1
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
2
|
Vijayakumar S, Wang Y, Lehretz G, Taylor S, Carmo-Silva E, Long S. Kinetic modeling identifies targets for engineering improved photosynthetic efficiency in potato (Solanum tuberosum cv. Solara). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:561-572. [PMID: 37921015 DOI: 10.1111/tpj.16512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Potato (Solanum tuberosum) is a significant non-grain food crop in terms of global production. However, its yield potential might be raised by identifying means to release bottlenecks within photosynthetic metabolism, from the capture of solar energy to the synthesis of carbohydrates. Recently, engineered increases in photosynthetic rates in other crops have been directly related to increased yield - how might such increases be achieved in potato? To answer this question, we derived the photosynthetic parameters Vcmax and Jmax to calibrate a kinetic model of leaf metabolism (e-Photosynthesis) for potato. This model was then used to simulate the impact of manipulating the expression of genes and their protein products on carbon assimilation rates in silico through optimizing resource investment among 23 photosynthetic enzymes, predicting increases in photosynthetic CO2 uptake of up to 67%. However, this number of manipulations would not be practical with current technologies. Given a limited practical number of manipulations, the optimization indicated that an increase in amounts of three enzymes - Rubisco, FBP aldolase, and SBPase - would increase net assimilation. Increasing these alone to the levels predicted necessary for optimization increased photosynthetic rate by 28% in potato.
Collapse
Affiliation(s)
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Günter Lehretz
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Samuel Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
| | | | - Stephen Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
4
|
Pradhan B, Panda D, Bishi SK, Chakraborty K, Muthusamy SK, Lenka SK. Progress and prospects of C 4 trait engineering in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:920-931. [PMID: 35727191 DOI: 10.1111/plb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Incorporating C4 photosynthetic traits into C3 crops is a rational approach for sustaining future demands for crop productivity. Using classical plant breeding, engineering this complex trait is unlikely to achieve its target. Therefore, it is critical and timely to implement novel biotechnological crop improvement strategies to accomplish this goal. However, a fundamental understanding of C3 , C4 , and C3 -C4 intermediate metabolism is crucial for the targeted use of biotechnological tools. This review assesses recent progress towards engineering C4 photosynthetic traits in C3 crops. We also discuss lessons learned from successes and failures of recent genetic engineering attempts in C3 crops, highlighting the pros and cons of using rice as a model plant for short-, medium- and long-term goals of genetic engineering. This review provides an integrated approach towards engineering improved photosynthetic efficiency in C3 crops for sustaining food, fibre and fuel production around the globe.
Collapse
Affiliation(s)
- B Pradhan
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
| | - D Panda
- Department of Biodiversity & Conservation of Natural Resources, Central University of Odisha, Koraput, India
| | - S K Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - K Chakraborty
- Department of Plant Physiology, ICAR-National Rice Research Institute, Cuttack, India
| | - S K Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - S K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat, India
| |
Collapse
|
5
|
Zhang Y, Li Y, Zhang Y, Zhang Z, Zhang D, Wang X, Lai B, Huang D, Gu L, Xie Y, Miao Y. Genome-wide H3K9 acetylation level increases with age-dependent senescence of flag leaf in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4696-4715. [PMID: 35429161 DOI: 10.1093/jxb/erac155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaonan Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binfan Lai
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dandan Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
7
|
Ding XT, Fan Y, Jiang EY, Shi XY, Krautter E, Hu GR, Li FL. Expression of the Vitreoscilla hemoglobin gene in Nannochloropsis oceanica regulates intracellular oxygen balance under high-light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112237. [PMID: 34116318 DOI: 10.1016/j.jphotobiol.2021.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
Nannochloropsis oceanica is widely used as a model photosynthetic chassis to produce fatty acids and carotenoid pigments. However, intense light typically causes excessive generation of reactive oxygen species (ROS) and photorespiration in microalgal cells, which results in decreased cell growth rate and unsaturated fatty acid content. In this study, the Vitreoscilla hemoglobin gene (vgb) was introduced into N. oceanica cells and expressed by using the light-harvesting complex promoter and its signal peptide. Compared with wild type (WT), the growth rate of transformants increased by 7.4%-18.5%, and the eicosapentaenoic acid content in an optimal transformant increased by 21.0%. Correspondingly, the intracellular ROS levels decreased by 56.9%-70.0%, and the catalase content in transformants was about 1.8 times that of WT. The photorespiration level of transformants was reduced by the measurement and calculation of the dissolved oxygen concentration under the condition of light-dark transition. The expression level of the key genes related to the photorespiration pathway in transformants was more than 80% lower than that in WT. These results indicated that Vitreoscilla hemoglobin could improve microalgal growth by reducing ROS damage and modulating photorespiration under stress conditions.
