1
|
Ren X, Zhang X, Qi X, Zhang T, Wang H, Twell D, Gong Y, Fu Y, Wang B, Kong H, Xu B. The BNB-GLID module regulates germline fate determination in Marchantia polymorpha. THE PLANT CELL 2024; 36:3824-3837. [PMID: 39041486 PMCID: PMC11371191 DOI: 10.1093/plcell/koae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.
Collapse
Affiliation(s)
- Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaotong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yu Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baichen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Zhang X, Bian A, Yang J, Liang Y, Zhang Z, Yan M, Yuan S, Zhang Q. Morphological Innovation Drives Sperm Release in Bryophytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306767. [PMID: 38552153 PMCID: PMC11132054 DOI: 10.1002/advs.202306767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/17/2024] [Indexed: 05/29/2024]
Abstract
Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Ang Bian
- College of Computer ScienceSichuan UniversityChengdu610065China
| | - Junbo Yang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdong518120China
| | - Ye Liang
- Core Facility of the State Key Laboratory of Membrane BiologyPeking UniversityBeijing100871China
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Meng Yan
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Siqi Yuan
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Qun Zhang
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
3
|
Furuya T, Saegusa N, Yamaoka S, Tomoita Y, Minamino N, Niwa M, Inoue K, Yamamoto C, Motomura K, Shimadzu S, Nishihama R, Ishizaki K, Ueda T, Fukaki H, Kohchi T, Fukuda H, Kasahara M, Araki T, Kondo Y. A non-canonical BZR/BES transcription factor regulates the development of haploid reproductive organs in Marchantia polymorpha. NATURE PLANTS 2024; 10:785-797. [PMID: 38605238 DOI: 10.1038/s41477-024-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Natsumi Saegusa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Tomoita
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Masaki Niwa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- GRA&GREEN Inc., Nagoya, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Kazuki Motomura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Japanese Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shunji Shimadzu
- Graduate School of Science, Kobe University, Kobe, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | | | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
4
|
Yamamoto C, Takahashi F, Suetsugu N, Yamada K, Yoshikawa S, Kohchi T, Kasahara M. The cAMP signaling module regulates sperm motility in the liverwort Marchantia polymorpha. Proc Natl Acad Sci U S A 2024; 121:e2322211121. [PMID: 38593080 PMCID: PMC11032487 DOI: 10.1073/pnas.2322211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.
Collapse
Affiliation(s)
- Chiaki Yamamoto
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Fumio Takahashi
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo153-8902, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Masahiro Kasahara
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| |
Collapse
|
5
|
Kajiwara T, Miyazaki M, Yamaoka S, Yoshitake Y, Yasui Y, Nishihama R, Kohchi T. Transcription of the Antisense Long Non-Coding RNA, SUPPRESSOR OF FEMINIZATION, Represses Expression of the Female-Promoting Gene FEMALE GAMETOPHYTE MYB in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:338-349. [PMID: 38174428 PMCID: PMC11020262 DOI: 10.1093/pcp/pcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.
Collapse
Affiliation(s)
- Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yoshihiro Yoshitake
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
6
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
7
|
Wang M, Tabeta H, Ohtaka K, Kuwahara A, Nishihama R, Ishikawa T, Toyooka K, Sato M, Wakazaki M, Akashi H, Tsugawa H, Shoji T, Okazaki Y, Yoshida K, Sato R, Ferjani A, Kohchi T, Hirai MY. The phosphorylated pathway of serine biosynthesis affects sperm, embryo, and sporophyte development, and metabolism in Marchantia polymorpha. Commun Biol 2024; 7:102. [PMID: 38267515 PMCID: PMC10808223 DOI: 10.1038/s42003-023-05746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Serine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant Marchantia polymorpha by analyzing knockout mutants of MpPGDH encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth. Sperm development requires serine from the phosphorylated pathway, while egg formation does not. Functional MpPGDH in the maternal genome is necessary for embryo and sporophyte development. Under high CO2 where the glycolate pathway of serine biosynthesis is inhibited, suppressed thallus growth of the mutants is not fully recovered by exogenously-supplemented serine, suggesting the importance of serine homeostasis involving the phosphorylated and glycolate pathways. Metabolomic phenotypes indicate that the phosphorylated pathway mainly influences the tricarboxylic acid cycle, the amino acid and nucleotide metabolism, and lipid metabolism. These results indicate the importance of the phosphorylated pathway of serine biosynthesis in the dark, in the development of sperm, embryo, and sporophyte, and metabolism in M. polymorpha.
Collapse
Affiliation(s)
- Mengyao Wang
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiromitsu Tabeta
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kinuka Ohtaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresource, Mie University, Tsushi, Japan
| | - Keisuke Yoshida
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryoichi Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Cheng SY, Chu PK, Chen YJ, Wu YH, Huang MD. Exploring the extensin gene family: an updated genome-wide survey in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:152-167. [PMID: 37769205 DOI: 10.1093/jxb/erad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Extensins (EXTs), a class of hydroxyproline-rich glycoprotein with multiple Ser-Pro3-5 motifs, are known to play roles in cell wall reinforcement and environmental responses. EXTs with repetitive Tyr-X-Tyr (YXY) motifs for crosslinking are referred as crosslinking EXTs. Our comprehensive study spanned 194 algal and plant species, categorizing EXTs into seven subfamilies: classical extensins (EXT I and II), arabinogalactan-protein extensins (AGP-EXTs), proline-rich extensin-like receptor kinases (PERKs), leucine-rich repeat extensins (LRX I and II), formin homology (FH) domain-containing extensins (FH-EXTs), proline-rich, arabinogalactan proteins, conserved cysteines (PAC) domain-containing extensins (PAC I and II), and eight-cysteine motif (8CM)-containing extensins (8CM-EXTs). In the examined dataset, EXTs were detected ubiquitously in plants but infrequently in algae, except for one Coccomyxa and four Chlamydomonadales species. No crosslinking EXTs were found in Poales or certain Zingiberales species. Notably, the previously uncharacterized EXT II, PAC II, and liverwort-specific 8CM-EXTs were found to be crosslinking EXTs. EXT II, featuring repetitive YY motifs instead of the conventional YXY motif, was exclusively identified in Solanaceae. Furthermore, tandem genes encoding distinctive 8CM-EXTs specifically expressed in the germinating spores of Marchantia polymorpha. This updated classification of EXT types allows us to propose a plausible evolutionary history of EXT genes during the course of plant evolution.
