ishida T, Mashiguchi K, Inoue K, Yoshitake Y, Yamaoka S, Nishihama R, Kawaide H, Nakajima M, Yamaguchi S, Kohchi T. Biosynthesis of gibberellin-related compounds modulates far-red light responses in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:4111-4132. [PMID: 37597168 PMCID: PMC10615216 DOI: 10.1093/plcell/koad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023]
Abstract
Gibberellins (GAs) are key phytohormones that regulate growth, development, and environmental responses in angiosperms. From an evolutionary perspective, all major steps of GA biosynthesis are conserved among vascular plants, while GA biosynthesis intermediates such as ent-kaurenoic acid (KA) are also produced by bryophytes. Here, we show that in the liverwort Marchantia polymorpha, KA and GA12 are synthesized by evolutionarily conserved enzymes, which are required for developmental responses to far-red light (FR). Under FR-enriched conditions, mutants of various biosynthesis enzymes consistently exhibited altered thallus growth allometry, delayed initiation of gametogenesis, and abnormal morphology of gamete-bearing structures (gametangiophores). By chemical treatments and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, we confirmed that these phenotypes were caused by the deficiency of some GA-related compounds derived from KA, but not bioactive GAs from vascular plants. Transcriptome analysis showed that FR enrichment induced the up-regulation of genes related to stress responses and secondary metabolism in M. polymorpha, which was largely dependent on the biosynthesis of GA-related compounds. Due to the lack of canonical GA receptors in bryophytes, we hypothesize that GA-related compounds are commonly synthesized in land plants but were co-opted independently to regulate responses to light quality change in different plant lineages during the past 450 million years of evolution.
Collapse
Affiliation(s)
- Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Maiko Okabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Sho Miyazaki
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509,Japan
| | - Toshiaki Ishida
- Institute for Chemical Research, Kyoto University, Uji 611-0011,Japan
| | | | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510,Japan
| | - Hiroshi Kawaide
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509,Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657,Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| |
Collapse
|
41
|
Bonfanti A, Smithers ET, Bourdon M, Guyon A, Carella P, Carter R, Wightman R, Schornack S, Jönsson H, Robinson S. Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves. Proc Natl Acad Sci U S A 2023; 120:e2302985120. [PMID: 37782806 PMCID: PMC10576037 DOI: 10.1073/pnas.2302985120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.
Collapse
Affiliation(s)
- Alessandra Bonfanti
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan20133, Italy
| | | | - Matthieu Bourdon
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Alex Guyon
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Philip Carella
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Ross Carter
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Raymond Wightman
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | | | - Henrik Jönsson
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund223 62, Sweden
| | - Sarah Robinson
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| |
Collapse
|
42
|
Shimojo M, Nakamura M, Kitaura G, Ihara Y, Shimizu S, Hori K, Iwai M, Ohta H, Ishizaki K, Shimojima M. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions. PLANTA 2023; 258:92. [PMID: 37792042 PMCID: PMC10550880 DOI: 10.1007/s00425-023-04247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
MAIN CONCLUSION The phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha. The lipid composition and fatty acid profile during Pi starvation in M. polymorpha revealed a decrease in phospholipids and an increase in both galactolipids and betaine lipids. In Arabidopsis thaliana, phosphatidic acid phosphohydrolase (PAH) is involved in phospholipid degradation and is crucial for tolerance to both Pi and nitrogen starvation. We produced two M. polymorpha PAH (MpPAH) knockout mutants (Mppah-1 and Mppah-2) and found that, unlike Arabidopsis mutants, Mppah impaired plant growth with shorter rhizoids compared with wild-type plants even under nutrient-replete conditions. Mutation of MpPAH did not significantly affect the mole percent of each glycerolipid among total membrane glycerolipids from whole plants under both Pi-replete and Pi-deficient conditions. However, the fatty acid composition of monogalactosyldiacylglycerol indicated that the amount of plastid glycolipids produced through the endoplasmic reticulum pathway was suppressed in Mppah mutants. Phospholipids accumulated in the mutants under N starvation. These results reveal that MpPAH modulates plastid glycolipid synthesis through the endoplasmic reticulum pathway more so than what has been observed for Arabidopsis PAH; moreover, unlike Arabidopsis, MpPAH is crucial for M. polymorpha growth regardless of nutrient availability.
