1
|
Dalling JW, Flores MR, Heineman KD. Wood nutrients: Underexplored traits with functional and biogeochemical consequences. THE NEW PHYTOLOGIST 2024; 244:1694-1708. [PMID: 39400942 DOI: 10.1111/nph.20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests. Wood nutrient concentrations also show exceptional interspecific variation, even among co-occurring plant species, yet how they align with other plant functional traits and fit into existing trait economic spectra is unclear. We review the chemical forms and location of nutrient pools in bark and sapwood, and the evidence that nutrient remobilization from sapwood is associated with mast reproduction, seasonal leaf flush, and the capacity to resprout following damage. We also emphasize the role wood nutrients are likely to play in determining decomposition rates. Given the magnitude of wood nutrient stocks, and the importance of tissue stoichiometry to forest productivity, a key unresolved question is whether investment in wood nutrients is a relatively fixed trait, or conversely whether under global change plants will adjust nutrient allocation to wood depending on carbon gain and nutrient supply.
Collapse
Affiliation(s)
- James W Dalling
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Manuel R Flores
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- New York Botanical Garden, New York, NY, 10458, USA
| | - Katherine D Heineman
- Center for Plant Conservation, Escondido, CA, 92027, USA
- Conservation Science, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, USA
| |
Collapse
|
2
|
Mimura T, Reid R. Phosphate environment and phosphate uptake studies: past and future. JOURNAL OF PLANT RESEARCH 2024; 137:307-314. [PMID: 38517655 PMCID: PMC11082026 DOI: 10.1007/s10265-024-01520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 03/24/2024]
Abstract
The present review explains briefly the importance of phosphorus in the biological activities and states that the most phosphorus of living organisms is absorbed by plants from the soil. Next, previous studies on the mechanisms of phosphate uptake by plants are reviewed as H+-dependent or Na+-dependent co-transport systems and the phosphate environment in which plants grow is discussed. The evolution of transporter genes and their regulation mechanisms of expression is discussed in relation to the phosphorus environment.
Collapse
Affiliation(s)
- Tetsuro Mimura
- Department of Biosciences, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan.
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Biology, Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo, 188-0002, Japan.
| | - Robert Reid
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
3
|
Phillippy BQ, Donahue JL, Williams SP, Cridland CA, Perera IY, Gillaspy GE. Regulation of inositol 1,2,4,5,6-pentakisphosphate and inositol hexakisphosphate levels in Gossypium hirsutum by IPK1. PLANTA 2023; 257:46. [PMID: 36695941 DOI: 10.1007/s00425-023-04080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The IPK1 genes, which code for 2-kinases that can synthesize Ins(1,2,4,5,6)P5 from Ins(1,4,5,6)P4, are expressed throughout cotton plants, resulting in the highest Ins(1,2,4,5,6)P5 concentrations in young leaves and flower buds. Cotton leaves contain large amounts of Ins(1,2,4,5,6)P5 and InsP6 compared to plants not in the Malvaceae family. The inositol polyphosphate pathway has been linked to stress tolerance in numerous plant species. Accordingly, we sought to determine why cotton and other Malvaceae have such high levels of these inositol phosphates. We have quantified the levels of InsP5 and InsP6 in different tissues of cotton plants and determined the expression of IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene) in vegetative and reproductive tissues. Gossypium hirsutum was found to contain four IPK1 genes that were grouped into two pair (AB, CD) where each pair consists of very similar sequences that were measured together. More IPK1AB is expressed in leaves than in roots, whereas more IPK1CD is expressed in roots than in leaves. Leaves and flower buds have more InsP5 and InsP6 than stems and roots. Leaves and roots contain more InsP5 than InsP6, whereas flower buds and stems contain more InsP6 than InsP5. Dark-grown seedlings contain more InsP5 and InsP6 than those grown under lights, and the ratio of InsP5 to InsP6 is greater in the light-grown seedlings. During 35 days of the life cycle of the third true leaf, InsP5 and InsP6 gradually decreased by more than 50%. Silencing IPK1AB and IPK1CD with Cotton Leaf Crumple Virus-induced gene silencing (VIGS) resulted in plants with an intense viral phenotype, reduced IPK1AB expression and lowered amounts of InsP5. The results are consistent with Ins(1,2,4,5,6)P5 synthesis from Ins(1,4,5,6)P4 by IPK1. This study detailed the central role of IPK1 in cotton inositol polyphosphate metabolism, which has potential to be harnessed to improve the resistance of plants to different kinds of stress.
