1
|
Muñoz-Vargas MA, González-Gordo S, Taboada J, Palma JM, Corpas FJ. Activity and gene expression analysis of the NADP-dependent isocitrate dehydrogenase (NADP-ICDH) through pepper fruit ripening and its modulation by nitric oxide (NO). Molecular characterization of the peroxisomal isozyme. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112269. [PMID: 39313003 DOI: 10.1016/j.plantsci.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is one of the main sources of cellular reductant capacity in the form of NADPH. Although there is significant knowledge about the relevance of this enzyme during some physiological and stress processes, the available information about its involvement in fruit ripening is scarce. Using sweet green pepper (Capsicum annuum L.) fruits, a 50-75 % ammonium-sulfate-enriched protein fraction containing the NADP-ICDH activity allowed its biochemical characterization. The enzyme displayed a typical Michaelis-Menten kinetics and exhibited Vmax and Km values of 97 μUnits and 78 µM for isocitrate, and 92 μUnits and 46 µM for NADP+. Three NADP-ICDH isozymes were identified by non-denaturing PAGE designated as NADP-ICDH I to III, each representing 33 %, 24 %, and 43 %, respectively, of the total activity. Based on our previous transcriptome (RNA-Seq), three CaICDH genes (CaNADP-ICDH1, CaNADP-ICDH2, and CaNADP-ICDH3) were identified in sweet pepper fruits encoding isozymes potentially distributed in the cytosol, cytosol/mitochondrion, and peroxisome, according to their percentage of identity with the Arabidopsis isozymes. The time-course expression analysis of these genes during different fruit ripening stages including green immature (G), breaking point (BP), and red ripe (R), and in fruits subjected to nitric oxide (NO) treatments, showed dissimilar expression patterns. During ripening from green to red fruits, CaNADP-ICDH1 and CaNADP-ICDH2 were upregulated but were negatively affected by NO; however, CaNADP-ICDH3 was downregulated during ripening but unaffected by NO treatment. Furthermore, during ripening, the NADP-ICDH activity increased in red ripe fruits whereas the NO gas treatment produced a significant inhibition. These findings provide, to our knowledge, the first characterization of the NADP-ICDH family in this non-climacteric fruit and suggest that NADP-ICDH must play an important role in maintaining the supply of NADPH during pepper fruit ripening and that NO partially modulates this NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
2
|
Singh P, Jaiswal S, Tripathi DK, Singh VP. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108461. [PMID: 38461754 DOI: 10.1016/j.plaphy.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Collapse
Affiliation(s)
- Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
3
|
Kondak S, Janovszky P, Szőllősi R, Molnár Á, Oláh D, Adedokun OP, Dimitrakopoulos PG, Rónavári A, Kónya Z, Erdei L, Galbács G, Kolbert Z. Nickel oxide nanoparticles induce cell wall modifications, root anatomical changes, and nitrosative signaling in ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122874. [PMID: 37949159 DOI: 10.1016/j.envpol.2023.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The industrial application and environmental release of nickel oxide NPs (NiO NPs) is increasing, but the details of their relationship with plants are largely unknown. In this work, the cellular, tissue, organ, and molecular level responses of three ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca grown in the presence of high doses of NiO NP (250 mg/L and 500 mg/L) were studied. All three ecotypes showed a similar accumulation of Ni in the presence of nano Ni, and in the case of NiO NPs, the root-to-shoot Ni translocation was slighter compared to the bulk Ni. In all three ecotypes, the walls of the root cells effectively prevented internalization of NiO NPs, providing cellular defense against Ni overload. Exposure to NiO NP led to an increase in cortex thickness and the deposition of lignin-suberin and pectin in roots, serving as a tissue-level defense mechanism against excessive Ni. Exposure to NiO NP did not modify or cause a reduction in some biomass parameters of the Ampeliko and Loutra ecotypes, while it increased all parameters in Olympos. The free salt form of Ni exerted more negative effects on biomass production than the nanoform, and the observed effects of NiO NPs can be attributed to the release of Ni ions. Nitric oxide and peroxynitrite levels were modified by NiO NPs in an ecotype-dependent manner. The changes in the abundance and activity of S-nitrosoglutathione reductase protein triggered by NiO NPs suggest that the enzyme is regulated by NiO NPs at the post-translational level. The NiO NPs slightly intensified protein tyrosine nitration, and the slight differences between the ecotypes were correlated with their biomass production in the presence of NiO NPs. Overall, the Odontarrhena lesbiaca ecotypes exhibited tolerance to NiO NPs at the cellular, tissue, organ/organism and molecular levels, demonstrating various defense mechanisms and changes in the metabolism of reactive nitrogen species metabolism and nitrosative protein modification.