Collapse
Affiliation(s)
- Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ping-Kuan Chu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yun-Hsuan Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
9
|
Minamino N, Fujii H, Murata H, Hachinoda S, Kondo Y, Hotta K, Ueda T. Analysis of Plant-Specific ANTH Domain-Containing Protein in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1331-1342. [PMID: 37804254 DOI: 10.1093/pcp/pcad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Haruki Fujii
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Haruhiko Murata
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Sho Hachinoda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yohei Kondo
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
10
|
Cui Y, Hisanaga T, Kajiwara T, Yamaoka S, Kohchi T, Goh T, Nakajima K. Three-Dimensional Morphological Analysis Revealed the Cell Patterning Bases for the Sexual Dimorphism Development in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:866-879. [PMID: 37225421 DOI: 10.1093/pcp/pcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
In land plants, sexual dimorphism can develop in both diploid sporophytes and haploid gametophytes. While developmental processes of sexual dimorphism have been extensively studied in the sporophytic reproductive organs of model flowering plants such as stamens and carpels of Arabidopsis thaliana, those occurring in gametophyte generation are less well characterized due to the lack of amenable model systems. In this study, we performed three-dimensional morphological analyses of gametophytic sexual branch differentiation in the liverwort Marchantia polymorpha, using high-depth confocal imaging and a computational cell segmentation technique. Our analysis revealed that the specification of germline precursors initiates in a very early stage of sexual branch development, where incipient branch primordia are barely recognizable in the apical notch region. Moreover, spatial distribution patterns of germline precursors differ between males and females from the initial stage of primordium development in a manner dependent on the master sexual differentiation regulator MpFGMYB. At later stages, distribution patterns of germline precursors predict the sex-specific gametangia arrangement and receptacle morphologies seen in mature sexual branches. Taken together, our data suggest a tightly coupled progression of germline segregation and sexual dimorphism development in M. polymorpha.
Collapse
Affiliation(s)
- Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| |
Collapse
|
11
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Moriya KC, Shirakawa M, Loue-Manifel J, Matsuda Y, Lu YT, Tamura K, Oka Y, Matsushita T, Hara-Nishimura I, Ingram G, Nishihama R, Goodrich J, Kohchi T, Shimada T. Stomatal regulators are co-opted for seta development in the astomatous liverwort Marchantia polymorpha. NATURE PLANTS 2023; 9:302-314. [PMID: 36658391 DOI: 10.1038/s41477-022-01325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.
Collapse
Affiliation(s)
- Kenta C Moriya
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Shirakawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Jeanne Loue-Manifel
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Yoriko Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yen-Ting Lu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Kobayashi H, Murakami K, Sugano SS, Tamura K, Oka Y, Matsushita T, Shimada T. Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 13:1051017. [PMID: 36756228 PMCID: PMC9901580 DOI: 10.3389/fpls.2022.1051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.
Collapse
Affiliation(s)
| | | | - Shigeo S. Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Kwiatkowski M, Wong A, Bi C, Gehring C, Jaworski K. Twin cyclic mononucleotide cyclase and phosphodiesterase domain architecture as a common feature in complex plant proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111493. [PMID: 36216295 DOI: 10.1016/j.plantsci.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China.
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Koshimizu S, Minamino N, Nishiyama T, Yoro E, Sato M, Wakazaki M, Toyooka K, Ebine K, Sakakibara K, Ueda T, Yano K. Phylogenetic distribution and expression pattern analyses identified a divergent basal body assembly protein involved in land plant spermatogenesis. THE NEW PHYTOLOGIST 2022; 236:1182-1196. [PMID: 35842793 DOI: 10.1111/nph.18385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Land plant spermatozoids commonly possess characteristic structures such as the spline, which consists of a microtubule array, the multilayered structure (MLS) in which the uppermost layer is a continuum of the spline, and multiple flagella. However, the molecular mechanisms underpinning spermatogenesis remain to be elucidated. We successfully identified candidate genes involved in spermatogenesis, deeply divergent BLD10s, by computational analyses combining multiple methods and omics data. We then examined the functions of BLD10s in the liverwort Marchantia polymorpha and the moss Physcomitrium patens. MpBLD10 and PpBLD10 are required for normal basal body (BB) and flagella formation. Mpbld10 mutants exhibited defects in remodeling of the cytoplasm and nucleus during spermatozoid formation, and thus MpBLD10 should be involved in chromatin reorganization and elimination of the cytoplasm during spermiogenesis. We identified orthologs of MpBLD10 and PpBLD10 in diverse Streptophyta and found that MpBLD10 and PpBLD10 are orthologous to BLD10/CEP135 family proteins, which function in BB assembly. However, BLD10s evolved especially quickly in land plants and MpBLD10 might have acquired additional functions in spermatozoid formation through rapid molecular evolution.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| |
Collapse
|
16
|
Landberg K, Lopez‐Obando M, Sanchez Vera V, Sundberg E, Thelander M. MS1/MMD1 homologues in the moss Physcomitrium patens are required for male and female gametogenesis. THE NEW PHYTOLOGIST 2022; 236:512-524. [PMID: 35775827 PMCID: PMC9796955 DOI: 10.1111/nph.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants.