Collapse
Affiliation(s)
- Misao Shimojo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masashi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ginga Kitaura
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
43
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
44
|
Yotsui I, Matsui H, Miyauchi S, Iwakawa H, Melkonian K, Schlüter T, Michavila S, Kanazawa T, Nomura Y, Stolze SC, Jeon HW, Yan Y, Harzen A, Sugano SS, Shirakawa M, Nishihama R, Ichihashi Y, Ibanez SG, Shirasu K, Ueda T, Kohchi T, Nakagami H. LysM-mediated signaling in Marchantia polymorpha highlights the conservation of pattern-triggered immunity in land plants. Curr Biol 2023; 33:3732-3746.e8. [PMID: 37619565 DOI: 10.1016/j.cub.2023.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of pathogenic microbes, playing a pivotal role in angiosperms. The model liverwort Marchantia polymorpha triggers defense-related gene expression upon sensing components of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However, the molecular components of the putative PTI in M. polymorpha and the significance of PTI in bryophytes have not yet been described. We here show that M. polymorpha has four lysin motif (LysM)-domain-containing receptor homologs, two of which, LysM-receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR, are responsible for sensing chitin and peptidoglycan fragments, triggering a series of characteristic immune responses. Comprehensive phosphoproteomic analysis of M. polymorpha in response to chitin treatment identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins included homologs of well-described PTI components in angiosperms as well as proteins whose roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We revealed that MpPHOT is required for negative feedback of defense-related gene expression during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in M. polymorpha and highlights conserved elements and new aspects of pattern-triggered immunity in land plants.
Collapse
Affiliation(s)
- Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Department of BioScience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hidenori Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Okinawa, Japan
| | - Hidekazu Iwakawa
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | | | - Titus Schlüter
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Santiago Michavila
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | | | - Hyung-Woo Jeon
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yijia Yan
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Selena Gimenez Ibanez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
45
|
Cui Y, Hisanaga T, Kajiwara T, Yamaoka S, Kohchi T, Goh T, Nakajima K. Three-Dimensional Morphological Analysis Revealed the Cell Patterning Bases for the Sexual Dimorphism Development in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:866-879. [PMID: 37225421 DOI: 10.1093/pcp/pcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
In land plants, sexual dimorphism can develop in both diploid sporophytes and haploid gametophytes. While developmental processes of sexual dimorphism have been extensively studied in the sporophytic reproductive organs of model flowering plants such as stamens and carpels of Arabidopsis thaliana, those occurring in gametophyte generation are less well characterized due to the lack of amenable model systems. In this study, we performed three-dimensional morphological analyses of gametophytic sexual branch differentiation in the liverwort Marchantia polymorpha, using high-depth confocal imaging and a computational cell segmentation technique. Our analysis revealed that the specification of germline precursors initiates in a very early stage of sexual branch development, where incipient branch primordia are barely recognizable in the apical notch region. Moreover, spatial distribution patterns of germline precursors differ between males and females from the initial stage of primordium development in a manner dependent on the master sexual differentiation regulator MpFGMYB. At later stages, distribution patterns of germline precursors predict the sex-specific gametangia arrangement and receptacle morphologies seen in mature sexual branches. Taken together, our data suggest a tightly coupled progression of germline segregation and sexual dimorphism development in M. polymorpha.