Collapse
Affiliation(s)
- Selahattin Kondak
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary.
| | - Patrick Janovszky
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7-8., 6720, Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Dóra Oláh
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | | | | | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7-8., 6720, Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| |
Collapse
|
4
|
Kolbert Z, Molnár Á, Kovács K, Lipták-Lukácsik S, Benkő P, Szőllősi R, Gémes K, Erdei L, Rónavári A, Kónya Z. Nitro-oxidative response to internalized multi-walled carbon nanotubes in Brassica napus and Solanum lycopersicum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115633. [PMID: 37890253 DOI: 10.1016/j.ecoenv.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
In addition to their beneficial effects on plant physiology, multi-walled carbon nanotubes (MWCNTs) are harmful to plants in elevated concentrations. This study compared the effects of two doses of MWCNT (10 and 80 mg/L) in Brassica napus and Solanum lycopersicum seedlings focusing on nitro-oxidative processes. The presence of MWCNTs was detectable in the root and hypocotyl of both species. Additionally, transmission electron microscopy analysis revealed that MWCNTs are heavily transformed within the root cells forming large aggregates. The uptake of MWCNTs negatively affected root viability and root cell proliferation of both species, but more intense toxicity was observed in S. lycopersicum compared to B. napus. The presence of MWCNT triggered more intense protein carbonylation in the relative sensitive S. lycopersicum, where increased hydrogen peroxide levels were observed. Moreover, MWCNT exposure increased the level of physiological protein tyrosine nitration which was more intense in S. lycopersicum where notable peroxynitrite accumulation occurred. These suggest for the first time that MWCNT triggers secondary nitro-oxidative stress which contributes to its toxicity. Moreover, the results indicate that the extent of the nitro-oxidative processes is associated with the extent of MWCNT toxicity.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Sára Lipták-Lukácsik
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Péter Benkő
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, HUN-REN, Temesvári körút 62., 6726, Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Katalin Gémes
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, HUN-REN, Temesvári körút 62., 6726, Szeged, Hungary
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela ter 1., 6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela ter 1., 6720 Szeged, Hungary
| |
Collapse
|
5
|
Szőllősi R, Molnár Á, Janovszky P, Kéri A, Galbács G, Dernovics M, Kolbert Z. Selenate triggers diverse oxidative responses in Astragalus species with diverse selenium tolerance and hyperaccumulation capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107976. [PMID: 37625253 DOI: 10.1016/j.plaphy.2023.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Selenium (Se) hyperaccumulators are capable of uptake and tolerate high Se dosages. Excess Se-induced oxidative responses were compared in Astragalus bisulcatus and Astragalus cicer. Plants were grown on media supplemented with 0, 25 or 75 μM selenate for 14 days. Both A. bisulcatus and A. cicer accumulated >2000 μg/g dry weight Se to the shoot but the translocation factors of A. cicer were below 1 suggesting its non hyperaccumulator nature. A. cicer showed Se sensitivity indicated by reduced seedling fresh weight, root growth and root apical meristem viability, altered element homeostasis in the presence of Se. In Se-exposed A. bisulcatus, less toxic organic Se forms (mainly MetSeCys, γ-Glu-MetSeCys, and a selenosugar) dominated, while these were absent from A. cicer suggesting that the majority of the accumulated Se may be present as inorganic forms. The glutathione-dependent processes were more affected, while ascorbate levels were not notably influenced by Se in either species. Exogenous Se triggered more intense accumulation of malondialdehyde in the sensitive A. cicer compared with the tolerant A. bisulcatus. The extent of protein carbonylation in the roots of the 75 μM Se-exposed A. cicer exceeded that of A. bisulcatus indicating a correlation between selenate sensitivity and the degree of protein carbonylation. Overall, our results reveal connection between oxidative processes and Se sensitivity/tolerance/hyperaccumulation and contribute to the understanding of the molecular responses to excess Se.
Collapse
Affiliation(s)
- Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary
| | - Patrick Janovszky
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Albert Kéri
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm square 7, 6720, Szeged, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik str. 2., 2462, Martonvásár, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép alley 52, 6726, Szeged, Hungary.