Collapse
Affiliation(s)
- Xiao-Ting Ding
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yong Fan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Er-Ying Jiang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yi Shi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | | | - Guang-Rong Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China,; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
8
|
Maheshwari C, Coe RA, Karki S, Covshoff S, Tapia R, Tyagi A, Hibberd JM, Furbank RT, Quick WP, Lin HC. Targeted knockdown of ribulose-1, 5-bisphosphate carboxylase-oxygenase in rice mesophyll cells. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153395. [PMID: 33684805 PMCID: PMC8090977 DOI: 10.1016/j.jplph.2021.153395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 05/22/2023]
Abstract
We generated antisense constructs targeting two of the five Rubisco small subunit genes (OsRBCS2 and 4) which account for between 30-40 % of the RBCS transcript abundance in leaf blades. The constructs were driven by a maize phosphoenolpyruvate carboxylase (PEPC) promoter known to have enriched expression in mesophyll cells (MCs). In the resulting lines leaf, Rubisco protein content was reduced by between 30-50 % and CO2 assimilation rate was limited under photorespiratory and non-photorespiratory conditions. A relationship between Rubisco protein content and CO2 assimilation rate was found. This was associated with a significant reduction in dry biomass accumulation and grain yield of between 37-70%. In addition to serving as a resource for reducing Rubisco accumulation in a cell-preferential manner, these lines allow us to characterize gene function and isoform specific suppression on photosynthesis and growth. Our results suggest that the knockdown of multiple genes is required to completely reduce Rubisco accumulation in MCs.
Collapse
Affiliation(s)
- Chirag Maheshwari
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Robert A Coe
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Shanta Karki
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Ronald Tapia
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, 2601, Australia
| | - William Paul Quick
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Hsiang-Chun Lin
- C4Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines.
| |
Collapse
|
9
|
Chatterjee J, Coe RA, Acebron K, Thakur V, Yennamalli RM, Danila F, Lin HC, Balahadia CP, Bagunu E, Padhma PPOS, Bala S, Yin X, Rizal G, Dionora J, Furbank RT, von Caemmerer S, Quick WP. A low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3122-3136. [PMID: 33528493 PMCID: PMC8023212 DOI: 10.1093/jxb/erab039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In C4 species, β-carbonic anhydrase (CA), localized to the cytosol of the mesophyll cells, accelerates the interconversion of CO2 to HCO3-, the substrate used by phosphoenolpyruvate carboxylase (PEPC) in the first step of C4 photosynthesis. Here we describe the identification and characterization of low CO2-responsive mutant 1 (lcr1) isolated from an N-nitroso-N-methylurea- (NMU) treated Setaria viridis mutant population. Forward genetic investigation revealed that the mutated gene Sevir.5G247800 of lcr1 possessed a single nucleotide transition from cytosine to thymine in a β-CA gene causing an amino acid change from leucine to phenylalanine. This resulted in severe reduction in growth and photosynthesis in the mutant. Both the CO2 compensation point and carbon isotope discrimination values of the mutant were significantly increased. Growth of the mutants was stunted when grown under ambient pCO2 but recovered at elevated pCO2. Further bioinformatics analyses revealed that the mutation has led to functional changes in one of the conserved residues of the protein, situated near the catalytic site. CA transcript accumulation in the mutant was 80% lower, CA protein accumulation 30% lower, and CA activity ~98% lower compared with the wild type. Changes in the abundance of other primary C4 pathway enzymes were observed; accumulation of PEPC protein was significantly increased and accumulation of malate dehydrogenase and malic enzyme decreased. The reduction of CA protein activity and abundance in lcr1 restricts the supply of bicarbonate to PEPC, limiting C4 photosynthesis and growth. This study establishes Sevir.5G247800 as the major CA allele in Setaria for C4 photosynthesis and provides important insights into the function of CA in C4 photosynthesis that would be required to generate a rice plant with a functional C4 biochemical pathway.
