1
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
3
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Li H, Men W, Ma C, Liu Q, Dong Z, Tian X, Wang C, Liu C, Gill HS, Ma P, Zhang Z, Liu B, Zhao Y, Sehgal SK, Liu W. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun 2024; 15:2449. [PMID: 38503771 PMCID: PMC10951266 DOI: 10.1038/s41467-024-46814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, PR China
| | - Xiubin Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, PR China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
5
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
6
|
Alsamman AM, Mousa KH, Nassar AE, Faheem MM, Radwan KH, Adly MH, Hussein A, Istanbuli T, Mokhtar MM, Elakkad TA, Kehel Z, Hamwieh A, Abdelsattar M, El Allali A. Identification, characterization, and validation of NBS-encoding genes in grass pea. Front Genet 2023; 14:1187597. [PMID: 37408775 PMCID: PMC10318170 DOI: 10.3389/fgene.2023.1187597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 μM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mostafa M. Faheem
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H. Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tamer Ahmed Elakkad
- Department of Genetics and Genetic Engineering, Faculty of Agriculture at Moshtohor, Benha University, Benha, Egypt
- Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
7
|
Lee E, Redzic JS, Nemkov T, Saviola AJ, Dzieciatkowska M, Hansen KC, D’Alessandro A, Dinarello C, Eisenmesser EZ. Human and Bacterial Toll-Interleukin Receptor Domains Exhibit Distinct Dynamic Features and Functions. Molecules 2022; 27:4494. [PMID: 35889366 PMCID: PMC9318647 DOI: 10.3390/molecules27144494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Toll-interleukin receptor (TIR) domains have emerged as critical players involved in innate immune signaling in humans but are also expressed as potential virulence factors within multiple pathogenic bacteria. However, there has been a shortage of structural studies aimed at elucidating atomic resolution details with respect to their interactions, potentially owing to their dynamic nature. Here, we used a combination of biophysical and biochemical studies to reveal the dynamic behavior and functional interactions of a panel of both bacterial TIR-containing proteins and mammalian receptor TIR domains. Regarding dynamics, all three bacterial TIR domains studied here exhibited an inherent exchange that led to severe resonance line-broadening, revealing their intrinsic dynamic nature on the intermediate NMR timescale. In contrast, the three mammalian TIR domains studied here exhibited a range in terms of their dynamic exchange that spans multiple timescales. Functionally, only the bacterial TIR domains were catalytic towards the cleavage of NAD+, despite the conservation of the catalytic nucleophile on human TIR domains. Our development of NMR-based catalytic assays allowed us to further identify differences in product formation for gram-positive versus gram-negative bacterial TIR domains. Differences in oligomeric interactions were also revealed, whereby bacterial TIR domains self-associated solely through their attached coil-coil domains, in contrast to the mammalian TIR domains that formed homodimers and heterodimers through reactive cysteines. Finally, we provide the first atomic-resolution studies of a bacterial coil-coil domain and provide the first atomic model of the TIR domain from a human anti-inflammatory IL-1R8 protein that undergoes a slow inherent exchange.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| | - Charles Dinarello
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA;
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA; (E.L.); (J.S.R.); (T.N.); (A.J.S.); (M.D.); (K.C.H.); (A.D.)
| |
Collapse
|
8
|
Sukarta OCA, Zheng Q, Slootweg EJ, Mekken M, Mendel M, Putker V, Bertran A, Brand A, Overmars H, Pomp R, Roosien J, Boeren S, Smant G, Goverse A. GLYCINE-RICH RNA-BINDING PROTEIN 7 potentiates effector-triggered immunity through an RNA recognition motif. PLANT PHYSIOLOGY 2022; 189:972-987. [PMID: 35218353 PMCID: PMC9157115 DOI: 10.1093/plphys/kiac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The activity of intracellular plant nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is therefore crucial to advance our understanding of how these receptors function. A co-immunoprecipitation/mass spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the resistance protein Gpa2, a CC-NB-LRR immune receptor conferring resistance against the potato cyst nematode Globodera pallida. A combination of biochemical, cellular, and functional assays was used to assess the role of a candidate interactor in defense. A N. benthamiana homolog of the GLYCINE-RICH RNA-BINDING PROTEIN7 (NbGRP7) protein was prioritized as a Gpa2-interacting protein for further investigations. NbGRP7 also associates in planta with the homologous Rx1 receptor, which confers immunity to Potato Virus X. We show that NbGRP7 positively regulates extreme resistance by Rx1 and cell death by Gpa2. Mutating the NbGRP7 RNA recognition motif (RRM) compromises its role in Rx1-mediated defense. Strikingly, ectopic NbGRP7 expression is likely to impact the steady-state levels of Rx1, which relies on an intact RRM. Our findings illustrate that NbGRP7 is a pro-immune component in effector-triggered immunity by regulating Gpa2/Rx1 function at a posttranscriptional level.