Collapse
Affiliation(s)
- Katarina Landberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mauricio Lopez‐Obando
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Victoria Sanchez Vera
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Eva Sundberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mattias Thelander
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| |
Collapse
|
17
|
Montgomery SA, Hisanaga T, Wang N, Axelsson E, Akimcheva S, Sramek M, Liu C, Berger F. Polycomb-mediated repression of paternal chromosomes maintains haploid dosage in diploid embryos of Marchantia. eLife 2022; 11:79258. [PMID: 35996955 PMCID: PMC9402228 DOI: 10.7554/elife.79258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
Complex mechanisms regulate gene dosage throughout eukaryotic life cycles. Mechanisms controlling gene dosage have been extensively studied in animals, however it is unknown how generalizable these mechanisms are to diverse eukaryotes. Here, we use the haploid plant Marchantia polymorpha to assess gene dosage control in its short-lived diploid embryo. We show that throughout embryogenesis, paternal chromosomes are repressed resulting in functional haploidy. The paternal genome is targeted for genomic imprinting by the Polycomb mark H3K27me3 starting at fertilization, rendering the maternal genome in control of embryogenesis. Maintaining haploid gene dosage by this new form of imprinting is essential for embryonic development. Our findings illustrate how haploid-dominant species can regulate gene dosage through paternal chromosome inactivation and initiates the exploration of the link between life cycle history and gene dosage in a broader range of organisms.
Collapse
Affiliation(s)
- Sean Akira Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Milos Sramek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
18
|
Minamino N, Norizuki T, Mano S, Ebine K, Ueda T. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development 2022; 149:276198. [DOI: 10.1242/dev.200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Gametogenesis is an essential event for sexual reproduction in various organisms. Bryophytes employ motile sperm (spermatozoids) as male gametes, which locomote to the egg cells to accomplish fertilization. The spermatozoids of bryophytes harbor distinctive morphological characteristics, including a cell body with a helical shape and two flagella. During spermiogenesis, the shape and cellular contents of the spermatids are dynamically reorganized. However, the reorganization patterns of each organelle remain obscure. In this study, we classified the developmental processes during spermiogenesis in the liverwort Marchantia polymorpha according to changes in cellular and nuclear shapes and flagellar development. We then examined the remodeling of microtubules and the reorganization of endomembrane organelles. The results indicated that the state of glutamylation of tubulin changes during formation of the flagella and spline. We also found that the plasma membrane and endomembrane organelles are drastically reorganized in a precisely regulated manner, which involves the functions of endosomal sorting complexes required for transport (ESCRT) machineries in endocytic and vacuolar transport. These findings are expected to provide useful indices to classify developmental and subcellular processes of spermiogenesis in bryophytes.
Collapse
Affiliation(s)
- Naoki Minamino
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takuya Norizuki
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Shoji Mano
- National Institute for Basic Biology 2 Laboratory of Organelle Regulation , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Kazuo Ebine
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takashi Ueda
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| |
Collapse
|
19
|
Norizuki T, Minamino N, Sato M, Tsukaya H, Ueda T. Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Rep 2022; 39:110975. [PMID: 35705033 DOI: 10.1016/j.celrep.2022.110975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria change their morphology in response to developmental and environmental cues. During sexual reproduction, bryophytes produce spermatozoids with two mitochondria in the cell body. Although intensive morphological analyses have been conducted, how this fixed number of mitochondria is realized remains poorly understood. Here, we investigate how mitochondria are reorganized during spermiogenesis in Marchantia polymorpha. We find that the mitochondrial number is reduced to one through fission followed by autophagic degradation during early spermiogenesis, and then the posterior mitochondrion arises by fission of the anterior mitochondrion. Autophagy is also responsible for the removal of other organelles, including peroxisomes, but these other organelles are removed at distinct developmental stages from mitochondrial degradation. We also find that spermiogenesis involves nonautophagic organelle degradation. Our findings highlight the dynamic reorganization of mitochondria, which is regulated distinctly from that of other organelles, and multiple degradation mechanisms operate in organelle remodeling during spermiogenesis in M. polymorpha.
Collapse
Affiliation(s)
- Takuya Norizuki
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
20
|
Sanchez-Vera V, Landberg K, Lopez-Obando M, Thelander M, Lagercrantz U, Muñoz-Viana R, Schmidt A, Grossniklaus U, Sundberg E. The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification. THE NEW PHYTOLOGIST 2022; 233:2614-2628. [PMID: 34942024 DOI: 10.1111/nph.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Katarina Landberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mauricio Lopez-Obando
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mattias Thelander
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Rafael Muñoz-Viana
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Anja Schmidt
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Eva Sundberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| |
Collapse
|
21
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 2021; 31:5522-5532.e7. [PMID: 34735792 PMCID: PMC8699743 DOI: 10.1016/j.cub.2021.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.
Collapse
Affiliation(s)
- Miyuki Iwasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Dierk Wanke
- Department Biologie I, Ludwig-Maximilians-University (LMU), München 80638, Germany
| | - Kenji Hashimoto
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
22
|
Yamaoka S, Inoue K, Araki T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. PLANT REPRODUCTION 2021; 34:297-306. [PMID: 34117568 DOI: 10.1007/s00497-021-00419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation. Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Furuya T, Shinkawa H, Kajikawa M, Nishihama R, Kohchi T, Fukuzawa H, Tsukaya H. A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2021; 134:1265-1277. [PMID: 34549353 PMCID: PMC8514375 DOI: 10.1007/s10265-021-01345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 05/31/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are activated via the auto-phosphorylation of conserved tyrosine residues in their activation loop during protein translation, and they then phosphorylate serine/threonine residues on substrates. The DYRK family is widely conserved in eukaryotes and is composed of six subgroups. In plant lineages, DYRK homologs are classified into four subgroups, DYRK2s, yet another kinase1s, pre-mRNA processing factor 4 kinases, and DYRKPs. Only the DYRKP subgroup is plant-specific and has been identified in a wide array of plant lineages, including land plants and green algae. It has been suggested that in Arabidopsis thaliana DYRKPs are involved in the regulation of centripetal nuclear positioning induced by dark light conditions. However, the molecular functions, such as kinase activity and the developmental and physiological roles of DYRKPs are poorly understood. Here, we focused on a sole DYRKP ortholog in the model bryophyte, Marchantia polymorpha, MpDYRKP. MpDYRKP has a highly conserved kinase domain located in the C-terminal region and shares common sequence motifs in the N-terminal region with other DYRKP members. To identify the roles of MpDYRKP in M. polymorpha, we generated loss-of-function Mpdyrkp mutants via genome editing. Mpdyrkp mutants exhibited abnormal, shrunken morphologies with less flattening in their vegetative plant bodies, thalli, and male reproductive organs, antheridial receptacles. The surfaces of the thalli in the Mpdyrkp mutants appeared uneven and disordered. Moreover, their epidermal cells were drastically altered to a narrower shape when compared to the wild type. These results suggest that MpDYRKP acts as a morphological regulator, which contributes to orderly tissue morphogenesis via the regulation of cell shape.