Collapse
Affiliation(s)
- Brian Q Phillippy
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Janet L Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Sarah P Williams
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | | | - Imara Y Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
4
|
Experimental Study of Intra-Ring Anatomical Variation in Populus alba L. with Respect to Changes in Temperature and Day-Length Conditions. FORESTS 2022. [DOI: 10.3390/f13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There are various studies on annual ring structural variations in plants grown in the field under varying meteorological statistics. However, related experimental approach is limited, hitherto. In this study, complete artificial conditions with growth chambers were adopted to evaluate the influence of day length and temperature on intra-ring structure formation. The basic artificial growing conditions have been previously reported as “shortened annual cycle system”, which consisted of the following three stages mimicking seasons approximately: Stage 1, spring/summer; Stage 2, autumn; and Stage 3, winter. This system shortens an annual cycle of Populus alba to 5 months. In this study, Stage 2 was modified in two ways: one was a condition in which the temperature was fixed and the day length was gradually shortened, and the other was a condition with a fixed day length and gradually lowered temperature. In the former condition, the cell wall of fibers thickened from the middle of the ring, and the vessel diameter became smaller from the same position. The wood in the latter condition appeared more natural in terms of wall thickness and vessel shape; however, the thickness of the wall reduced in the starting position of Stage 2. It may have been caused by the shortage of material for cell production under a high temperature but a short day length.
Collapse
|
5
|
Kurita Y, Kanno S, Sugita R, Hirose A, Ohnishi M, Tezuka A, Deguchi A, Ishizaki K, Fukaki H, Baba K, Nagano AJ, Tanoi K, Nakanishi TM, Mimura T. Visualization of phosphorus re-translocation and phosphate transporter expression profiles in a shortened annual cycle system of poplar. PLANT, CELL & ENVIRONMENT 2022; 45:1749-1764. [PMID: 35348214 DOI: 10.1111/pce.14319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.
Collapse
Affiliation(s)
- Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Satomi Kanno
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- The French Alternative Energies and Atomic Energy Commission, Paris, France
| | - Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Radioisotope Research Center, Nagoya University, Nagoya, Japan
| | - Atsushi Hirose
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tezuka
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Ayumi Deguchi
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- JST PRESTO, Kawaguchi, Saitama, Japan
| | - Tomoko M Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Madsen CK, Brinch-Pedersen H. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Int J Mol Sci 2020; 21:ijms21207519. [PMID: 33053867 PMCID: PMC7589363 DOI: 10.3390/ijms21207519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
Phytate and phytases in seeds are the subjects of numerous studies, dating back as far as the early 20th century. Most of these studies concern the anti-nutritional properties of phytate, and the prospect of alleviating the effects of phytate with phytase. As reasonable as this may be, it has led to a fragmentation of knowledge, which hampers the appreciation of the physiological system at hand. In this review, we integrate the existing knowledge on the chemistry and biosynthesis of phytate, the globoid cellular structure, and recent advances on plant phytases. We highlight that these components make up a system that serves to store and-in due time-release the seed's reserves of the mineral nutrients phosphorous, potassium, magnesium, and others, as well as inositol and protein. The central component of the system, the phytate anion, is inherently rich in phosphorous and inositol. The chemical properties of phytate enable it to sequester additional cationic nutrients. Compartmentalization and membrane transport processes regulate the buildup of phytate and its associated nutrients, resulting in globoid storage structures. We suggest, based on the current evidence, that the degradation of the globoid and the mobilization of the nutrients also depend on membrane transport processes, as well as the enzymatic action of phytase.
Collapse
|
7
|
Lawrence BT, Melgar JC. Variable Fall Climate Influences Nutrient Resorption and Reserve Storage in Young Peach Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1819. [PMID: 30619397 PMCID: PMC6304733 DOI: 10.3389/fpls.2018.01819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/22/2018] [Indexed: 05/31/2023]
Abstract
A delay of leaf senescence resulting from variable fall climate may allow for additional nutrient resorption, and storage within reserve organs. Autumn leaves and reserve organs (<1 year shoots, >1 year shoots, stem above and below the graft union, the tap root, and fine roots) during dormancy of young peach trees were evaluated following warmer fall temperatures and limited soil moisture on two cultivars ('Scarletprince' and 'Autumnprince' both on GuardianTM rootstock) over two seasons. Four treatments were established for the two cultivars: (1) well-watered trees (100% ETc needs) in ambient outdoor temperatures; (2) water deficient trees (50% ETc needs) in ambient outdoor temperatures; (3) well-watered trees grown within a greenhouse; and (4) water deficient trees within a greenhouse. The greenhouse environment was on average 5°C warmer than the ambient outdoor temperature. Senescence was delayed on greenhouse-grown trees both years with leaf number and area similar in the greenhouse and outdoor environments prior to senescence. Across leaf samples, leaf nitrogen and phosphorus concentrations were lower within delayed senescence tree leaves while potassium was lower in leaves experiencing normal senescence. During dormancy, multiple reserve organs showed higher nitrogen, phosphorus, and potassium in trees with delayed senescence than normal senescence and similar increases were observed in water-deficient trees compared to well-watered trees. Phosphorus and potassium concentrations were also higher in multiple reserve organs within 'Autumnprince' trees compared to 'Scarletprince' trees. This study suggests variable climate conditions of increased temperatures or reduced soil moisture during autumn resulting in delayed senescence influence the process of nutrient resorption and increase nutrient storage within reserve organs.