Collapse
Affiliation(s)
- Octavina C A Sukarta
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Qi Zheng
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik J Slootweg
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark Mekken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Melanie Mendel
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vera Putker
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - André Bertran
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Anouk Brand
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rikus Pomp
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Liu X, Wan L. Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs. MOLECULAR PLANT PATHOLOGY 2022; 23:772-780. [PMID: 35355394 PMCID: PMC9104254 DOI: 10.1111/mpp.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Plant intracellular immune receptors known as NLR (nucleotide-binding leucine-rich repeat) proteins confer immunity and cause cell death. Plant NLR proteins that directly or indirectly recognize pathogen effector proteins to initiate immune signalling are regarded as sensor NLRs. Some NLR protein families function downstream of sensor NLRs to transduce immune signalling and are known as helper NLRs. Recent breakthrough studies on plant NLR protein structures and biochemical functions greatly advanced our understanding of NLR biology. Comprehensive and detailed knowledge on NLR biology requires future efforts to solve more NLR protein structures and investigate the signalling events between sensor and helper NLRs, and downstream of helper NLRs.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Li Wan
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
10
|
Zhao J, Song J. NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. PLANT COMMUNICATIONS 2021; 2:100236. [PMID: 34778749 PMCID: PMC8577132 DOI: 10.1016/j.xplc.2021.100236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate immune responses by directly or indirectly sensing pathogen-derived effectors. Despite significant advances in the understanding of NLR-mediated immunity, the mechanisms by which pathogens evolve to suppress NLR activation triggered by cognate effectors and gain virulence remain largely unknown. The agronomically important immune receptor RB recognizes the ubiquitous and highly conserved IPI-O RXLR family members (e.g., IPI-O1) from Phytophthora infestans, and this process is suppressed by the rarely present and homologous effector IPI-O4. Here, we report that self-association of RB via the coiled-coil (CC) domain is required for RB activation and is differentially affected by avirulence and virulence effectors. IPI-O1 moderately reduces the self-association of RB CC, potentially leading to changes in the conformation and equilibrium of RB, whereas IPI-O4 dramatically impairs CC self-association to prevent RB activation. We also found that IPI-O1 associates with itself, whereas IPI-O4 does not. Notably, IPI-O4 interacts with IPI-O1 and disrupts its self-association, therefore probably blocking its avirulence function. Furthermore, IPI-O4 enhances the interaction between RB CC and IPI-O1, possibly sequestering RB and IPI-O1 and subsequently blocking their interactions with signaling components. Taken together, these findings considerably extend our understanding of the underlying mechanisms by which emerging virulent pathogens suppress the NLR-mediated recognition of cognate effectors.
Collapse
Affiliation(s)
- Jinping Zhao
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
El Kasmi F. How activated NLRs induce anti-microbial defenses in plants. Biochem Soc Trans 2021; 49:2177-2188. [PMID: 34623378 PMCID: PMC8589443 DOI: 10.1042/bst20210242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
Plants utilize cell-surface localized and intracellular leucine-rich repeat (LRR) immune receptors to detect pathogens and to activate defense responses, including transcriptional reprogramming and the initiation of a form of programmed cell death of infected cells. Cell death initiation is mainly associated with the activation of nucleotide-binding LRR receptors (NLRs). NLRs recognize the presence or cellular activity of pathogen-derived virulence proteins, so-called effectors. Effector-dependent NLR activation leads to the formation of higher order oligomeric complexes, termed resistosomes. Resistosomes can either form potential calcium-permeable cation channels at cellular membranes and initiate calcium influxes resulting in activation of immunity and cell death or function as NADases whose activity is needed for the activation of downstream immune signaling components, depending on the N-terminal domain of the NLR protein. In this mini-review, the current knowledge on the mechanisms of NLR-mediated cell death and resistance pathways during plant immunity is discussed.