Collapse
Grants
- 19K21189 ministry of education, culture, sports, science and technology
- 20K15813 ministry of education, culture, sports, science and technology
- 17K07753 ministry of education, culture, sports, science and technology
- 16H04805 ministry of education, culture, sports, science and technology
- 25113002 ministry of education, culture, sports, science and technology
- 19H05672 ministry of education, culture, sports, science and technology
- 251113009 ministry of education, culture, sports, science and technology
- 25113001 ministry of education, culture, sports, science and technology
- 19H05675 ministry of education, culture, sports, science and technology
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Science and Technology, Tokyo University of Science, Chiba, 278- 8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan.
| |
Collapse
|
24
|
Hisanaga T, Fujimoto S, Cui Y, Sato K, Sano R, Yamaoka S, Kohchi T, Berger F, Nakajima K. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. eLife 2021; 10:57090. [PMID: 34579806 PMCID: PMC8478417 DOI: 10.7554/elife.57090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/02/2021] [Indexed: 02/03/2023] Open
Abstract
KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in sporophyte and spore formation, meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Shota Fujimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Katsutoshi Sato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
25
|
Dierschke T, Flores-Sandoval E, Rast-Somssich MI, Althoff F, Zachgo S, Bowman JL. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. eLife 2021; 10:57088. [PMID: 34533136 PMCID: PMC8476127 DOI: 10.7554/elife.57088] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Australia.,Botany Department, University of Osnabrück, Osnabrück, Germany
| | | | | | - Felix Althoff
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
27
|
Świeżawska-Boniecka B, Duszyn M, Kwiatkowski M, Szmidt-Jaworska A, Jaworski K. Cross Talk Between Cyclic Nucleotides and Calcium Signaling Pathways in Plants-Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:643560. [PMID: 33664763 PMCID: PMC7921789 DOI: 10.3389/fpls.2021.643560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
A variety of plant cellular activities are regulated through mechanisms controlling the level of signal molecules, such as cyclic nucleotides (cNMPs, e.g., cyclic adenosine 3':5'-monophosphate, cAMP, and cyclic guanosine 3':5'- monophosphate, cGMP) and calcium ions (Ca2+). The mechanism regulating cNMP levels affects their synthesis, degradation, efflux and cellular distribution. Many transporters and the spatiotemporal pattern of calcium signals, which are transduced by multiple, tunable and often strategically positioned Ca2+-sensing elements, play roles in calcium homeostasis. Earlier studies have demonstrated that while cNMPs and Ca2+ can act separately in independent transduction pathways, they can interact and function together. Regardless of the context, the balance between Ca2+ and cNMP is the most important consideration. This balance seems to be crucial for effectors, such as phosphodiesterases, cyclic nucleotide gated channels and cyclase activity. Currently, a wide range of molecular biology techniques enable thorough analyses of cellular cross talk. In recent years, data have indicated relationships between calcium ions and cyclic nucleotides in mechanisms regulating specific signaling pathways. The purpose of this study is to summarize the current knowledge on nucleotide-calcium cross talk in plants.
Collapse
|
28
|
Jiang D, Borg M, Lorković ZJ, Montgomery SA, Osakabe A, Yelagandula R, Axelsson E, Berger F. The evolution and functional divergence of the histone H2B family in plants. PLoS Genet 2020; 16:e1008964. [PMID: 32716939 PMCID: PMC7410336 DOI: 10.1371/journal.pgen.1008964] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants. In addition to well-studied variants from core histones families H2A and H3, we report that land plants diversified their H2B family, leading to specialized H2B variants with specific patterns of expression, genomic distributions and properties.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Sean A. Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Akihisa Osakabe
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- * E-mail:
| |
Collapse
|
29
|
Sierocka I, Alaba S, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z. The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort Pellia endiviifolia sp. B using an RNA-seq approach. PLANTA 2020; 252:21. [PMID: 32671488 PMCID: PMC7363739 DOI: 10.1007/s00425-020-03424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION This study shows differences in gene expression between male and female gametophytes of the simple thalloid liverwort with a distinction between the vegetative and reproductive phases of growth. Pellia endiviifolia is a simple thalloid liverwort that, together with hornworts and mosses, represents the oldest living land plants. The limited taxon sampling for genomic and functional studies hampers our understanding of processes governing evolution of these plants. RNA sequencing represents an attractive way to elucidate the molecular mechanisms of non-model species development. In the present study, RNA-seq was used to profile the differences in gene expression between P. endiviifolia male and female gametophytes, with a distinction between the vegetative and reproductive phases of growth. By comparison of the gene expression profiles from individuals producing sex organs with the remaining thalli types, we have determined a set of genes whose expression might be important for the development of P. endiviifolia reproductive organs. The selected differentially expressed genes (DEGs) were categorized into five main pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and organismal systems. A comparison of the obtained data with the Marchantia polymorpha transcriptome resulted in the identification of genes exhibiting a similar expression pattern during the reproductive phase of growth between members of the two distinct liverwort classes. The common expression profile of 87 selected genes suggests a common mechanism governing sex organ development in both liverwort species. The obtained RNA-seq results were confirmed by RT-qPCR for the DEGs with the highest differences in expression level. Five Pellia-female-specific and two Pellia-male-specific DEGs showed enriched expression in archegonia and antheridia, respectively. The identified genes are promising candidates for functional studies of their involvement in liverwort sexual reproduction.