Collapse
Affiliation(s)
- Jolly Chatterjee
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Robert A Coe
- CSIRO Agriculture Flagship, Australian Plant Phenomics Facility, GPO Box 1500, Canberra, ACT 2601, Australia
| | - Kelvin Acebron
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Vivek Thakur
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Systems & Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamilnadu-613401, India
| | - Florence Danila
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 1500, Canberra, ACT 2601, Australia
| | - Hsiang-Chun Lin
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | | | - Efren Bagunu
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Preiya P O S Padhma
- Department of Systems & Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Soumi Bala
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 1500, Canberra, ACT 2601, Australia
| | - Xiaojia Yin
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Govinda Rizal
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jacqueline Dionora
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 1500, Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 1500, Canberra, ACT 2601, Australia
| | - William Paul Quick
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Immunolocalization Analysis of C4 Proteins in the Leaf Tissue of Rice. Methods Mol Biol 2021. [PMID: 33471339 DOI: 10.1007/978-1-0716-1068-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunolocalization analysis is a principal tool to study protein expression and subcellular distribution in plant cells or tissues. In this chapter, we present the method of the preparation of lightly fixed fresh rice leaf tissue for immunolocalization analysis and detection of the protein of interest using fluorescent probes by fluorescent microscopy. This method especially does not need the process of embedding plant materials that saves time and prevents alterations of cellular compounds and structure during sample preparation. Using this method, the C4 rice project compared the expressions of the proteins of interest among C4 model plants, wild-type rice, and transgenic or mutant plants and successfully selected the transgenic plants with the correct location of each protein to create a C4 rice prototype.
Collapse
|
11
|
Zamani-Nour S, Lin HC, Walker BJ, Mettler-Altmann T, Khoshravesh R, Karki S, Bagunu E, Sage TL, Quick WP, Weber APM. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:137-152. [PMID: 32710115 PMCID: PMC7816853 DOI: 10.1093/jxb/eraa343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
The chloroplastic 2-oxaloacetate (OAA)/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of OAA. Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate for the GS/GOGAT (glutamine synthetase/glutamate synthase) reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis: OAA resulting from phosphoenolpyruvate carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-malate dehydrogenase, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. To engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, overexpression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid content, tricarboxylic acid cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous overexpression of ZmDiT2. Implications for engineering C4 rice are discussed.