| |
Collapse
|
6
|
Xu N, Song Y, Zheng C, Li S, Yang Z, Jiang M. Indole-3-acetic acid and zinc synergistically mitigate positively charged nanoplastic-induced damage in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131637. [PMID: 37210880 DOI: 10.1016/j.jhazmat.2023.131637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Recent research has shown that polystyrene nanoplastics (PS-NPs) can inhibit plant growth and the development of crops, such as rice. In this study, we aimed to investigate the effects of PS-NPs of different particle sizes (80 nm, 200 nm, and 2 µm) and charges (negative, neutral, and positive) on rice growth, and to explore the underlying mechanisms and potential strategies for mitigating their impacts. Two-week-old rice plants were planted in a standard ½ Murashige-Skoog liquid medium holding 50 mg/L of different particle sizes and/or charged PS-NPs for 10 days, and the liquid medium without PS-NPs was used as control. The results showed that positively charged PS-NPs (80 nm PS-NH2) had the greatest impact on plant growth and greatly reduced the dry biomass, root length, and plant height of rice by 41.04%, 46.34%, and 37.45%, respectively. The positively charged NPs with a size of 80 nm significantly decreased the zinc (Zn) and indole-3-acetic acid (IAA, auxin) contents by 29.54% and 48.00% in roots, and 31.15% and 64.30% in leaves, respectively, and down-regulated the relative expression level of rice IAA response and biosynthesis genes. Moreover, Zn and/or IAA supplements significantly alleviated the adverse effects of 80 nm PS-NH2 on rice plant growth. Exogenous Zn and/or IAA increased seedlings' growth, decreased PS-NPs distribution, maintained redox homeostasis, and improved tetrapyrrole biosynthesis in rice treated with 80 nm PS-NH2. Our findings suggest that Zn and IAA synergistically alleviate positively charged NP-induced damage in rice.
Collapse
Affiliation(s)
- Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, PR China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China; National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China; National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Zhen Yang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, PR China.
| |
Collapse
|
7
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
8
|
Xiong Y, Xiang X, Xiao C, Zhang N, Cheng H, Rao S, Cheng S, Li L. Illumina RNA and SMRT Sequencing Reveals the Mechanism of Uptake and Transformation of Selenium Nanoparticles in Soybean Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040789. [PMID: 36840137 PMCID: PMC9966555 DOI: 10.3390/plants12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Selenium (Se) is an essential element for mammals, and its deficiency in the diet is a global problem. Agronomic biofortification through exogenous Se provides a valuable strategy to enhance human Se intake. Selenium nanoparticles (SeNPs) have been regarded to be higher bioavailability and less toxicity in comparison with selenite and selenate. Still, little has been known about the mechanism of their metabolism in plants. Soybean (Glycine max L.) can enrich Se, providing an ideal carrier for Se biofortification. In this study, soybean sprouts were treated with SeNPs, and a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing was applied to clarify the underlying molecular mechanism of SeNPs metabolism. A total of 74,662 nonredundant transcripts were obtained, and 2109 transcription factors, 9687 alternative splice events, and 3309 long non-coding RNAs (lncRNAs) were predicted, respectively. KEGG enrichment analysis of the DEGs revealed that metabolic pathways, biosynthesis of secondary metabolites, and peroxisome were most enriched both in roots and leaves after exposure to SeNPs. A total of 117 transcripts were identified to be putatively involved in SeNPs transport and biotransformation in soybean. The top six hub genes and their closely coexpressed Se metabolism-related genes, such as adenylylsulfate reductase (APR3), methionine-tRNA ligase (SYM), and chloroplastic Nifs-like cysteine desulfurases (CNIF1), were screened by WGCNA and identified to play crucial roles in SeNPs accumulation and tolerance in soybean. Finally, a putative metabolism pathway of SeNPs in soybean was proposed. These findings have provided a theoretical foundation for future elucidation of the mechanism of SeNPs metabolism in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Li
- Correspondence: ; Tel.: +86-133-4345-7040
| |
Collapse
|
9
|
Kolbert Z, Ördög A. Involvement of nitric oxide (NO) in plant responses to metalloids. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126606. [PMID: 34271449 DOI: 10.1016/j.jhazmat.2021.126606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Plants respond to the limited or excess supply of metalloids, boron (B), silicon (Si), selenium (Se), arsenic (As), and antimony (Sb) via complex signaling pathways that are mainly regulated by nitric oxide (NO). The absorption of metalloids from the soil is facilitated by pathways that involve aquaporins, aquaglyceroporins, phosphate, and sulfate transporters; however, their regulation by NO is poorly understood. Using in silico software, we predicted the S-nitrosation of known metalloid transporters, proposing NO-dependent regulation of metalloid transport systems at the posttranslational level. NO intensifies the stress-mitigating effect of Si, whereas in the case of Se, As, and Sb, the accumulation of NO or reactive nitrogen species contributes to toxicity. NO promotes the beneficial effect of low Se concentrations and mitigates the damage caused by B deficiency. In addition, the exogenous application of NO donor, sodium nitroprusside, reduces B, Se, and As toxicity. The primary role of NO in metalloid stress response is to mitigate oxidative stress by activating antioxidant defense at the level of protein activity and gene expression. This review discusses the role of NO in plant responses to metalloids and suggests future research directions.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726 Szeged Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H6726 Szeged Közép fasor 52., Hungary