Collapse
Affiliation(s)
- Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Sylwia Alaba
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
30
|
Sauret-Güeto S, Frangedakis E, Silvestri L, Rebmann M, Tomaselli M, Markel K, Delmans M, West A, Patron NJ, Haseloff J. Systematic Tools for Reprogramming Plant Gene Expression in a Simple Model, Marchantia polymorpha. ACS Synth Biol 2020; 9:864-882. [PMID: 32163700 DOI: 10.1021/acssynbio.9b00511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities. Marchantia plants spontaneously produce clonal propagules within a few weeks of regeneration, and lines can be amplified million-fold in a single generation by induction of the sexual phase of growth, crossing, and harvesting of progeny spores. The plant has a simple morphology and genome with reduced gene redundancy, and the dominant phase of its life cycle is haploid, making genetic analysis easier. We have built robust Loop assembly vector systems for nuclear and chloroplast transformation and genome editing. These have provided the basis for building and testing a modular library of standardized DNA elements with highly desirable properties. We have screened transcriptomic data to identify a range of candidate genes, extracted putative promoter sequences, and tested them in vivo to identify new constitutive promoter elements. The resources have been combined into a toolkit for plant bioengineering that is accessible for laboratories without access to traditional facilities for plant biology research. The toolkit is being made available under the terms of the OpenMTA and will facilitate the establishment of common standards and the use of this simple plant as testbed for synthetic biology.
Collapse
Affiliation(s)
- Susanna Sauret-Güeto
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Eftychios Frangedakis
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Kasey Markel
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| |
Collapse
|
31
|
Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T, Mochizuki T, Akimcheva S, Bowman JL, Cognat V, Maréchal-Drouard L, Ekker H, Hong SF, Kohchi T, Lin SS, Liu LYD, Nakamura Y, Valeeva LR, Shakirov EV, Shippen DE, Wei WL, Yagura M, Yamaoka S, Yamato KT, Liu C, Berger F. Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Curr Biol 2020; 30:573-588.e7. [PMID: 32004456 PMCID: PMC7209395 DOI: 10.1016/j.cub.2019.12.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Genome packaging by nucleosomes is a hallmark of eukaryotes. Histones and the pathways that deposit, remove, and read histone modifications are deeply conserved. Yet, we lack information regarding chromatin landscapes in extant representatives of ancestors of the main groups of eukaryotes, and our knowledge of the evolution of chromatin-related processes is limited. We used the bryophyte Marchantia polymorpha, which diverged from vascular plants circa 400 mya, to obtain a whole chromosome genome assembly and explore the chromatin landscape and three-dimensional genome organization in an early diverging land plant lineage. Based on genomic profiles of ten chromatin marks, we conclude that the relationship between active marks and gene expression is conserved across land plants. In contrast, we observed distinctive features of transposons and other repetitive sequences in Marchantia compared with flowering plants. Silenced transposons and repeats did not accumulate around centromeres. Although a large fraction of constitutive heterochromatin was marked by H3K9 methylation as in flowering plants, a significant proportion of transposons were marked by H3K27me3, which is otherwise dedicated to the transcriptional repression of protein-coding genes in flowering plants. Chromatin compartmentalization analyses of Hi-C data revealed that repressed B compartments were densely decorated with H3K27me3 but not H3K9 or DNA methylation as reported in flowering plants. We conclude that, in early plants, H3K27me3 played an essential role in heterochromatin function, suggesting an ancestral role of this mark in transposon silencing.
Collapse
Affiliation(s)
- Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Japan
| | - Bence Galik
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Tasuku Ito
- John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - Takako Mochizuki
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Japan
| | - Svetlana Akimcheva
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Heinz Ekker
- Vienna BioCenter Core Facilities (VBCF), Next Generation Sequencing facility, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei 106, Taiwan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Japan
| | - Lia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan 420008, Russia; Department of Biological Sciences, Marshall University, Huntington, WV 25701, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Masaru Yagura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
32
|
Drinnenberg IA, Berger F, Elsässer SJ, Andersen PR, Ausió J, Bickmore WA, Blackwell AR, Erwin DH, Gahan JM, Gaut BS, Harvey ZH, Henikoff S, Kao JY, Kurdistani SK, Lemos B, Levine MT, Luger K, Malik HS, Martín-Durán JM, Peichel CL, Renfree MB, Rutowicz K, Sarkies P, Schmitz RJ, Technau U, Thornton JW, Warnecke T, Wolfe KH. EvoChromo: towards a synthesis of chromatin biology and evolution. Development 2019; 146:146/19/dev178962. [PMID: 31558570 DOI: 10.1242/dev.178962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR 3664, Paris 75005, France
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Peter R Andersen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Wendy A Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - James M Gahan
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Henikoff
- Division of Basic Sciences and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joyce Y Kao
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.,Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry, CU Boulder, Boulder, CO 80303, USA
| | - Harmit S Malik
- Division of Basic Sciences and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - José M Martín-Durán
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - Kinga Rutowicz
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8092 Zürich, Switzerland
| | - Peter Sarkies
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, IMperial College London, Du Cane Road, London W12 0NN, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna A-1090, Austria
| | - Joseph W Thornton
- Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, IMperial College London, Du Cane Road, London W12 0NN, UK
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
33
|
D'Ippolito RA, Minamino N, Rivera-Casas C, Cheema MS, Bai DL, Kasinsky HE, Shabanowitz J, Eirin-Lopez JM, Ueda T, Hunt DF, Ausió J. Protamines from liverwort are produced by post-translational cleavage and C-terminal di-aminopropanelation of several male germ-specific H1 histones. J Biol Chem 2019; 294:16364-16373. [PMID: 31527083 DOI: 10.1074/jbc.ra119.010316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation MS-based analyses, revealing that the protamines in the sperm of the liverwort Marchantia polymorpha result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense spermatid chromatin through a process consisting of liquid-phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.,Department of Pathology, University of Virginia, Charlottesville, Virginia 22903
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
34
|
Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K, Araki T, Kohchi T, Berger F. Building new insights in plant gametogenesis from an evolutionary perspective. NATURE PLANTS 2019; 5:663-669. [PMID: 31285561 DOI: 10.1038/s41477-019-0466-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/29/2019] [Indexed: 05/18/2023]
Abstract
Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
35
|
Inoue K, Nishihama R, Araki T, Kohchi T. Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2019; 60:1136-1145. [PMID: 30816950 DOI: 10.1093/pcp/pcz029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 05/15/2023]