Collapse
Affiliation(s)
- Shirin Zamani-Nour
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Hsiang-Chun Lin
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Berkley J Walker
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shanta Karki
- National Center for Fruit Development, Kirtipur, Kathmandu, Nepal
| | - Efren Bagunu
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - W Paul Quick
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
12
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
13
|
Yang S, Fang G, Zhang A, Ruan B, Jiang H, Ding S, Liu C, Zhang Y, Jaha N, Hu P, Xu Z, Gao Z, Wang J, Qian Q. Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC PLANT BIOLOGY 2020; 20:393. [PMID: 32847519 PMCID: PMC7449006 DOI: 10.1186/s12870-020-02610-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Collapse
Affiliation(s)
- Shenglong Yang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Guonan Fang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Anpeng Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Noushin Jaha
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Zhengjin Xu
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Jiayu Wang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
14
|
Woźniak E, Tyczewska A, Twardowski T. Bioeconomy development factors in the European Union and Poland. N Biotechnol 2020; 60:2-8. [PMID: 32835869 DOI: 10.1016/j.nbt.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Bioeconomy is not an autonomous sector of the economy, but rather a complex mechanism involving agriculture, industry, biotechnology, service sectors and consumers. To measure the size of the bioeconomy in European Union (EU) countries, it is necessary to create appropriate indicators that allow it to be monitored with reference to its current state, growth rate and sector description. In many countries, including Poland, there is no complete information or data collection system to monitor bioeconomy development directly, e.g. in the Polish Central Statistical Office. In response to these needs, several groups of indicators related to the circular economy, sustainable development and Europe 2020 were created by the European Commission (EC) in the Eurostat database. These indicators can help monitoring of bioeconomy development in EU countries. The present study discusses factors for bioeconomy development through an analysis of their social, economic and environmental aspects, as well as showing the value of the selected indicators in the EU and Poland. In addition, a separate section is dedicated to public perception of bioeconomy and to legislation regarding genetically modified organisms (GMOs). To date, many research studies have been reported on the public acceptance of bioeconomy issues in the EU, including renewable resources, biofuels, GMOs, bio-based products, food security and climate change. The awareness and perception of society on the bioeconomy, bio-based products and processes, and the sustainable use of resources can contribute to environmental sustainability, but intensified efforts are required to increase public acceptance.
Collapse
Affiliation(s)
- Ewa Woźniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
15
|
Xia H, Yu S, Kong D, Xiong J, Ma X, Chen L, Luo L. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice. BMC Genomics 2020; 21:232. [PMID: 32171232 PMCID: PMC7071783 DOI: 10.1186/s12864-020-6646-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant miRNAs play crucial roles in responses to drought and developmental processes. It is essential to understand the association of miRNAs with drought-tolerance (DT), as well as their impacts on growth, development, and reproduction (GDP). This will facilitate our utilization of rice miRNAs in breeding. RESULTS In this study, we investigated the time course of miRNA responses to a long-term drought among six rice genotypes by high-throughput sequencing. In total, 354 conserved miRNAs were drought responsive, representing obvious genotype- and stage-dependent patterns. The drought-responsive miRNAs (DRMs) formed complex regulatory network via their coexpression and direct/indirect impacts on the rice transcriptome. Based on correlation analyses, 211 DRMs were predicted to be associated with DT and/or GDP. Noticeably, 14.2% DRMs were inversely correlated with DT and GDP. In addition, 9 pairs of mature miRNAs, each derived from the same pre-miRNAs, were predicted to have opposite roles in regulating DT and GDP. This suggests a potential yield penalty if an inappropriate miRNA/pre-miRNA is utilized. miRNAs have profound impacts on the rice transcriptome reflected by great number of correlated drought-responsive genes. By regulating these genes, a miRNA could activate diverse biological processes and metabolic pathways to adapt to drought and have an influence on its GDP. CONCLUSION Based on the temporal pattern of miRNAs in response to drought, we have described the complex network between DRMs. Potential associations of DRMs with DT and/or GDP were disclosed. This knowledge provides valuable information for a better understanding in the roles of miRNAs play in rice DT and/or GDP, which can facilitate our utilization of miRNA in breeding.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
