1
|
Li C, Qiu X, Hou X, Li D, Jiang M, Cui X, Pan X, Shao F, Li Q, Xie DY, Chiang VL, Lu S. Polymerization of proanthocyanidins under the catalysis of miR397a-regulated laccases in Salvia miltiorrhiza and Populus trichocarpa. Nat Commun 2025; 16:1513. [PMID: 39929881 PMCID: PMC11811200 DOI: 10.1038/s41467-025-56864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Proanthocyanidins (PAs) play significant roles in plants and are bioactive compounds with health benefits. The polymerization mechanism has been debated for decades. Here we show that laccases (LACs) are involved in PA polymerization and miR397a is a negative regulator of PA biosynthesis in Salvia miltiorrhiza and Populus trichocarpa. Elevation of miR397a level causes significant downregulation of LACs, severe reduction of polymerized PAs, and significant increase of flavan-3-ol monomers in transgenic S. miltiorrhiza and P. trichocarpa plants. Enzyme activity analysis shows that miR397a-regulated SmLAC1 catalyzes the polymerization of flavan-3-ols and the conversion of B-type PAs to A-type. Both catechin and epicatechin can serve as the starter unit and the extension unit during PA polymerization. Overexpression of SmLAC1 results in significant increase of PA accumulation, accompanied by the decrease of catechin and epicatechin contents. Consistently, CRISPR/Cas9-mediated SmLAC1 knockout shows the opposite results. Based on these results, a scheme for LAC-catalyzed PA polymerization is proposed. The work provides insights into PA polymerization mechanism.
Collapse
Affiliation(s)
- Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxiao Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemin Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongqiao Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maochang Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xian Pan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Quanzi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Rai M, Rai A, Yokosaka T, Mori T, Nakabayashi R, Nakamura M, Suzuki H, Saito K, Yamazaki M. Multi-Omics Analysis Decodes Biosynthesis of Specialized Metabolites Constituting the Therapeutic Terrains of Magnolia obovata. Int J Mol Sci 2025; 26:1068. [PMID: 39940835 PMCID: PMC11816741 DOI: 10.3390/ijms26031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Magnolia obovata is renowned for its unique bioactive constituents with medicinal properties traditionally used to treat digestive disorders, anxiety, and respiratory conditions. This study aimed to establish a comprehensive omics resource through untargeted metabolome and transcriptome profiling to explore biosynthesis of pharmacologically active compounds of M. obovata using seven tissues: young leaf, mature leaf, stem, bark, central cylinder, floral bud, and pistil. Untargeted metabolomic analysis identified 6733 mass features across seven tissues and captured chemo-diversity and its tissue-specificity in M. obovata. Through a combination of cheminformatics and manual screening approach, we confirmed the identities of 105 metabolites, including neolignans, such as honokiol and magnolol, which were found to be spatially accumulated in the bark tissue. RNA sequencing generated a comprehensive transcriptome resource, and expression analysis revealed significant tissue-specific expression patterns. Omics dataset integration identified T12 transcript module from WGCNA being correlated with the biosynthesis of magnolol and honokiol in M. obovata. Notably, phylogenetic analysis using transcripts from T12 module identified two laccase (Mo_LAC1 and Mo_LAC2) and three dirigent proteins from the DIR-b/d subfamily as potential candidate genes involved in neolignan biosynthesis. This research established omics resources of M. obovata and laid the groundwork for future studies aimed at optimizing and further understanding the biosynthesis of metabolites of therapeutic potential.
Collapse
Affiliation(s)
- Megha Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (M.R.); (T.Y.); (M.N.)
- Crop Sciences, University of Illinois Urbana, Champaign, IL 61801, USA;
| | - Amit Rai
- Crop Sciences, University of Illinois Urbana, Champaign, IL 61801, USA;
| | - Towa Yokosaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (M.R.); (T.Y.); (M.N.)
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; (T.M.); (R.N.); (K.S.)
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; (T.M.); (R.N.); (K.S.)
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (M.R.); (T.Y.); (M.N.)
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; (T.M.); (R.N.); (K.S.)
- Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (M.R.); (T.Y.); (M.N.)
- Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Zhou J, Hu F, Berhe M, Zhou R, Li D, Li H, Yang L, Zhou T, Zhang Y, Wang L, You J. Genome-wide identification, classification, and expression profiling of LAC gene family in sesame. BMC PLANT BIOLOGY 2024; 24:1254. [PMID: 39725882 DOI: 10.1186/s12870-024-05982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop. RESULTS In this study, 51 sesame LAC genes (SiLACs) were identified, which were unevenly distributed across different chromosomes. The phylogeny of Arabidopsis LAC (AtLACs) subdivided the SiLAC proteins into seven subgroups (Groups I-VII), of which Group VII contained only sesame LACs. Within the same subgroup, SiLACs exhibit comparable structures and conserved motifs. The promoter region of SiLACs harbors various cis-acting elements that are related to plant growth, phytohormones, and stress responses. Most SiLACs were expressed in the roots and stems, whereas some were expressed specifically in flowers or seeds. RNA-seq analysis revealed that 19 SiLACs exhibited down-regulation and three showed up-regulation in response to drought stress, while 15 SiLACs were down-regulated and four up-regulated under salt stress. Additionally, qRT-PCR analysis showcased that certain SiLAC expression was significantly upregulated as a result of osmotic and salt stress. SiLAC5 and SiLAC17 exhibited the most significant changes in expression under osmotic and salt stresses, indicating that they may serve as potential targets for improving sesame resistance to various stresses. CONCLUSIONS Our study offers a thorough comprehension of LAC gene structure, classification, evolution, and abiotic stress response in sesame plants. Furthermore, we provide indispensable genetic resources for sesame functional characterization to enhance its tolerance to various abiotic stresses.
Collapse
Affiliation(s)
- Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, P.O. Box 62, Tigray, Ethiopia
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
4
|
Hixson KK, Meng Q, Moinuddin SGA, Kwon M, Costa MA, Cort JR, Davin LB, Bell CJ, Lewis NG. RNA-seq and metabolomic analyses of beneficial plant phenol biochemical pathways in red alder. FRONTIERS IN PLANT SCIENCE 2024; 15:1349635. [PMID: 39574452 PMCID: PMC11578710 DOI: 10.3389/fpls.2024.1349635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
Red alder (Alnus rubra) has highly desirable wood, dye pigment, and (traditional) medicinal properties which have been capitalized on for thousands of years, including by Pacific West Coast Native Americans. A rapidly growing tree species native to North American western coastal and riparian regions, it undergoes symbiosis with actinobacterium Frankia via their nitrogen-fixing root nodules. Red alder's desirable properties are, however, largely attributed to its bioactive plant phenol metabolites, including for plant defense, for its attractive wood and bark coloration, and various beneficial medicinal properties. Integrated transcriptome and metabolome data analyses were carried out using buds, leaves, stems, roots, and root nodules from greenhouse grown red alder saplings with samples collected during different time-points (Spring, Summer, and Fall) of the growing season. Pollen and catkins were collected from field grown mature trees. Overall plant phenol biochemical pathways operative in red alder were determined, with a particular emphasis on potentially identifying candidates for the long unknown gateway entry points to the proanthocyanidin (PA) and ellagitannin metabolic classes, as well as in gaining better understanding of the biochemical basis of diarylheptanoid formation, i.e. that help define red alder's varied medicinal uses, and its extensive wood and dye usage.