| |
Collapse
|
10
|
Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). PLANTS 2021; 10:plants10071277. [PMID: 34201671 PMCID: PMC8309208 DOI: 10.3390/plants10071277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
A pot experiment, under greenhouse conditions, was carried out aiming at investigating the agronomic biofortification of alfalfa (Medicago sativa L.) with Se and monitoring the Se uptake and accumulation dynamics within four consecutive harvests within the same growing season. Two ionic Se forms, i.e., sodium selenate (Se (VI)) and sodium selenite (Se (IV)), were applied once at a rate of 1, 10, and 50 mg kg−1 (added on Se basis), while 10 and 50 mg L−1 of a red elemental Se (red Se0) were used; all Se treatments were added as soil application. Application of Se (VI) at the rate of 50 mg kg−1 was toxic to alfalfa plants. The effect of Se forms on Se accumulation in alfalfa tissues, regardless of the applied Se concentration, follows: Se (VI) > Se (IV) > red Se0. The leaf, in general, possessed higher total Se content than the stem in all the treatments. The accumulation of Se in stem and leaf tissues showed a gradual decline between the harvests, especially for plants treated with either Se (VI) or Se (IV); however, the chemically synthesized red Se0 showed different results. The treatment of 10 mg kg−1 Se (VI) resulted in the highest total Se content in stem (202.5 and 98.0 µg g−1) and leaf (643.4 and 284.5 µg g−1) in the 1st and 2nd harvests, respectively. Similar tendency is reported for the Se (IV)-treated plants. Otherwise, the application of red Se0 resulted in a lower Se uptake; however, less fluctuation in total Se content between the four harvests was noticed compared to the ionic Se forms. The Se forms in stem and leaf of alfalfa extracted by water and subsequently by protease XIV enzyme were measured by strong anion exchange (SAX) HPLC-ICP-MS. The major Se forms in our samples were selenomethionine (SeMet) and Se (VI), while neither selenocysteine (SeCys) nor Se (IV) was detected. In water extract, however, Se (VI) was the major Se form, while SeMet was the predominant form in the enzyme extract. Yet, Se (VI) and SeMet contents declined within the harvests, except in stem of plants treated with 50 mg L−1 red Se0. The highest stem or leaf SeMet yield %, in all harvests, corresponded to the treatment of 50 mg L−1 red Se0. For instance, 63.6% (in stem) and 38.0% (in leaf) were calculated for SeMet yield % in the 4th harvest of plants treated with 50 mg L−1 red Se0. Our results provide information about uptake and accumulation dynamics of different ionic Se forms in case of multiple-harvested alfalfa, which, besides being a good model plant, is an important target plant species in green biorefining.
Collapse
|
11
|
Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR. Auxin metabolic network regulates the plant response to metalloids stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124250. [PMID: 33109410 DOI: 10.1016/j.jhazmat.2020.124250] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 05/13/2023]
Abstract
Metalloids are among the major pollutants posing a risk to the environment and global food security. Plant roots uptake these toxic metalloids from the soil along with other essential minerals. Plants respond to metalloid stress by regulating the distribution and levels of various endogenous phytohormones. Recent research showed that auxin is instrumental in mediating resilience to metalloid-induced stress in plants. Exogenous supplementation of the auxin or plant growth-promoting micro-organisms (PGPMs) alleviates metalloid uptake, localization, and accumulation in the plant tissues, thereby improving plant growth under metalloid stress. Moreover, auxin triggers various biological responses such as the production of enzymatic and non-enzymatic antioxidants to combat nitro-oxidative stress induced by the metalloids. However, an in-depth understanding of the auxin stimulated molecular and physiological responses to the metalloid toxicity needs to be investigated in future studies. The current review attempts to provide an update on the recent advances and the current state-of-the-art associated with auxin and metalloid interaction, which could be used as a start point to develop biotechnological tools and create an eco-friendly environment.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key L aboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Profesor Albareda, 1, 18008 Granada, Spain
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
12
|