16
|
Lin H, Arrivault S, Coe RA, Karki S, Covshoff S, Bagunu E, Lunn JE, Stitt M, Furbank RT, Hibberd JM, Quick WP. A Partial C 4 Photosynthetic Biochemical Pathway in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:564463. [PMID: 33178234 PMCID: PMC7593541 DOI: 10.3389/fpls.2020.564463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/25/2020] [Indexed: 05/21/2023]
Abstract
Introduction of a C4 photosynthetic pathway into C3 rice (Oryza sativa) requires installation of a biochemical pump that concentrates CO2 at the site of carboxylation in modified bundle sheath cells. To investigate the feasibility of this, we generated a quadruple line that simultaneously accumulates four of the core C4 photosynthetic enzymes from the NADP-malic enzyme subtype, phosphoenolpyruvate carboxylase (ZmPEPC), NADP-malate dehydrogenase (ZmNADP-MDH), NADP-malic enzyme (ZmNADP-ME), and pyruvate phosphate dikinase (ZmPPDK). This led to enhanced enzyme activity and mild phenotypic perturbations but was largely neutral in its effects on photosynthetic rate. Measurements of the flux of 13CO2 through photosynthetic metabolism revealed a significant increase in the incorporation of 13C into malate, consistent with increased fixation of 13CO2 via PEP carboxylase in lines expressing the maize PEPC enzyme. However, there was no significant differences in labeling of 3-phosphoglycerate (3PGA) indicating that there was no carbon flux through NADP-ME into the Calvin-Benson cycle. There was also no significant difference in labeling of phosphoenolpyruvate (PEP) indicating that there was no carbon flux through PPDK. Crossing the quadruple line with a line with reduced glycine decarboxylase H-protein (OsGDCH) abundance led to a photosynthetic phenotype characteristic of the reduced OsGDCH line and higher labeling of malate, aspartate and citrate than in the quintuple line. There was evidence of 13C labeling of aspartate indicating 13CO2 fixation into oxaloacetate by PEPC and conversion to aspartate by the endogenous aspartate aminotransferase activity. While Kranz anatomy or other anatomical modifications have not yet been installed in these plants to enable a fully functional C4 cycle, these results demonstrate for the first-time a partial flux through the carboxylation phase of NADP-ME C4 metabolism in transgenic rice containing two of the key metabolic steps in the C4 pathway.
Collapse
Affiliation(s)
- HsiangChun Lin
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam, Germany
| | - Robert A. Coe
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Shanta Karki
- National Centre for Fruit Development, Kirtipur, Nepal
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Efren Bagunu
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - John E. Lunn
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam, Germany
| | - Robert T. Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - William Paul Quick
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: William Paul Quick,
| |
Collapse
|
17
|
Simkin AJ. Genetic Engineering for Global Food Security: Photosynthesis and Biofortification. PLANTS (BASEL, SWITZERLAND) 2019; 8:E586. [PMID: 31835394 PMCID: PMC6963231 DOI: 10.3390/plants8120586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing demands for food and resources are challenging existing markets, driving a need to continually investigate and establish crop varieties with improved yields and health benefits. By the later part of the century, current estimates indicate that a >50% increase in the yield of most of the important food crops including wheat, rice and barley will be needed to maintain food supplies and improve nutritional quality to tackle what has become known as 'hidden hunger'. Improving the nutritional quality of crops has become a target for providing the micronutrients required in remote communities where dietary variation is often limited. A number of methods to achieve this have been investigated over recent years, from improving photosynthesis through genetic engineering, to breeding new higher yielding varieties. Recent research has shown that growing plants under elevated [CO2] can lead to an increase in Vitamin C due to changes in gene expression, demonstrating one potential route for plant biofortification. In this review, we discuss the current research being undertaken to improve photosynthesis and biofortify key crops to secure future food supplies and the potential links between improved photosynthesis and nutritional quality.