Collapse
|
8
|
Takami T, Ohnishi N, Kurita Y, Iwamura S, Ohnishi M, Kusaba M, Mimura T, Sakamoto W. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. NATURE PLANTS 2018; 4:1044-1055. [PMID: 30420711 DOI: 10.1038/s41477-018-0291-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and chloroplasts (plastids) both harbour extranuclear DNA that originates from the ancestral endosymbiotic bacteria. These organelle DNAs (orgDNAs) encode limited genetic information but are highly abundant, with multiple copies in vegetative tissues, such as mature leaves. Abundant orgDNA constitutes a substantial pool of organic phosphate along with RNA in chloroplasts, which could potentially contribute to phosphate recycling when it is degraded and relocated. However, whether orgDNA is degraded nucleolytically in leaves remains unclear. In this study, we revealed the prevailing mechanism in which organelle exonuclease DPD1 degrades abundant orgDNA during leaf senescence. The DPD1 degradation system is conserved in seed plants and, more remarkably, we found that it was correlated with the efficient use of phosphate when plants were exposed to nutrient-deficient conditions. The loss of DPD1 compromised both the relocation of phosphorus to upper tissues and the response to phosphate starvation, resulting in reduced plant fitness. Our findings highlighted that DNA is also an internal phosphate-rich reservoir retained in organelles since their endosymbiotic origin.
Collapse
Affiliation(s)
- Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Shoko Iwamura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
9
|
Netzer F, Herschbach C, Oikawa A, Okazaki Y, Dubbert D, Saito K, Rennenberg H. Seasonal Alterations in Organic Phosphorus Metabolism Drive the Phosphorus Economy of Annual Growth in F. sylvatica Trees on P-Impoverished Soil. FRONTIERS IN PLANT SCIENCE 2018; 9:723. [PMID: 29928284 PMCID: PMC5998604 DOI: 10.3389/fpls.2018.00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 05/15/2023]
Abstract
Phosphorus (P) is one of the most important macronutrients limiting plant growth and development, particularly in forest ecosystems such as temperate beech (Fagus sylvatica) forests in Central Europe. Efficient tree internal P cycling during annual growth is an important strategy of beech trees to adapt to low soil-P. Organic P (Porg) is thought to play a decisive role in P cycling, but the significance of individual compounds and processes has not been elucidated. To identify processes and metabolites involved in P cycling of beech trees, polar-metabolome and lipidome profiling was performed during annual growth with twig tissues from a sufficient (Conventwald, Con) and a low-soil-P (Tuttlingen, Tut) forest. Autumnal phospholipid degradation in leaves and P export from senescent leaves, accumulation of phospholipids and glucosamine-6-phosphate (GlcN6P) in the bark, storage of N-acetyl-D-glucosamine-6-phosphate (GlcNAc6P) in the wood, and establishing of a phospholipid "start-up capital" in buds constitute main processes involved in P cycling that were enhanced in beech trees on low-P soil of the Tut forest. In spring, mobilization of P from storage pools in the bark contributed to an effective P cycling. Due to the higher phospholipid "start-up capital" in buds of Tut beeches, the P metabolite profile in developing leaves in spring was similar in beech trees of both forests. During summer, leaves of Tut beeches meet their phosphate (Pi) needs by replacing phospholipids by galacto- and sulfolipids. Thus, several processes contribute to adequate Pi supply on P impoverished soil thereby mediating similar growth of beech at low and sufficient soil-P availability.
Collapse
Affiliation(s)
- Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Akira Oikawa
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yozo Okazaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - David Dubbert
- Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|