Collapse
Affiliation(s)
- Farid El Kasmi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen Germany
| |
Collapse
|
12
|
Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Skłenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout SA, Goverse A, Maqbool A, Wu CH, Kamoun S. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biol 2021; 19:e3001136. [PMID: 34424903 PMCID: PMC8412950 DOI: 10.1371/journal.pbio.3001136] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.
Collapse
Affiliation(s)
- Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Jessica Upson
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Angel Vergara Cruces
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai, Jiao Tong University, Shanghai, China
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Frank L. H. Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Sam T. Mugford
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Wenbo Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | | | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
13
|
Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, Walton WG, Furzer OJ, Lietzan AD, Sunil S, Kempthorn K, Redinbo MR, Pei ZM, Wan L, Dangl JL. Plant "helper" immune receptors are Ca 2+-permeable nonselective cation channels. Science 2021; 373:420-425. [PMID: 34140391 PMCID: PMC8939002 DOI: 10.1126/science.abg7917] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In Arabidopsis, a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+ influx and cell death were sensitive to Ca2+ channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated that Arabidopsis helper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+ levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.
Collapse
Affiliation(s)
- Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nak Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feihua Wu
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Horticulture, Foshan University, Foshan, China
| | - Farid El-Kasmi
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yuan Chi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oliver J Furzer
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sruthi Sunil
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Korina Kempthorn
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Li Wan
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
15
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
16
|
Pérez-Torres CA, Ibarra-Laclette E, Hernández-Domínguez EE, Rodríguez-Haas B, Pérez-Lira AJ, Villafán E, Alonso-Sánchez A, García-Ávila CDJ, Ramírez-Pool JA, Sánchez-Rangel D. Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. PeerJ 2021; 9:e11215. [PMID: 33954045 PMCID: PMC8052963 DOI: 10.7717/peerj.11215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023] Open
Abstract
Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.
Collapse
Affiliation(s)
- Claudia-Anahí Pérez-Torres
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | | | | | - Alan-Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México
| | - José-Abrahán Ramírez-Pool
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México.,Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana Sánchez-Rangel
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| |
Collapse
|
17
|
Shen X, Yan Z, Wang X, Wang Y, Arens M, Du Y, Visser RGF, Kormelink R, Bai Y, Wolters AMA. The NLR Protein Encoded by the Resistance Gene Ty-2 Is Triggered by the Replication-Associated Protein Rep/C1 of Tomato Yellow Leaf Curl Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:545306. [PMID: 33013967 PMCID: PMC7511541 DOI: 10.3389/fpls.2020.545306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 05/03/2023]
Abstract
The whitefly-transmitted tomato yellow leaf curl virus (TYLCV) is one of the most destructive viral pathogens of cultivated tomato. To combat TYLCV, resistance gene Ty-2 has been introduced into cultivated tomato (Solanum lycopersicum) from wild tomato species Solanum habrochaites by interspecific crossing. Introgression lines with Ty-2 contain a large inversion compared with S. lycopersicum, which causes severe suppression of recombination and has hampered the cloning of Ty-2 so far. Here, we report the fine-mapping and cloning of Ty-2 using crosses between a Ty-2 introgression line and several susceptible S. habrochaites accessions. Ty-2 was shown to encode a nucleotide-binding leucine-rich repeat (NLR) protein. For breeding purposes, a highly specific DNA marker tightly linked to the Ty-2 gene was developed permitting marker-assisted selection. The resistance mediated by Ty-2 was effective against the Israel strain of TYLCV (TYLCV-IL) and tomato yellow leaf curl virus-[China : Shanghai2] (TYLCV-[CN : SH2]), but not against tomato yellow leaf curl Sardinia virus (TYLCSV) and leafhopper-transmitted beet curly top virus (BCTV). By co-infiltration experiments we showed that transient expression of the Rep/C1 protein of TYLCV, but not of TYLCSV triggered a hypersensitive response (HR) in Nicotiana benthamiana plants co-expressing the Ty-2 gene. Our results indicate that the Rep/C1 gene of TYLCV-IL presents the avirulence determinant of Ty-2-mediated resistance.