The Effect of Foliar Selenium (Se) Treatment on Growth, Photosynthesis, and Oxidative-Nitrosative Signalling of Stevia rebaudiana Leaves. Antioxidants (Basel) 2021; 10:antiox10010072. [PMID: 33429850 PMCID: PMC7826996 DOI: 10.3390/antiox10010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) enrichment of Stevia rebaudiana Bertoni can serve a dual purpose, on the one hand to increase plant biomass and stress tolerance and on the other hand to produce Se fortified plant-based food. Foliar Se spraying (0, 6, 8, 10 mg/L selenate, 14 days) of Stevia plantlets resulted in slightly decreased stevioside and rebaudioside A concentrations, and it also caused significant increment in stem elongation, leaf number, and Se content, suggesting that foliar Se supplementation can be used as a biofortifying approach. Furthermore, Se slightly limited photosynthetic CO2 assimilation (AN, gsw, Ci/Ca), but exerted no significant effect on chlorophyll, carotenoid contents and on parameters associated with photosystem II (PSII) activity (FV/FM, F0, Y(NO)), indicating that Se causes no photodamage in PSII. Further results indicate that Se is able to activate PSI-cyclic electron flow independent protection mechanisms of the photosynthetic apparatus of Stevia plants. The applied Se activated superoxide dismutase (SOD) isoenzymes (MnSOD1, FeSOD1, FeSOD2, Cu/ZnSOD1, Cu/ZnSOD2) and down-regulated NADPH oxidase suggesting the Se-induced limitation of superoxide anion levels and consequent oxidative signalling in Stevia leaves. Additionally, the decrease in S-nitrosoglutathione reductase protein abundance and the intensification of protein tyrosine nitration indicate Se-triggered nitrosative signalling. Collectively, these results suggest that Se supplementation alters Stevia shoot morphology without significantly affecting biomass yield and photosynthesis, but increasing Se content and performing antioxidant effects, which indicates that foliar application of Se may be a promising method in Stevia cultivation.
Collapse
|
13
|
Feigl G, Varga V, Molnár Á, Dimitrakopoulos PG, Kolbert Z. Different Nitro-Oxidative Response of Odontarrhena lesbiaca Plants from Geographically Separated Habitats to Excess Nickel. Antioxidants (Basel) 2020; 9:E837. [PMID: 32906835 PMCID: PMC7554898 DOI: 10.3390/antiox9090837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
Odontarrhena lesbiaca is an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2-2.4% Ni of its leaves' dry weight. In our study, O. lesbiaca seeds from two geographically separated study sites (Ampeliko and Loutra) were germinated and grown on control and Ni-containing (3000 mg/kg) soil in a rhizotron system. Ni excess induced significant Ni uptake and translocation in both O. lesbiaca ecotypes and affected their root architecture differently: plants from the Ampeliko site proved to be more tolerant; since their root growth was less inhibited compared to plants originated from the Loutra site. In the roots of the Ampeliko ecotype nitric oxide (NO) was being accumulated, while the degree of protein tyrosine nitration decreased; suggesting that NO in this case acts as a signaling molecule. Moreover, the detected decrease in protein tyrosine nitration may serve as an indicator of this ecotype's better relative tolerance compared to the more sensitive plants originated from Loutra. Results suggest that Ni hypertolerance and the ability of hyperaccumulation might be connected to the plants' capability of maintaining their nitrosative balance; yet, relatively little is known about the relationship between excess Ni, tolerance mechanisms and the balance of reactive nitrogen species in plants so far.
Collapse
Affiliation(s)
- Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (V.V.); (Á.M.); (Z.K.)
| | - Viktória Varga
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (V.V.); (Á.M.); (Z.K.)
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (V.V.); (Á.M.); (Z.K.)
| | | | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (V.V.); (Á.M.); (Z.K.)
| |
Collapse
|
14
|
Molnár Á, Rónavári A, Bélteky P, Szőllősi R, Valyon E, Oláh D, Rázga Z, Ördög A, Kónya Z, Kolbert Z. ZnO nanoparticles induce cell wall remodeling and modify ROS/ RNS signalling in roots of Brassica seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111158. [PMID: 32866892 DOI: 10.1016/j.ecoenv.2020.111158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/19/2023]
Abstract
Cell wall-associated defence against zinc oxide nanoparticles (ZnO NPs) as well as nitro-oxidative signalling and its consequences in plants are poorly examined. Therefore, this study compares the effect of chemically synthetized ZnO NPs (~45 nm, 25 or 100 mg/L) on Brassica napus and Brassica juncea seedlings. The effects on root biomass and viability suggest that B. napus is more tolerant to ZnO NP exposure relative to B. juncea. This may be due to the lack of Zn ion accumulation in the roots, which is related to the increase in the amount of lignin, suberin, pectin and in peroxidase activity in the roots of B. napus. TEM results indicate that root cell walls of 25 mg/L ZnO NP-treated B. napus may bind Zn ions. Additionally, callose accumulation possibly contribute to root shortening in both Brassica species as the effect of 100 mg/L ZnO NPs. Further results suggest that in the roots of the relatively sensitive B. juncea the levels of superoxide radical, hydrogen peroxide, hydrogen sulfide, nitric oxide, peroxinitrite and S-nitrosoglutathione increased as the effect of high ZnO NP concentration meaning that ZnO NP intensifies nitro-oxidative signalling. In B. napus; however, reactive oxygen species signalling was intensified, but reactive nitrogen species signalling wasn't activated by ZnO NPs. Collectively, these results indicate that ZnO NPs induce cell wall remodeling which may be associated with ZnO NP tolerance. Furthermore, plant tolerance against ZnO NPs is associated rather with nitrosative signalling than oxidative modifications.