Collapse
Affiliation(s)
- Andrew John Simkin
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
18
|
Giuliani R, Karki S, Covshoff S, Lin HC, Coe RA, Koteyeva NK, Evans MA, Quick WP, von Caemmerer S, Furbank RT, Hibberd JM, Edwards GE, Cousins AB. Transgenic maize phosphoenolpyruvate carboxylase alters leaf-atmosphere CO 2 and 13CO 2 exchanges in Oryza sativa. PHOTOSYNTHESIS RESEARCH 2019; 142:153-167. [PMID: 31325077 PMCID: PMC6848035 DOI: 10.1007/s11120-019-00655-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/11/2019] [Indexed: 05/07/2023]
Abstract
The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological effect of transgenic maize (Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2 and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84 kPa and at different CO2 levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was 25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT. In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (β) was ~6% and leaf net biochemical discrimination against 13CO2[Formula: see text] was ~ 2‰ lower than in WT. However, there were no differences in leaf net CO2 assimilation rates (A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced (~ 30%) and with a higher 13C composition [Formula: see text] in the PEPC-OE plants compared to WT. These data indicate that ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However, there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo.
Collapse
Affiliation(s)
- Rita Giuliani
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Shanta Karki
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Hsiang-Chun Lin
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Robert A Coe
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, St. Petersburg, Russia, 197376
| | - Marc A Evans
- Department of Mathematics and Statistics, Washington State University, Pullman, WA, 99164-3113, USA
| | - W Paul Quick
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Gerald E Edwards
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Asaph B Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
19
|
Giuliani R, Karki S, Covshoff S, Lin HC, Coe RA, Koteyeva NK, Quick WP, Von Caemmerer S, Furbank RT, Hibberd JM, Edwards GE, Cousins AB. Knockdown of glycine decarboxylase complex alters photorespiratory carbon isotope fractionation in Oryza sativa leaves. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2773-2786. [PMID: 30840760 PMCID: PMC6506765 DOI: 10.1093/jxb/erz083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/12/2019] [Indexed: 05/07/2023]
Abstract
The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in the light under photorespiratory and low photorespiratory conditions (i.e. 18.4 kPa and 1.84 kPa atmospheric O2 partial pressure, respectively), and in the dark. Under approximately current ambient O2 partial pressure (18.4 kPa pO2), the gdch knockdown plants showed an expected photorespiratory-deficient phenotype, with lower leaf net CO2 assimilation rates (A) than the wild-type. Additionally, under these conditions, the gdch knockdown plants had greater leaf net discrimination against 13CO2 (Δo) than the wild-type. This difference in Δo was in part due to lower 13C photorespiratory fractionation (f) ascribed to alternative decarboxylation of photorespiratory intermediates. Furthermore, the leaf dark respiration rate (Rd) was enhanced and the 13CO2 composition of respired CO2 (δ13CRd) showed a tendency to be more depleted in the gdch knockdown plants. These changes in Rd and δ13CRd were due to the amount and carbon isotopic composition of substrates available for dark respiration. These results demonstrate that impairment of the photorespiratory pathway affects leaf 13CO2 exchange, particularly the 13C decarboxylation fractionation associated with photorespiration.
Collapse
Affiliation(s)
- Rita Giuliani
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Shanta Karki
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Hsiang-Chun Lin
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Robert A Coe
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - W Paul Quick
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Susanne Von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Gerald E Edwards
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Asaph B Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Nölke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R, Schillberg S. The Integration of Algal Carbon Concentration Mechanism Components into Tobacco Chloroplasts Increases Photosynthetic Efficiency and Biomass. Biotechnol J 2019; 14:e1800170. [PMID: 29888874 DOI: 10.1002/biot.201800170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Increasing the productivity of crops is a major challenge in agricultural research. Given that photosynthetic carbon assimilation is necessary for plant growth, enhancing the efficiency of photosynthesis is one strategy to boost agricultural productivity. The authors attempted to increase the photosynthetic efficiency and biomass of tobacco plants by expressing individual components of the Chlamydomonas reinhardtii carbon concentration mechanism (CCM) and integrating them into the chloroplast. Independent transgenic varieties are generated accumulating the carbonic anhydrase CAH3 in the thylakoid lumen or the bicarbonate transporter LCIA in the inner chloroplast membrane. Independent homozygous transgenic lines showed enhanced CO2 uptake rates (up to 15%), increased photosystem II efficiency (by up to 18%), and chlorophyll content (up to 19%). Transgenic lines produced more shoot biomass than wild-type and azygous controls, and accumulated more carbohydrate and amino acids, reflecting the higher rate of photosynthetic CO2 fixation. These data demonstrate that individual algal CCM components can be integrated into C3 plants to increase biomass, suggesting that transgenic lines combining multiple CCM components could further increase the productivity and yield of C3 crops.