Collapse
Affiliation(s)
- Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| |
Collapse
|
46
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
47
|
Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. PLANTS (BASEL, SWITZERLAND) 2023; 12:2776. [PMID: 37570930 PMCID: PMC10420882 DOI: 10.3390/plants12152776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Metal micronutrients are essential for plant nutrition, but their toxicity threshold is low. In-depth studies on the response of light-dependent reactions of photosynthesis to metal micronutrients are needed, and the analysis of chlorophyll a fluorescence transients is a suitable technique. The liverwort Marchantia polymorpha L., a model organism also used in biomonitoring, allowed us to accurately study the effects of metal micronutrients in vivo, particularly the early responses. Gametophytes were treated with copper (Cu), iron (Fe) or zinc (Zn) for up to 120 h. Copper showed the strongest effects, negatively affecting almost the entire light phase of photosynthesis. Iron was detrimental to the flux of energy around photosystem II (PSII), while the acceptor side of PSI was unaltered. The impact of Fe was milder than that of Cu and in both cases the structures of the photosynthetic apparatus that resisted the treatments were still able to operate efficiently. The susceptibility of M. polymorpha to Zn was low: although the metal affected a large part of the electron transport chain, its effects were modest and short-lived. Our results may provide a contribution towards achieving a more comprehensive understanding of response mechanisms to metals and their evolution in plants, and may be useful for supporting the development of biomonitoring techniques.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Erika Bellini
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Florinda Bacchi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Luigi Sanità di Toppi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| |
Collapse
|
48
|
Kolkas H, Burlat V, Jamet E. Immunochemical Identification of the Main Cell Wall Polysaccharides of the Early Land Plant Marchantia polymorpha. Cells 2023; 12:1833. [PMID: 37508498 PMCID: PMC10378070 DOI: 10.3390/cells12141833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Plant primary cell walls are composite structures surrounding the protoplast and containing pectins, hemicelluloses, and cellulose polysaccharides, as well as proteins. Their composition changed during the evolution of the green lineage from algae to terrestrial plants, i.e., from an aquatic to a terrestrial environment. The constraints of life in terrestrial environments have generated new requirements for the organisms, necessitating adaptations, such as cell wall modifications. We have studied the cell wall polysaccharide composition of thalli of Marchantia polymorpha, a bryophyte belonging to one of the first land plant genera. Using a collection of specific antibodies raised against different cell wall polysaccharide epitopes, we were able to identify in polysaccharide-enriched fractions: pectins, including low-methylesterified homogalacturonans; rhamnogalacturonan I with arabinan side-chains; and hemicelluloses, such as xyloglucans with XXLG and XXXG modules, mannans, including galactomannans, and xylans. We could also show the even distribution of XXLG xyloglucans and galactomannans in the cell walls of thalli by immunocytochemistry. These results are discussed with regard to the cell wall proteome composition and in the context of the evolution of the green lineage. The cell wall polysaccharides of M. polymorpha illustrate the transition from the charophyte ancestors of terrestrial plants containing xyloglucans, xylans and mannans as hemicelluloses, and embryophytes which do not exhibit mannans as major primary cell wall polysaccharides.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
49
|
Mulvey H, Dolan L. RHO GTPase of plants regulates polarized cell growth and cell division orientation during morphogenesis. Curr Biol 2023:S0960-9822(23)00766-2. [PMID: 37385256 DOI: 10.1016/j.cub.2023.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Cell polarity-broadly defined as the asymmetric distribution of cellular activities and subcellular components within a cell-determines the geometry of cell growth and division during development. RHO GTPase proteins regulate the establishment of cell polarity and are conserved among eukaryotes. RHO of plant (ROP) proteins are a subgroup of RHO GTPases that are required for cellular morphogenesis in plants. However, how ROP proteins modulate the geometry of cell growth and division during the morphogenesis of plant tissues and organs is not well understood. To investigate how ROP proteins function during tissue development and organogenesis, we characterized the function of the single-copy ROP gene of the liverwort Marchantia polymorpha (MpROP). M. polymorpha develops morphologically complex three-dimensional tissues and organs exemplified by air chambers and gemmae, respectively. Mprop loss-of-function mutants form defective air chambers and gemmae, indicating ROP function is required for tissue development and organogenesis. During air chamber and gemma development in wild type, the MpROP protein is enriched to sites of polarized growth at the cell surface and accumulates at the expanding cell plate of dividing cells. Consistent with these observations, polarized cell growth is lost and cell divisions are misoriented in Mprop mutants. We propose that ROP regulates both polarized cell growth and cell division orientation in a coordinated manner to orchestrate tissue development and organogenesis in land plants.
Collapse
Affiliation(s)
- Hugh Mulvey
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Liam Dolan
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
50
|
Liao J, Deng B, Yang Q, Li Y, Zhang Y, Cong J, Wang X, Kohnen MV, Liu ZJ, Lu MZ, Lin D, Gu L, Liu B. Insights into cryptochrome modulation of ABA signaling to mediate dormancy regulation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1479-1497. [PMID: 36797656 DOI: 10.1111/nph.18815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.
Collapse
Affiliation(s)
- Jiakai Liao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qixin Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuxiang Zhang
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiajing Cong
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaqin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|