Collapse
Affiliation(s)
- Árpád Molnár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Emil Valyon
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Dóra Oláh
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, H-6725, Szeged, Állomás u. 2., Hungary.
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| |
Collapse
|
15
|
Reorganization of Protein Tyrosine Nitration Pattern Indicates the Relative Tolerance of Brassica napus (L.) over Helianthus annuus (L.) to Combined Heavy Metal Treatment. PLANTS 2020; 9:plants9070902. [PMID: 32708788 PMCID: PMC7411833 DOI: 10.3390/plants9070902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Metal-polluted areas, especially where municipal sewage is used as fertilizer, often have high concentrations of more than one metal. The development of the root system is regulated by a complex signaling network, which includes reactive oxygen and nitrogen species. The delicate balance of the endogenous signal system can be affected by various environmental stimuli including heavy metals (HMs) in excess. Our goal was to analyze the microelement homeostasis, root architecture, and to determine the underlying changes in the nitro-oxidative status in the root system of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) subjected to combined HM treatments. The effect of model-sewage in two different layouts was simulated in rhizotron system by only supplementing the highest HM concentrations (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) legally allowed. The two species reacted differently to combined HM treatment; compared to the relatively sensitive sunflower, rapeseed showed better metal translocation capability and root growth even at the more severe treatment, where the pattern of protein tyrosine nitration was reorganized. The obtained results, especially the increased nitric oxide content and changed pattern of tyrosine nitration in rapeseed, can indicate acclimation and species-specific nitro-oxidative responses to combined HM stress.
Collapse
|
16
|
Wen D, Tan RZ, Zhao CY, Li JC, Zhong X, Diao H, Lin X, Duan DD, Fan JM, Xie XS, Wang L. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) F.H. Chen Formula for Renal Injury in Diabetic Nephropathy- In Vivo and In Vitro Evidence for Autophagy Regulation. Front Pharmacol 2020; 11:732. [PMID: 32595492 PMCID: PMC7303297 DOI: 10.3389/fphar.2020.00732] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM) with limited treatment options. DN leads to progressive renal failure and accelerates rapidly into end-stage renal disease. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) F.H. Chen formula (APF) is a traditional Chinese medicine (TCM) formula widely used to treat chronic kidney diseases (CKD) in the clinic in the southwest of China. The aim of this study is to explore how APF and its related TCM theory work on DN and whether mTOR/PINK1/Parkin signaling plays a part in this process. Methods HPLC was used for preliminary chemical analysis and quantitative analysis of the five components of APF. An in vivo autophagy deficiency model was established in C57BL/6 mice by streptozocin (STZ) combined with a high-fat and high-sugar diet, while the in vitro autophagy deficiency model was induced with high glucose (HG) in renal mesangial cells (RMCs). Renal histopathology staining was performed to investigate the extents of inflammation and injury. Real time-PCR and Western blotting techniques were utilized to assess autophagy-related proteins. Results APF significantly ameliorated renal injury in DN mice, specifically restoring blood urea nitrogen, serum creatinine, and 24-hour albuminuria. APF also reduced the mRNA and protein expressions of TNFα, IL-1β, and IL-6 in STZ-induced DN mice. Furthermore, APF improved the autophagy deficiency induced by STZ in vivo or HG in vitro, as revealed by changes in the expressions of mTOR, PINK1, Parkin, Beclin 1, p62, and LC3B. Notably, inhibition of autophagy with 3-methyladenine in APF-treated RMCs aggravated cellular damage and altered mTOR/PINK1/Parkin signaling, indicating that APF rescued HG damage through promoting autophagy. Conclusion APF may protect the kidneys from inflammation injuries in DN by upregulating autophagy via suppressing mTOR and activating PINK1/Parkin signaling. This experimental evidence strongly supports APF as a potential option for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Dan Wen
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chang-Ying Zhao
- Department of Endocrinology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian-Chun Li
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hui Diao
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Lin
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Jun-Ming Fan
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Chengdu Medical College, Chengdu, China
| | - Xi-Sheng Xie
- Department of Nephrology, Nanchong Central Hospital, Nanchong, China
| | - Li Wang