Collapse
Affiliation(s)
- Xuexue Shen
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Xiaoxuan Wang
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Marjon Arens
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Yongchen Du
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Richard Kormelink
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
18
|
Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, Win J, Kamoun S. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 2019; 8:e49956. [PMID: 31774397 PMCID: PMC6944444 DOI: 10.7554/elife.49956] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Mauricio P Contreras
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Adeline Harant
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Chih-hang Wu
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Lida Derevnina
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Toshiyuki Sakai
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Cian Duggan
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Eleonora Moratto
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Tolga O Bozkurt
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Abbas Maqbool
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Joe Win
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
19
|
Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van de Weyer AL, Zaidem M, Ho WWH, Wang G, Bezrukov I, Weigel D, Chae E. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008313. [PMID: 31344025 PMCID: PMC6684095 DOI: 10.1371/journal.pgen.1008313] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
In many plant species, conflicts between divergent elements of the immune system, especially nucleotide-binding oligomerization domain-like receptors (NLR), can lead to hybrid necrosis. Here, we report deleterious allele-specific interactions between an NLR and a non-NLR gene cluster, resulting in not one, but multiple hybrid necrosis cases in Arabidopsis thaliana. The NLR cluster is RESISTANCE TO PERONOSPORA PARASITICA 7 (RPP7), which can confer strain-specific resistance to oomycetes. The non-NLR cluster is RESISTANCE TO POWDERY MILDEW 8 (RPW8) / HOMOLOG OF RPW8 (HR), which can confer broad-spectrum resistance to both fungi and oomycetes. RPW8/HR proteins contain at the N-terminus a potential transmembrane domain, followed by a specific coiled-coil (CC) domain that is similar to a domain found in pore-forming toxins MLKL and HET-S from mammals and fungi. C-terminal to the CC domain is a variable number of 21- or 14-amino acid repeats, reminiscent of regulatory 21-amino acid repeats in fungal HET-S. The number of repeats in different RPW8/HR proteins along with the sequence of a short C-terminal tail predicts their ability to activate immunity in combination with specific RPP7 partners. Whether a larger or smaller number of repeats is more dangerous depends on the specific RPW8/HR autoimmune risk variant.
Collapse
Affiliation(s)
- Cristina A. Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rui Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Wanyan Xi
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - William Wing Ho Ho
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
20
|
Animal NLRs continue to inform plant NLR structure and function. Arch Biochem Biophys 2019; 670:58-68. [PMID: 31071301 DOI: 10.1016/j.abb.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Plant NLRs share many of the structural hallmarks of their animal counterparts. At a functional level, the central nucleotide-binding pocket appears to have binding and hydrolysis activities, similar to that of animal NLRs. The TIR domains of plant NLRs have been shown to self-associate, and there is emerging evidence that full-length plant NLRs may do so as well. It is therefore tempting to speculate that plant NLRs may form higher-order complexes similar to those of the mammalian inflammasome. Here we review the available knowledge on structure-function relationships in plant NLRs, focusing on how the information available on animal NLRs informs the mechanism of plant NLR function, and highlight the evidence that innate immunity signalling pathways in multicellular organisms often require the formation of higher-order protein complexes.
Collapse
|
21
|
Wróblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawłowski K, Michelmore RW, Takken FL. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biol 2018; 16:e2005821. [PMID: 30540748 PMCID: PMC6312357 DOI: 10.1371/journal.pbio.2005821] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/31/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.
Collapse
Affiliation(s)
- Tadeusz Wróblewski
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eliza Cristina Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Keri Cavanaugh
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Maria José Truco
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Huaqin Xu
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Richard W. Michelmore
- The Genome Center, University of California–Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California–Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California–Davis, Davis, California, United States of America
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|