Collapse
Affiliation(s)
- Kim K. Hixson
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Syed G. A. Moinuddin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Mi Kwon
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Michael A. Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - John R. Cort
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Laurence B. Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Callum J. Bell
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Norman G. Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Ishida K, Yamamoto S, Makino T, Tobimatsu Y. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems. JOURNAL OF PLANT RESEARCH 2024; 137:1177-1187. [PMID: 39373803 DOI: 10.1007/s10265-024-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Lignin is a phenolic polymer that is a major source of biomass. Oxidative enzymes, such as laccase and peroxidase, are required for lignin polymerisation. Laccase is a member of the multicopper oxidase family and has a high amino acid sequence similarity with ascorbate oxidase. However, the process of functional differentiation between the two enzymes remains poorly understood. In this study, the common ancestry sequence of laccase and ascorbate oxidase (AncMCO) was predicted via phylogenetic reconstruction, and its in vivo effect on lignin biosynthesis in Arabidopsis thaliana was assessed. The estimated AncMCO sequence conserved key residues that coordinate with copper ions, implying that the electron transfer system is likely to be conserved in AncMCO. However, multiple insertions/deletions corresponding to protein surface structures have been found between laccase, ascorbate oxidase, and AncMCO. The overexpression of canonical laccase (AtLAC4) and ascorbate oxidase (AtAAO1) in A. thaliana resulted in notable increases of syringyl/guaiacyl lignin unit ratio in stems, whereas, in contrast, the overexpression of AncMCO did not show any detectable change in lignin deposition. Transcriptomic analysis revealed that the AtAAO1-overexpressing line exhibited significant changes in the expression of a wide range of cell wall biosynthesis genes. These results highlight the importance of the molecular evolution of multicopper oxidase, which drives lignin biosynthesis during plant evolution.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK.
| | - Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| |
Collapse
|
6
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Li X, Yell V, Li X. Two Arabidopsis promoters drive seed-coat specific gene expression in pennycress and camelina. PLANT METHODS 2023; 19:140. [PMID: 38053155 DOI: 10.1186/s13007-023-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Pennycress and camelina are two important novel biofuel oilseed crop species. Their seeds contain high content of oil that can be easily converted into biodiesel or jet fuel, while the left-over materials are usually made into press cake meals for feeding livestock. Therefore, the ability to manipulate the seed coat encapsulating the oil- and protein-rich embryos is critical for improving seed oil production and press cake quality. RESULTS Here, we tested the promoter activity of two Arabidopsis seed coat genes, AtTT10 and AtDP1, in pennycress and camelina by using eGFP and GUS reporters. Overall, both promoters show high levels of activities in the seed coat in these two biofuel crops, with very low or no expression in other tissues. Importantly, AtTT10 promoter activity in camelina shows differences from that in Arabidopsis, which highlights that the behavior of an exogenous promoter in closely related species cannot be assumed the same and still requires experimental determination. CONCLUSION Our work demonstrates that AtTT10 and AtDP1 promoters are suitable for driving gene expression in the outer integument of the seed coat in pennycress and camelina.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Victoria Yell
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
| |
Collapse
|
8
|
Gong L, Li B, Zhu T, Xue B. Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica. FRONTIERS IN PLANT SCIENCE 2023; 14:1243806. [PMID: 37799547 PMCID: PMC10548141 DOI: 10.3389/fpls.2023.1243806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs.
Collapse
Affiliation(s)
- Luping Gong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Jia W, Xiong Y, Li M, Zhang S, Han Z, Li K. Genome-wide identification, characterization, evolution and expression analysis of the DIR gene family in potato ( Solanum tuberosum). Front Genet 2023; 14:1224015. [PMID: 37680198 PMCID: PMC10481866 DOI: 10.3389/fgene.2023.1224015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The dirigent (DIR) gene is a key player in environmental stress response and has been identified in many multidimensional tube plant species. However, there are few studies on the StDIR gene in potato. In this study, we used genome-wide identification to identify 31 StDIR genes in potato. Among the 12 potato chromosomes, the StDIR gene was distributed on 11 chromosomes, among which the third chromosome did not have a family member, while the tenth chromosome had the most members with 11 members. 22 of the 31 StDIRs had a classical DIR gene structure, with one exon and no intron. The conserved DIR domain accounts for most of the proteins in the 27 StDIRs. The structure of the StDIR gene was analyzed and ten different motifs were detected. The StDIR gene was divided into three groups according to its phylogenetic relationship, and 22 duplicate genes were identified. In addition, four kinds of cis-acting elements were detected in all 31 StDIR promoter regions, most of which were associated with biotic and abiotic stress. The findings demonstrated that the StDIR gene exhibited specific responses to cold stress, salt stress, ABA, and drought stress. This study provides new candidate genes for improving potato's resistance to stress.