Collapse
Affiliation(s)
- Greta Nölke
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Mirna Barsoum
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Marcel Houdelet
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Elsa Arcalís
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Fritz Kreuzaler
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
- Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
21
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
22
|
Li Z, Wang Y, Bello BK, Ajadi AA, Tong X, Chang Y, Zhang J. Construction of a Quantitative Acetylomic Tissue Atlas in Rice ( Oryza sativa L.). Molecules 2018; 23:molecules23112843. [PMID: 30388832 PMCID: PMC6278296 DOI: 10.3390/molecules23112843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
PKA (protein lysine acetylation) is a key post-translational modification involved in the regulation of various biological processes in rice. So far, rice acetylome data is very limited due to the highly-dynamic pattern of protein expression and PKA modification. In this study, we performed a comprehensive quantitative acetylome profile on four typical rice tissues, i.e., the callus, root, leaf, and panicle, by using a mass spectrometry (MS)-based, label-free approach. The identification of 1536 acetylsites on 1454 acetylpeptides from 890 acetylproteins represented one of the largest acetylome datasets on rice. A total of 1445 peptides on 887 proteins were differentially acetylated, and are extensively involved in protein translation, chloroplast development, and photosynthesis, flowering and pollen fertility, and root meristem activity, indicating the important roles of PKA in rice tissue development and functions. The current study provides an overall view of the acetylation events in rice tissues, as well as clues to reveal the function of PKA proteins in physiologically-relevant tissues.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Babatunde Kazeem Bello
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
23
|
Towards Food Security: Current State and Future Prospects of Agrobiotechnology. Trends Biotechnol 2018; 36:1219-1229. [PMID: 30262405 DOI: 10.1016/j.tibtech.2018.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022]
Abstract
The consistent increase in the global population, estimated to reach 9 billion people by 2050, poses a serious challenge for the achievement of global food security. Therefore, the need to feed an increasing world population and to respond adequately to the effects of climate change must be urgently considered. Progress may be achieved by applying knowledge of molecular and genetic mechanisms to create and/or improve agricultural and industrial processes. We highlight the importance of crops (wheat, maize, rice, rapeseed, and soybean) to the development of sustainable agriculture and agrobiotechnology in the EU and discuss possible solutions for ensuring food security, while also considering their social acceptance.
Collapse
|
24
|
Wang Y, Tong X, Qiu J, Li Z, Zhao J, Hou Y, Tang L, Zhang J. A phosphoproteomic landscape of rice (Oryza sativa) tissues. PHYSIOLOGIA PLANTARUM 2017; 160:458-475. [PMID: 28382632 DOI: 10.1111/ppl.12574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Protein phosphorylation is an important posttranslational modification that regulates various plant developmental processes. Here, we report a comprehensive, quantitative phosphoproteomic profile of six rice tissues, including callus, leaf, root, shoot meristem, young panicle and mature panicle from Nipponbare by employing a mass spectrometry (MS)-based, label-free approach. A total of 7171 unique phosphorylation sites in 4792 phosphopeptides from 2657 phosphoproteins were identified, of which 4613 peptides were differentially phosphorylated (DP) among the tissues. Motif-X analysis revealed eight significantly enriched motifs, such as [sP], [Rxxs] and [tP] from the rice phosphosites. Hierarchical clustering analysis divided the DP peptides into 63 subgroups, which showed divergent spatial-phosphorylation patterns among tissues. These clustered proteins are functionally related to nutrition uptake in roots, photosynthesis in leaves and tissue differentiation in panicles. Phosphorylations were specific in the tissues where the target proteins execute their functions, suggesting that phosphorylation might be a key mechanism to regulate the protein activity in different tissues. This study greatly expands the rice phosphoproteomic dataset, and also offers insight into the regulatory roles of phosphorylation in tissue development and functions.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yuxuan Hou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