Abstract
Land plants have evolved a series of photoreceptors to precisely perceive environmental information. Among these, phytochromes are the sole photoreceptors for red light (R) and far-red light (FR), and play pivotal roles in modulating various developmental processes. Most extant land plants possess multiple phytochromes that probably evolved from a single phytochrome in the common ancestor of land plants. However, the ancestral phytochrome signaling mechanism remains unknown due to a paucity of knowledge regarding phytochrome functions in basal land plants. It has recently been reported that Mpphy, a single phytochrome in the liverwort Marchantia polymorpha, regulates typical photoreversible responses collectively classified as low fluence response (LFR). Here, we show that Mpphy also regulates the gametangiophore formation analogous to the mode of action of the far-red high irradiance response (FR-HIR) in angiosperms. Our phenotypic analyses using mutant plants obtained by CRISPR/Cas9-based genome editing revealed that MpFHY1, an ortholog of FAR-RED ELONGATED HYPOCOTYL1, as well as Mpphy is critical for the FR-HIR signaling in M. polymorpha. In addition, knockout of MpPIF, a single PHYTOCHROME INTERACTING FACTOR gene in M. polymorpha, completely abolished the FR-HIR-dependent gametangiophore formation, while overexpression of MpPIF accelerated the response. FR-HIR-dependent transcriptional regulation was also disrupted in the Mppif mutant. Our findings suggest that plants had already acquired the FR-HIR signaling mediated by phytochrome and PIF at a very early stage during the course of land plant evolution, and that a single phytochrome in the common ancestor of land plants could mediate both LFR and FR-HIR.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLoS Genet 2019; 15:e1007997. [PMID: 30845139 PMCID: PMC6424463 DOI: 10.1371/journal.pgen.1007997] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/19/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022] Open
Abstract
The homeostasis of meristems in flowering plants is maintained by cell-to-cell communication via CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) peptide hormones. In contrast, cell signals that regulate meristem activity remains elusive in bryophytes that maintain apical meristems in the gametophyte (haploid) body and undergo a gametophyte-dominant life cycle. We here show that MpCLE1 confines the proliferative activity of gametophytic meristem and affects the overall size of gametangiophores (reproductive organs) in Marchantia polymorpha, which is in sharp contrast with the meristem-promoting function of its ortholog TDIF/CLE41/CLE44 in Arabidopsis vascular meristems. Expression analysis suggests that MpCLE1 and its receptor gene MpTDR are expressed in distinct patterns across the apical meristem. These data suggest that local CLE peptide signaling may have had a role in regulating cell proliferation in the shoot meristem in the ancestral land plant and acts in both sporophytic and gametophytic meristems of extant plants. Land plants undergo an alternation of generations where both haploid and diploid phases develop multicellular bodies. Their growth relies on the activity of meristems at the growing tips of their bodies. Here we show a CLE peptide hormone acts as an intercellular signal controlling proliferative activity in the apical meristem of Marchantia polymorpha. Our finding reveals a general association of CLE peptide signaling with meristem homeostasis, a feature that evolved in the ancestral land plant, in both haploid and diploid phases.
Collapse
|
37
|
Monte I, Franco-Zorrilla JM, García-Casado G, Zamarreño AM, García-Mina JM, Nishihama R, Kohchi T, Solano R. A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. MOLECULAR PLANT 2019; 12:185-198. [PMID: 30594656 DOI: 10.1016/j.molp.2018.12.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/26/2023]
Abstract
JAZ proteins are negative regulators of jasmonate responses, acting both as repressors of transcription factors and as co-receptors of JA-Ile. The high redundancy of JAZ genes in angiosperms has hindered the characterization of a complete depletion of JAZ function. Moreover, the recent discovery that dn-OPDA is the jasmonate ligand in Marchantia polymorpha demonstrates that JA-Ile is not the sole COI1/JAZ ligand in land plants and highlights the importance of studying JAZ co-receptors in bryophytes. Here, we have exploited the low gene redundancy of the liverwort M. polymorpha to characterize the single MpJAZ in this early diverging plant lineage. We clarify the phylogenetic history of the TIFY family, demonstrate that MpJAZ is the ortholog of AtJAZ with a conserved function, and characterize its repressor activity of dn-OPDA responses. Our results show that, consistent with previous findings in Arabidopsis, MpJAZ represses jasmonates biosynthesis, senescence, and plant defenses, and promotes cell growth and reproductive fitness, highlighting the power of studies in Marchantia.
Collapse
Affiliation(s)
- Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Navarre, Spain
| | | | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
38
|
Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R, Shimamura M, Yamato KT, Bowman JL, Kohchi T, Nakajima K. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J 2019; 38:embj.2018100240. [PMID: 30609993 PMCID: PMC6418429 DOI: 10.15252/embj.2018100240] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Plant life cycles alternate between haploid gametophytes and diploid sporophytes. While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex‐specific traits in the haploid gametophytes that produce male and female gametes and hence are central to plant sexual reproduction are poorly understood. Here, we identified a MYB‐type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid‐dominant dioicous liverwort, Marchantia polymorpha. MpFGMYB is specifically expressed in females and its loss resulted in female‐to‐male sex conversion. Strikingly, MpFGMYB expression is suppressed in males by a cis‐acting antisense gene SUF at the same locus, and loss‐of‐function suf mutations resulted in male‐to‐female sex conversion. Thus, the bidirectional transcription module at the MpFGMYB/SUF locus acts as a toggle between female and male sexual differentiation in M. polymorpha gametophytes. Arabidopsis thaliana MpFGMYB orthologs are known to be expressed in embryo sacs and promote their development. Thus, phylogenetically related MYB transcription factors regulate female gametophyte development across land plants.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Masaki Shimamura
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
39
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
40
|
Higo A, Kawashima T, Borg M, Zhao M, López-Vidriero I, Sakayama H, Montgomery SA, Sekimoto H, Hackenberg D, Shimamura M, Nishiyama T, Sakakibara K, Tomita Y, Togawa T, Kunimoto K, Osakabe A, Suzuki Y, Yamato KT, Ishizaki K, Nishihama R, Kohchi T, Franco-Zorrilla JM, Twell D, Berger F, Araki T. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat Commun 2018; 9:5283. [PMID: 30538242 PMCID: PMC6290024 DOI: 10.1038/s41467-018-07728-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Evolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element. This event led to the differentiation of motile sperm. After neo-functionalization, DUO1 acquired sperm lineage-specific expression in the common ancestor of land plants. Subsequently the downstream network of DUO1 was rewired leading to sperm with distinct morphologies. Conjugating green algae, a sister group of land plants, accumulated mutations in the DNA-binding domain of DUO1 and lost sperm differentiation. Our findings suggest that the emergence of DUO1 was the defining event in the evolution of sperm differentiation and the varied modes of sexual reproduction in the land plant lineage.