Collapse
Affiliation(s)
- Wenqi Jia
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Yuting Xiong
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Man Li
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Shengli Zhang
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin, China
| | - Zhongcai Han
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Alejo-Jacuinde G, Nájera-González HR, Chávez Montes RA, Gutierrez Reyes CD, Barragán-Rosillo AC, Perez Sanchez B, Mechref Y, López-Arredondo D, Yong-Villalobos L, Herrera-Estrella L. Multi-omic analyses reveal the unique properties of chia (Salvia hispanica) seed metabolism. Commun Biol 2023; 6:820. [PMID: 37550387 PMCID: PMC10406817 DOI: 10.1038/s42003-023-05192-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Chia (Salvia hispanica) is an emerging crop considered a functional food containing important substances with multiple potential applications. However, the molecular basis of some relevant chia traits, such as seed mucilage and polyphenol content, remains to be discovered. This study generates an improved chromosome-level reference of the chia genome, resolving some highly repetitive regions, describing methylation patterns, and refining genome annotation. Transcriptomic analysis shows that seeds exhibit a unique expression pattern compared to other organs and tissues. Thus, a metabolic and proteomic approach is implemented to study seed composition and seed-produced mucilage. The chia genome exhibits a significant expansion in mucilage synthesis genes (compared to Arabidopsis), and gene network analysis reveals potential regulators controlling seed mucilage production. Rosmarinic acid, a compound with enormous therapeutic potential, was classified as the most abundant polyphenol in seeds, and candidate genes for its complex pathway are described. Overall, this study provides important insights into the molecular basis for the unique characteristics of chia seeds.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Ricardo A Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Alfonso Carlos Barragán-Rosillo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., 36821, Mexico.
| |
Collapse
|
11
|
Muro-Villanueva F, Pysh LD, Kim H, Bouse T, Ralph J, Luo Z, Cooper BR, Jannasch AS, Zhang Z, Gu C, Chapple C. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing FERULATE 5-HYDROXYLASE. Proc Natl Acad Sci U S A 2023; 120:e2216543120. [PMID: 37487096 PMCID: PMC10401026 DOI: 10.1073/pnas.2216543120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.
Collapse
Affiliation(s)
- Fabiola Muro-Villanueva
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | | | - Hoon Kim
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
| | - Tyler Bouse
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John Ralph
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zhiwei Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Amber S. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Zeyu Zhang
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Chong Gu
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
12
|
Lin JL, Fang X, Li JX, Chen ZW, Wu WK, Guo XX, Liu NJ, Huang JF, Chen FY, Wang LJ, Xu B, Martin C, Chen XY, Huang JQ. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. NATURE PLANTS 2023; 9:605-615. [PMID: 36928775 DOI: 10.1038/s41477-023-01376-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Axial chirality of biaryls can generate varied bioactivities. Gossypol is a binaphthyl compound made by cotton plants. Of its two axially chiral isomers, (-)-gossypol is the bioactive form in mammals and has antispermatogenic activity, and its accumulation in cotton seeds poses health concerns. Here we identified two extracellular dirigent proteins (DIRs) from Gossypium hirsutum, GhDIR5 and GhDIR6, which impart the hemigossypol oxidative coupling into (-)- and (+)-gossypol, respectively. To reduce cotton seed toxicity, we disrupted GhDIR5 by genome editing, which eliminated (-)-gossypol but had no effects on other phytoalexins, including (+)-gossypol, that provide pest resistance. Reciprocal mutagenesis identified three residues responsible for enantioselectivity. The (-)-gossypol-forming DIRs emerged later than their enantiocomplementary counterparts, from tandem gene duplications that occurred shortly after the cotton genus diverged. Our study offers insight into how plants control enantiomeric ratios and how to selectively modify the chemical spectra of cotton plants and thereby improve crop quality.