25
|
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4635-4649. [PMID: 28981775 PMCID: PMC5853808 DOI: 10.1093/jxb/erx264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Erin M Agar
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
26
|
Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW. C 3 -C 4 intermediates may be of hybrid origin - a reminder. THE NEW PHYTOLOGIST 2017; 215:70-76. [PMID: 28397963 DOI: 10.1111/nph.14567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
The currently favoured model of the evolution of C4 photosynthesis relies heavily on the interpretation of the broad phenotypic range of naturally growing C3 -C4 intermediates as proxies for evolutionary intermediate steps. On the other hand, C3 -C4 intermediates had earlier been interpreted as hybrids or hybrid derivates. By first comparing experimentally generated with naturally growing C3 -C4 intermediates, and second summarising either direct or circumstantial evidence for hybridisation in lineages comprising C3 , C4 and C3 -C4 intermediates, we conclude that a possible hybrid origin of C3 -C4 intermediates deserves careful examination. While we acknowledge that the current model of C4 photosynthesis evolution is clearly the best available, C3 -C4 intermediates of hybrid origin, if existing, should not be used for further analysis of this model. However, experimental C3 × C4 hybrids potentially are excellent systems to analyse the genetic differences between C3 and C4 species and, also using segregating progeny, to study the relationship between individual photosynthetic traits and environmental factors.
Collapse
Affiliation(s)
- Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Katharina Bohley
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Maximilian Lauterbach
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
27
|
Simkin AJ, Lopez‐Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO 2 assimilation, vegetative biomass and seed yield in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:805-816. [PMID: 27936496 PMCID: PMC5466442 DOI: 10.1111/pbi.12676] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 05/18/2023]
Abstract
In this article, we have altered the levels of three different enzymes involved in the Calvin-Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7-bisphosphatase (SBPase), fructose 1,6-bisphophate aldolase (FBPA) and the glycine decarboxylase-H protein (GDC-H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO2 fixation in lines over-expressing SBPase and FBPA. Moreover, the co-expression of GDC-H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops.
Collapse
Affiliation(s)
| | | | - Philip A. Davey
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Stefan Timm
- Plant Physiology DepartmentUniversity of RostockRostockGermany
| | - Hermann Bauwe
- Plant Physiology DepartmentUniversity of RostockRostockGermany
| | | |
Collapse
|
28
|
Khoshravesh R, Lundsgaard-Nielsen V, Sultmanis S, Sage TL. Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration. Methods Mol Biol 2017; 1653:243-270. [PMID: 28822138 DOI: 10.1007/978-1-4939-7225-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-resolution images obtained from plant tissues processed for light microscopy, transmission electron microscopy, and immunohistochemistry have provided crucial links between plant subcellular structure and physiology during photorespiration as well as the impact of photorespiration on plant evolution and development. This chapter presents established protocols to guide researchers in the preparation of plant tissues for high-resolution imaging with a light and transmission electron microscope and detection of proteins using immunohistochemistry. Discussion of concepts and theory behind each step in the process from tissue preservation to staining of resin-embedded tissues is included to enhance the understanding of all steps in the procedure. We also include a brief protocol for quantification of cellular parameters from high-resolution images to help researchers rigorously test hypotheses.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Vanessa Lundsgaard-Nielsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2.
| |
Collapse
|
29
|
Taniguchi M, Weber APM, von Caemmerer S. Future Research into C4 Biology. PLANT & CELL PHYSIOLOGY 2016; 57:879-880. [PMID: 27260629 DOI: 10.1093/pcp/pcw082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Andreas P M Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, 2601, Australia
| |
Collapse
|