Collapse
Affiliation(s)
- Asuka Higo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Mingmin Zhao
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Irene López-Vidriero
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Masaki Shimamura
- Department of Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keiko Sakakibara
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yuki Tomita
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taisuke Togawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kan Kunimoto
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - José M Franco-Zorrilla
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
41
|
Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLoS One 2018; 13:e0204964. [PMID: 30286137 PMCID: PMC6171868 DOI: 10.1371/journal.pone.0204964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023] Open
Abstract
The liverwort Marchantia polymorpha is an emerging model species for basal lineage plant research. In this study, two Gateway cloning-compatible binary vector series, R4pMpGWB and R4L1pMpGWB, were generated to facilitate production of transgenic M. polymorpha. The R4pMpGWB series allows tripartite recombination of any promoter and any coding sequence with a specific reporter or tag. Reporters/tags for the R4pMpGWB series are GUS, ELuc(PEST), FLAG, 3×HA, 4×Myc, mRFP1, Citrine, mCitrine, ER-targeted mCitrine and nucleus-targeted mCitrine. The R4L1pMpGWB series is suitable for promoter analysis. R4L1pMpGWB vector structure is the same as that of R4pMpGWB vectors, except that the attR2 site is replaced with attL1, enabling bipartite recombination of any promoter with a reporter or tag. Reporters/tags for the R4L1pMpGWB series are GUS, G3GFP-GUS, LUC, ELuc(PEST), Citrine, mCitrine, ER-targeted mCitrine and mCitrine-NLS. Both vector series were functional in M. polymorpha cells. These vectors will facilitate the design and assembly of plasmid constructs and generation of transgenic M. polymorpha.
Collapse
|
42
|
Minamino N, Kanazawa T, Era A, Ebine K, Nakano A, Ueda T. RAB GTPases in the Basal Land Plant Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2018; 59:845-856. [PMID: 29444302 DOI: 10.1093/pcp/pcy027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/30/2018] [Indexed: 05/18/2023]
Abstract
The RAB GTPase is an evolutionarily conserved machinery component of membrane trafficking, which is the fundamental system for cell viability and higher order biological functions. The composition of RAB GTPases in each organism is closely related to the complexity and organization of the membrane trafficking pathway, which has been developed uniquely to realize the organism-specific membrane trafficking system. Comparative genomics has suggested that terrestrialization and/or multicellularization were associated with the expansion of membrane trafficking pathways in green plants, which has yet to be validated in basal land plant lineages. To obtain insight into the diversification of membrane trafficking systems in green plants, we analyzed RAB GTPases encoded in the genome of the liverwort Marchantia polymorpha in a comprehensive manner. We isolated all genes for RAB GTPases in Marchantia and analyzed their expression patterns and subcellular localizations in thallus cells. While a majority of MpRAB GTPases exhibited a ubiquitous expression pattern, specific exceptions were also observed; MpRAB2b, which contains a sequence similar to an intraflagellar transport protein at the C-terminal region; and MpRAB23, which has been secondarily lost in angiosperms, were specifically expressed in the male reproductive organ. MpRAB21, which is another RAB GTPase whose homolog is absent in Arabidopsis, exhibited endosomal localization with RAB5 members in Marchantia. These results suggest that Marchantia possesses unique membrane trafficking pathways involving a unique repertoire of RAB GTPases.
Collapse
Affiliation(s)
- Naoki Minamino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan
| | - Atsuko Era
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
43
|
Nakajima K. Be my baby: patterning toward plant germ cells. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:110-115. [PMID: 29223127 DOI: 10.1016/j.pbi.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
In flowering plants, germ cells are formed via tightly coordinated patterning processes that facilitate specification of spore mother cells and meiosis during sporogenesis, as well as functional differentiation of germ cells in gametogenesis. Studies using the conventional Arabidopsis system and the newly emerged bryophyte system have revealed novel interactions between regulatory factors that restrict the number of spore mother cells, and evolutionarily conserved factors that promote germ cell differentiation. This short review summarizes recent advances in our understanding of the cellular events that lead to the formation of germ cells in plants, and highlights questions that remain to be addressed in the field.