Collapse
Affiliation(s)
- Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Wen-Kai Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xiang Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Fa Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Yan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Huwa N, Weiergräber OH, Fejzagić AV, Kirsch C, Schaffrath U, Classen T. The Crystal Structure of the Defense Conferring Rice Protein OsJAC1 Reveals a Carbohydrate Binding Site on the Dirigent-like Domain. Biomolecules 2022; 12:biom12081126. [PMID: 36009020 PMCID: PMC9405769 DOI: 10.3390/biom12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pesticides are routinely used to prevent severe losses in agriculture. This practice is under debate because of its potential negative environmental impact and selection of resistances in pathogens. Therefore, the development of disease resistant plants is mandatory. It was shown that the rice (Oryza sativa) protein OsJAC1 enhances resistance against different bacterial and fungal plant pathogens in rice, barley, and wheat. Recently we reported possible carbohydrate interaction partners for both domains of OsJAC1 (a jacalin-related lectin (JRL) and a dirigent (DIR) domain), however, a mechanistic understanding of its function is still lacking. Here, we report crystal structures for both individual domains and the complex of galactobiose with the DIR domain, which revealed a new carbohydrate binding motif for DIR proteins. Docking studies of the two domains led to a model of the full-length protein. Our findings offer insights into structure and binding properties of OsJAC1 and its possible function in pathogen resistance.
Collapse
Affiliation(s)
- Nikolai Huwa
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing 7: Structural Biochemistry and Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexander V. Fejzagić
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Christian Kirsch
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Ulrich Schaffrath
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Thomas Classen
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence:
| |
Collapse
|
14
|
Transgenic Forsythia plants expressing sesame cytochrome P450 produce beneficial lignans. Sci Rep 2022; 12:10152. [PMID: 35710718 PMCID: PMC9203787 DOI: 10.1038/s41598-022-14401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Lignans are widely distributed plant secondary metabolites that have received attention for their benefits to human health. Sesamin is a furofran lignan that is conventionally extracted from Sesamum seeds and shows anti-oxidant and anti-inflammatory activities in the human liver. Sesamin is biosynthesized by the Sesamum-specific enzyme CYP81Q1, and the natural sources of sesamin are annual plants that are at risk from climate change. In contrast, Forsythia species are widely distributed perennial woody plants that highly accumulate the precursor lignan pinoresinol. To sustainably supply sesamin, we developed a transformation method for Forsythia leaf explants and generated transgenic Forsythia plants that heterologously expressed the CYP81Q1 gene. High-performance liquid chromatography (HPLC) and LC-mass spectrometry analyses detected sesamin and its intermediate piperitol in the leaves of two independent transgenic lines of F. intermedia and F. koreana. We also detected the accumulation of sesamin and piperitol in their vegetatively propagated descendants, demonstrating the stable and efficient production of these lignans. These results indicate that CYP81Q1-transgenic Forsythia plants are promising prototypes to produce diverse lignans and provide an important strategy for the cost-effective and scalable production of lignans.
Collapse
|
15
|
Ning K, Hou C, Wei X, Zhou Y, Zhang S, Chen Y, Yu H, Dong L, Chen S. Metabolomics Analysis Revealed the Characteristic Metabolites of Hemp Seeds Varieties and Metabolites Responsible for Antioxidant Properties. FRONTIERS IN PLANT SCIENCE 2022; 13:904163. [PMID: 35800608 PMCID: PMC9253560 DOI: 10.3389/fpls.2022.904163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 05/12/2023]
Abstract
Hemp seeds are rich in metabolites such as protein, lipids and flavonoids, which are beneficial to health and can be used as a nutritional supplement. Few studies have focused on the metabolites of different hemp seed varieties. In the current study, using widely targeted metabolomics based on UHPLC-QQQ-MS/MS, we compared the metabolomes of seeds from seven hemp varieties with different uses. A total of 1,001 metabolites, including 201 flavonoids, 86 alkaloids, and 149 phenolic acids, were identified. Flavonoids, organic acids, alkaloids, lipids, and fatty acids with high nutritional value are important to investigate the differences between hemp accessions. By using weighted gene co-expression network analysis (WGCNA), six modules of closely related metabolites were identified. And, we identified the metabolite characteristics and hub metabolites of each variety. Then, we experimentally determined antioxidant activity of seven varieties and demonstrated that alkaloids, flavonoids, phenolic acids, terpenes, and free fatty acids are responsible for the antioxidant activity of hemp seeds. Our research provides useful information for further investigation of the chemical composition of hemp seeds.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cong Hou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuye Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuanghua Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongzhong Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Linlin Dong,
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Shilin Chen,
| |
Collapse
|
16
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
18
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|