1
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Goel RK, Bithi N, Emili A. Trends in co-fractionation mass spectrometry: A new gold-standard in global protein interaction network discovery. Curr Opin Struct Biol 2024; 88:102880. [PMID: 38996623 DOI: 10.1016/j.sbi.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Co-fractionation mass spectrometry (CF-MS) uses biochemical fractionation to isolate and characterize macromolecular complexes from cellular lysates without the need for affinity tagging or capture. In recent years, this has emerged as a powerful technique for elucidating global protein-protein interaction networks in a wide variety of biospecimens. This review highlights the latest advancements in CF-MS experimental workflows including machine learning-guided analyses, for uncovering dynamic and high-resolution protein interaction landscapes with enhanced sensitivity, accuracy and throughput, enabling better biophysical characterization of endogenous protein complexes. By addressing challenges and emergent opportunities in the field, this review underscores the transformative potential of CF-MS in advancing our understanding of functional protein interaction networks in health and disease.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| | - Nazmin Bithi
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Andrew Emili
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
3
|
Dvořák Tomaštíková E, Vaculíková J, Štenclová V, Kaduchová K, Pobořilová Z, Paleček JJ, Pecinka A. The interplay of homology-directed repair pathways in the repair of zebularine-induced DNA-protein crosslinks in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824612 DOI: 10.1111/tpj.16863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jitka Vaculíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Veronika Štenclová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Kateřina Kaduchová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Zuzana Pobořilová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan J Paleček
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
4
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Schlossarek D, Zhang Y, Sokolowska EM, Fernie AR, Luzarowski M, Skirycz A. Don't let go: co-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:904-914. [PMID: 36575913 DOI: 10.1111/tpj.16084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The chemical complexity of metabolomes goes hand in hand with their functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein-metabolite interaction (PMI) network underlies most if not all biological processes, but remains under-characterized. Herein, we highlight how co-fractionation mass spectrometry (CF-MS), a well-established approach to map protein assemblies, can be used for proteome and metabolome identification of the PMIs. We will review recent CF-MS studies, discuss the main advantages and limitations, summarize the available CF-MS guidelines, and outline future challenges and opportunities.
Collapse
Affiliation(s)
- Dennis Schlossarek
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Youjun Zhang
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewelina M Sokolowska
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Center for Molecular Biology Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aleksandra Skirycz
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
6
|
Hilleary R. Separated together: prediction of native protein complexes in rice aleurone via co-fractionation mass spectrometry. THE PLANT CELL 2021; 33:2906-2907. [PMID: 35233631 PMCID: PMC8462805 DOI: 10.1093/plcell/koab184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Richard Hilleary
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|