Collapse
Affiliation(s)
- Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
44
|
Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K, Saito M, Okahashi K, Bao H, Nishida H, Yamaguchi K, Shigenobu S, Ishizaki K, Yamato KT, Kohchi T. Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Curr Biol 2018; 28:479-486.e5. [PMID: 29395928 DOI: 10.1016/j.cub.2017.12.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Land plants differentiate germ cells in the haploid gametophyte. In flowering plants, a generative cell is specified as a precursor that subsequently divides into two sperm cells in the developing male gametophyte, pollen. Generative cell specification requires cell-cycle control and microtubule-dependent nuclear relocation (reviewed in [1-3]). However, the generative cell fate determinant and its evolutionary origin are still unknown. In bryophytes, gametophytes produce eggs and sperm in multicellular reproductive organs called archegonia and antheridia, respectively, or collectively called gametangia. Given the monophyletic origin of land plants [4-6], evolutionarily conserved mechanisms may play key roles in these diverse reproductive processes. Here, we showed that a single member of the subfamily VIIIa of basic helix-loop-helix (bHLH) transcription factors in the liverwort Marchantia polymorpha primarily accumulated in the initial cells and controlled their development into gametangia. We then demonstrated that an Arabidopsis thaliana VIIIa bHLH transiently accumulated in the smaller daughter cell after an asymmetric division of the meiosis-derived microspore and was required for generative cell specification redundantly with its paralog. Furthermore, these A. thaliana VIIIa bHLHs were functionally replaceable by the M. polymorpha VIIIa bHLH. These findings suggest the VIIIa bHLH proteins as core regulators for reproductive development, including germ cell differentiation, since an early stage of land plant evolution.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Misaki Saito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keitaro Okahashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Haonan Bao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Nishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | | | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
45
|
Flores-Sandoval E, Romani F, Bowman JL. Co-expression and Transcriptome Analysis of Marchantia polymorpha Transcription Factors Supports Class C ARFs as Independent Actors of an Ancient Auxin Regulatory Module. FRONTIERS IN PLANT SCIENCE 2018; 9:1345. [PMID: 30327658 PMCID: PMC6174852 DOI: 10.3389/fpls.2018.01345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 05/07/2023]
Abstract
We performed differential gene expression (DGE) and co-expression analyses with genes encoding components of hormonal signaling pathways and the ∼400 annotated transcription factors (TFs) of M. polymorpha across multiple developmental stages of the life cycle. We identify a putative auxin-related co-expression module that has significant overlap with transcripts induced in auxin-treated tissues. Consistent with phylogenetic and functional studies, the class C ARF, MpARF3, is not part of the auxin-related co-expression module and instead is associated with transcripts enriched in gamete-producing gametangiophores. We analyze the Mparf3 and MpmiR160 mutant transcriptomes in the context of coexpression to suggest that MpARF3 may antagonize the reproductive transition via activating the MpMIR11671 and MpMIR529c precursors whose encoded microRNAs target SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcripts of MpSPL1 and MpSPL2. Both MpSPL genes are part of the MpARF3 co-expression group corroborating their functional significance. We provide evidence of the independence of MpARF3 from the auxin-signaling module and provide new testable hypotheses on the role of auxin-related genes in patterning meristems and differentiation events in liverworts.
Collapse
Affiliation(s)
| | - Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Santa Fe, Argentina
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- *Correspondence: John L. Bowman,
| |
Collapse
|
46
|
Minamino N, Kanazawa T, Nishihama R, Yamato KT, Ishizaki K, Kohchi T, Nakano A, Ueda T. Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2017; 130:433-441. [PMID: 28160149 DOI: 10.1007/s10265-017-0909-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
The processes involved in sexual reproduction have been diversified during plant evolution. Whereas charales, bryophytes, pteridophytes, and some gymnosperms utilize motile sperm as male gametes, in other gymnosperms and angiosperms the immotile sperm cells are delivered to the egg cells through elongated pollen tubes. During formation of the motile sperms, cells undergo a dynamic morphological transformation including drastic changes in shape and the generation of locomotor architecture. The molecular mechanism involved in this process remains mostly unknown. Membrane trafficking fulfills the exchange of various proteins and lipids among single membrane-bound organelles in eukaryotic cells, contributing to various biological functions. RAB GTPases and SNARE proteins are evolutionarily conserved key machineries of membrane trafficking mechanisms, which regulate tethering and fusion of the transport vesicles to target membranes. Our observation of fluorescently tagged plasma membrane-resident SNARE proteins demonstrated that these proteins relocalize to spherical structures during the late stages in spermiogenesis. Similar changes in subcellular localization were also observed for other fluorescently tagged SNARE proteins and a RAB GTPase, which acts on other organelles including the Golgi apparatus and endosomes. Notably, a vacuolar SNARE, MpVAMP71, was localized on the membrane of the spherical structures. Electron microscopic analysis revealed that there are many degradation-related structures such as multi-vesicular bodies, autophagosomes, and autophagic bodies containing organelles. Our results indicate that the cell-autonomous degradation pathway plays a crucial role in the removal of membrane components and the cytoplasm during spermiogenesis of Marchantia polymorpha. This process differs substantially from mammalian spermatogenesis in which phagocytic removal of excess cytoplasm involves neighboring cells.
Collapse
Affiliation(s)
- Naoki Minamino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takehiko Kanazawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
47
|
Ohyanagi H, Obayashi T, Yano K. Editorial: Plant and Cell Physiology's 2017 Database Issue. PLANT & CELL PHYSIOLOGY 2017; 58:1-3. [PMID: 28158372 DOI: 10.1093/pcp/pcw227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Hajime Ohyanagi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Yano
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
48
|
Horst NA, Reski R. Microscopy of Physcomitrella patens sperm cells. PLANT METHODS 2017; 13:33. [PMID: 28491120 PMCID: PMC5424408 DOI: 10.1186/s13007-017-0186-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/02/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Archegoniates (bryophytes, ferns and gymnosperms), such as the moss Physcomitrella patens, possess freely motile sperm cells (spermatozoids) which reach the egg cell via surface water. Although these motile flagellated sperm cells are a traditional botanical subject, they have not been thoroughly analysed in the flagship non-seed plant model species P. patens. Protocols are required to determine the behaviour of wild type sperms as a prerequisite for future research such as the characterization of mutants or factors that influence sperm number, morphology, viability and motility. RESULTS Here, we present protocols for the observation of fixed, as well as live sperms utilizing a standard microscope at intermediate magnifications. Fixed samples can be used for the fast assessment of sperm number and morphology. To determine functionality, the observation of live sperms is required. Protocols for determining both sperm motility and viability are provided, allowing both parameters to be distinguished. CONCLUSIONS These step-by-step protocols are particularly useful for researchers so far not familiar with the analysis of motile gametes and are meant to aid the establishment and improvement of these analyses in order to stimulate research on spermatogenesis in the moss model species P. patens.
Collapse
Affiliation(s)
- Nelly A. Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci Rep 2016; 6:39232. [PMID: 27982074 PMCID: PMC5159850 DOI: 10.1038/srep39232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants.
Collapse
Affiliation(s)
- Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Urano
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mikiya Ohmori
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuki Takada
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
50
|
Rensing SA. Plant Evo-Devo: How Tip Growth Evolved. Curr Biol 2016; 26:R1228-R1230. [PMID: 27923130 DOI: 10.1016/j.cub.2016.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Apical elongation of polarized plant cells (tip growth) occurs in root hairs of flowering plants and in rhizoids of bryophytes. A new report shows that the formation of these cells relies on genes already present in the first land plants.
Collapse
|