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Molnár Á, Papp M, Zoltán Kovács D, Bélteky P, Oláh D, Feigl G, Szőllősi R, Rázga Z, Ördög A, Erdei L, Rónavári A, Kónya Z, Kolbert Z. Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species. CHEMOSPHERE 2020; 251:126419. [PMID: 32171133 DOI: 10.1016/j.chemosphere.2020.126419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their release into the environment, zinc oxide nanoparticles (ZnO NPs) may come in contact with plants. In elevated concentrations, ZnO NPs induce reactive oxygen species (ROS) production, but the metabolism of reactive nitrogen species (RNS) and the consequent nitro-oxidative signalling has not been examined so far. In this work, Brassica napus and Brassica juncea seedlings were treated with chemically synthetized ZnO NPs (∼8 nm, 0, 25 or 100 mg/L). At low dose (25 mg/L) ZnO NP exerted a positive effect, while at elevated concentration (100 mg/L) it was toxic to both species. Additionally, B. juncea was more tolerant to ZnO NPs than B. napus. The ZnO NPs could enter the root cells due to their small (∼8 nm) size which resulted in the release of Zn2+ and subsequently increased Zn2+ content in the plant organs. ZnO NPs disturbed superoxide radical and hydrogen peroxide homeostasis and modulated ROS metabolic enzymes (NADPH oxidase, superoxide dismutase, ascorbate peroxidase) and non-enzymatic antioxidants (ascorbate and glutathione) inducing similar changes in oxidative signalling in both Brassica species. The homeostasis of RNS (nitric oxide, peroxynitrite and S-nitrosoglutathione) was also altered by ZnO NPs; however, changes in nitrosative signalling proved to be different in the examined species. Moreover, ZnO NPs triggered changes in protein carbonylation and nitration. These results suggest that ZnO NPs induce changes in nitro-oxidative signalling which may contribute to ZnO NP toxicity. Furthermore, difference in ZnO NP tolerance of Brassica species is more likely related to nitrosative than to oxidative signalling.
Collapse
Affiliation(s)
- Árpád Molnár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Márk Papp
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Dávid Zoltán Kovács
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary
| | - Dóra Oláh
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Gábor Feigl
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, H-6725, Szeged, Állomás u. 2., Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - László Erdei
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| |
Collapse
|
18
|
Kolbert Z, Oláh D, Molnár Á, Szőllősi R, Erdei L, Ördög A. Distinct redox signalling and nickel tolerance in Brassica juncea and Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109989. [PMID: 31784105 DOI: 10.1016/j.ecoenv.2019.109989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Despite of its essentiality, nickel (Ni) in excess is toxic for plants partly due to the overproduction of reactive oxygen species (ROS) and the consequent increase in oxidative stress signalling. However, in Ni-stressed plants little is known about the signal transduction of reactive nitrogen species (RNS) and protein tyrosine nitration as the protein-level consequence of increased RNS formation. Our experiments compared the nickel accumulation and tolerance, the redox signalling and the protein nitration in the agar-grown Arabidopsis thaliana and Brassica juncea exposed to Ni (50 μM nickel chloride). Studying GUS-tagged Arabidopsis lines (ARR5::GUS, ACS8::GUS and DR5::GUS) revealed that Ni-increased lateral root (LR) emergence, and concomitantly reduced LR initiation were accompanied by elevated levels of auxin, cytokinin, and ethylene in the LRs or in upper root parts, whereas Ni-induced primary root shortening is related to decreased auxin, and increased cytokinin and ethylene levels. These suggest the Ni-induced disturbance of hormonal balance in the root system. Results of the comparative study showed that weaker Ni tolerance of A. thaliana was coupled with a Ni-induced increase in RNS, ROS, and hydrogen sulfide levels, as well as with an increase in redox signalling and consequent increment of protein nitration. However, in relative Ni tolerant B. juncea, redox signalling (except for peroxynitrite) was not modified, and Ni-induced intensification of protein tyrosine nitration was less pronounced. Data collectively show that the better Ni tolerance of Brassica juncea may be related to the capability of preventing the induction of redox signalling and consequently to the slighter increase in protein nitration.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Dóra Oláh
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
19
|
Dai Z, Rizwan M, Gao F, Yuan Y, Huang H, Hossain MM, Xiong S, Cao M, Liu Y, Tu S. Nitric oxide alleviates selenium toxicity in rice by regulating antioxidation, selenium uptake, speciation and gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113540. [PMID: 31708278 DOI: 10.1016/j.envpol.2019.113540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, excess selenium (Se) causes toxicity, while the beneficial effects of nitric oxide (NO) have verified in plants under various abiotic conditions. In order to ensure safely Se-enriched rice production, the objective of the research was to clarify how exogenous NO alleviated high Se toxicity in rice. Under high Se (25 μM) stress, the effects of exogenous NO (by applying sodium nitroprusside, an exogenous NO donor) on growth parameters, Se content, Se speciation, photosynthesis, antioxidant system, expressions of Se transport and metabolism-related genes (phosphate transporter, OsPT2; S-adenosylmethionine synthase 1, OsSAMS1; cysteine synthase, OsCS; Se-binding protein gene, OsSBP1) in rice seedlings were investigated by a hydroponic experiment. The results showed that exogenous NO alleviated high Se-induced irreversible damage to root morphology, growth, photosynthesis, antioxidant capacity and decreased the contents of MDA, H2O2 and proline significantly in rice seedlings. Compared with high Se treatment, application of exogenous NO reduced root Se content (10%), and the Se(VI) decreased by 100% in root and shoot. Besides, exogenous NO decreased the accumulation of inorganic Se speciation in rice roots and shoots. Also, the qRT-PCR analysis showed that down-regulated gene expressions of OsPT2, OsSAMS1 and OsCS affected significantly via exogenous NO. So, the exogenous NO could effectively decrease the toxicity of high Se treatment in rice.
Collapse
Affiliation(s)
- Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Rizwan
- Institute of Soil Science, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan.
| | - Fei Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongxian Liu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|
21
|
Feigl G, Molnár Á, Szőllősi R, Ördög A, Törőcsik K, Oláh D, Bodor A, Perei K, Kolbert Z. Zinc-induced root architectural changes of rhizotron-grown B. napus correlate with a differential nitro-oxidative response. Nitric Oxide 2019; 90:55-65. [PMID: 31271864 DOI: 10.1016/j.niox.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Roots have a noteworthy plasticity: due to different stress conditions their architecture can change to favour seedling vigour and yield stability. The development of the root system is regulated by a complex and diverse signalling network, which besides hormonal factors, includes reactive oxygen (ROS) - and nitrogen species (RNS). The delicate balance of the endogenous signal system can be affected by various environmental stimuli, such as the excess of essential heavy metals, like zinc (Zn). Zn at low concentration, is able to induce the morphological and physiological adaptation of the root system, but in excess it exerts toxic effects on plants. In this study the effect of a low, growth-inducing, and a high, growth inhibiting Zn concentrations on the early development of Brassica napus (L.) root architecture and the underlying nitro-oxidative mechanisms were studied in a soil-filled rhizotron system. The growth-inhibiting Zn treatment resulted in elevated protein tyrosine nitration due to the imbalance in ROS and RNS homeostasis, however its pattern was not changed compared to the control. This nitro-oxidative stress was accompanied by serious changes in the cell wall composition and decrease in the cell proliferation and viability, due to the high Zn uptake and disturbed microelement homeostasis in the root tips. During the positive root growth response, a tyrosine nitration-pattern reorganisation was observed; there were no substantial changes in ROS and RNS balance and the viability and proliferation of the root tips' meristematic zone decreased to a lesser extent, as a result of a lower Zn uptake. The obtained results suggest that Zn in different amounts triggers different root growth responses accompanied by distinct changes in the pattern and strength of tyrosine nitration, proposing that nitrosative processes have an important role in the stress-induced root growth responses.
Collapse
Affiliation(s)
- Gábor Feigl
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Kitti Törőcsik
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Dóra Oláh
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary; Institute of Environmental and Technological Sciences, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary; Institute of Environmental and Technological Sciences, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Közép Fasor 52, Hungary.
| |
Collapse
|
22
|
Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D. Plant selenium toxicity: Proteome in the crosshairs. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:291-300. [PMID: 30544054 DOI: 10.1016/j.jplph.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 05/23/2023]
Abstract
The metalloid element, selenium (Se) is in many ways special and perhaps because of this its research in human and plant systems is of great interest. Despite its non-essentiality, higher plants take it up and metabolize it via sulfur pathways, but higher amounts of Se cause toxic symptoms in plants. However, the molecular mechanisms of selenium phytotoxicity have been only partly revealed; the data obtained so far point out that Se toxicity targets the plant proteome. Besides seleno- and oxyproteins, nitroproteins are also formed due to Se stress. In order to minimize proteomic damages induced by Se, certain plants are able to redirect selenocysteine away from protein synthesis thus preventing Se-protein formation. Additionally, the damaged or malformed selenoproteins, oxyproteins and nitroproteins may be removed by proteasomes. Based on the literature this review sets Se toxicity mechanisms into a new concept and it draws attention to the importance of Se-induced protein-level changes.
Collapse
Affiliation(s)
- Z Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - Á Molnár
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - G Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - D Van Hoewyk
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA.
| |
Collapse
|