1
|
Liu K, Zhao H, Lee KP, Yu Q, Di M, Wang L, Kim C. EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. THE PLANT CELL 2024; 37:koae296. [PMID: 39499663 DOI: 10.1093/plcell/koae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Chloroplasts are recognized as environmental sensors, capable of translating environmental fluctuations into diverse signals to communicate with the nucleus. Among the reactive oxygen species produced in chloroplasts, singlet oxygen (1O2) has been extensively studied due to its dual roles, encompassing both damage and signaling activities, and the availability of conditional mutants overproducing 1O2 in chloroplasts. In particular, investigating the Arabidopsis (Arabidopsis thaliana) mutant known as fluorescent (flu) has led to the discovery of EXECUTER1 (EX1), a plastid 1O2 sensor residing in the grana margin of the thylakoid membrane. 1O2-triggered EX1 degradation is critical for the induction of 1O2-responsive nuclear genes (SOrNGs). However, a recent study showed that EX1 relocates from chloroplasts to the nucleus upon 1O2 release, where it interacts with WRKY18 and WRKY40 (WRKY18/40) transcription factors to regulate SOrNG expression. In this study, we challenge this assertion. Our confocal microscopy analysis and subcellular fractionation assays demonstrate that EX1 does not accumulate in the nucleus. While EX1 appears in nuclear fractions, subsequent thermolysin treatment assays indicate that it adheres to the outer nuclear region rather than localizing inside the nucleus. Furthermore, luciferase complementation imaging and yeast 2-hybrid assays reveal that EX1 does not interact with nuclear WRKY18/40. Consequently, our study refines the current model of 1O2 signaling by ruling out the nuclear relocation of intact EX1 as a means of communication between the chloroplast and nucleus.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yu C, Xu HF, Liu YR, Yan WW, Kong XL, Zhang ZC, Dai GZ, Qiu BS. The transcription factor RppA regulates chlorophyll and carotenoid biosynthesis to improve photoprotection in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae502. [PMID: 39321190 DOI: 10.1093/plphys/kiae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Chlorophyll is an essential photosynthetic pigment but also a strong photosensitizer. Excessive free chlorophyll and its precursors can cause oxidative damage to photosynthetic organisms. Cyanobacteria are the oldest oxygenic photosynthetic organisms and the ancestors of the chloroplast. Owing to their complex habitats, cyanobacteria require precise regulation of chlorophyll synthesis to respond to environmental factors, especially changes in light. Chlorophyll synthase, encoded by chlG, is the enzyme catalyzing the final step of chlorophyll biosynthesis, which is closely related to photosynthesis biogenesis. However, the transcriptional regulation on chlG remains unclear. Here, the transcription factor, regulator of photosynthesis and photopigment-related gene expression A (RppA), was identified to bind to the chlG promoter by screening a yeast 1-hybrid library in the cyanobacterium Synechocystis sp. PCC 6803. The rppA knockout mutant showed a phenotype of slow growth and severe oxidative damage under dark-light transition conditions. The upregulated transcriptional expression of chlG was significantly higher and more chlorophyll and its precursors accumulated in the rppA knockout mutant than those in the wild-type strain during the transition from darkness to light, indicating that RppA represses the expression of chlG in Synechocystis. Meanwhile, RppA could synchronously promote the transcription of carotenoids biosynthesis-related genes to enhance carotenoids synthesis during the dark-light transition. These results reveal synergistic regulation of chlorophyll and carotenoids biosynthesis in cyanobacteria in response to frequent dark-light transitions, which slows down chlorophyll biosynthesis while promoting carotenoids biosynthesis to avoid oxidative damage caused by excessive reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xin-Ling Kong
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
3
|
Rai S, Lemke MD, Arias AM, Gomez Mendez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593788. [PMID: 38798329 PMCID: PMC11118471 DOI: 10.1101/2024.05.13.593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2 and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. Results To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. Conclusions Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Anika M. Arias
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | - Maria F. Gomez Mendez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | | |
Collapse
|
4
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
5
|
Li X, Han HQ, Wei YL, Hu T, Qiang W, Wang XH, Zhang MS. Phytochrome interacting factor 3 mediates low light signaling to regulate isorhynchophylline biosynthesis in Uncaria rhynchophylla. Sci Rep 2024; 14:25032. [PMID: 39443584 PMCID: PMC11499661 DOI: 10.1038/s41598-024-76939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Phytochrome interacting factors (PIFs) serve as crucial regulators in the light signal transduction pathway and also mediate light signals to regulate secondary metabolite synthesis in plants. However, the regulator role of PIFs in secondary metabolites often varies among different plants. Isorhynchophylline (IRN), an iconic secondary metabolite of Uncaria rhynchophylla, holds significant medicinal value. Low light induces the synthesis of IRN in previous research, but PIFs in U. rhynchophylla have not been studied to date. Building on this, we identified a PIF protein, UrPIF3, which possesses the typical conserved domains of the PIFs and is localized in the nucleus. Moreover, the expression level of UrPIF3 is consistently positively correlated with the expression of two key enzyme genes (UrSGD and UrSTR) in the IRN biosynthesis pathway, regardless of whether under low light or restoring light conditions. Yeast one-hybrid and dual-luciferase assays further demonstrated that UrPIF3 can directly upregulate UrSGD. Conversely, silencing UrPIF3 inhibits IRN synthesis, and significantly reduces the expression levels of UrSGD and UrSTR. In summary, our results suggest that under low light conditions, UrPIF3 can directly upregulate UrSGD and indirectly upregulate UrSTR, thereby promoting the synthesis of IRN.
Collapse
Affiliation(s)
- Xue Li
- School of Chinese Ethnic Medicine, Guizhou Minzu University, 550025, Guiyang, Guizhou, China
| | - Hong-Qiang Han
- School of Chinese Ethnic Medicine, Guizhou Minzu University, 550025, Guiyang, Guizhou, China
| | - Ya-Li Wei
- School of Chinese Ethnic Medicine, Guizhou Minzu University, 550025, Guiyang, Guizhou, China
| | - Tao Hu
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, Guizhou, China
| | - Wei Qiang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, Guizhou, China
| | - Xiao-Hong Wang
- Institute of Sericulture Science, Guizhou Academy of Agricultural Sciences, 550006, Guiyang, China.
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Zhang ZW, Fu YF, Chen GD, Reinbothe C, Reinbothe S, Yuan S. The interplay of singlet oxygen and ABI4 in plant growth regulation. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00240-1. [PMID: 39414457 DOI: 10.1016/j.tplants.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
7
|
Geng R, Li X, Huang J, Zhou W. The chloroplast singlet oxygen-triggered biosynthesis of salicylic acid and jasmonic acid is mediated by EX1 and GUN1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:2852-2864. [PMID: 38600785 DOI: 10.1111/pce.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Hernández-Muñoz A, Agreda-Laguna KA, Ramírez-Bernabé IE, Oltehua-López O, Arteaga-Vázquez MA, Leon P. Marchantia polymorpha GOLDEN2-LIKE transcriptional factor; a central regulator of chloroplast and plant vegetative development. THE NEW PHYTOLOGIST 2024; 243:1406-1423. [PMID: 38922903 DOI: 10.1111/nph.19916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The GOLDEN2-LIKE (GLK) transcription factors act as a central regulatory node involved in both developmental processes and environmental responses. Marchantia polymorpha, a basal terrestrial plant with strategic evolutionary position, contains a single GLK representative that possesses an additional domain compared to spermatophytes. We analyzed the role of MpGLK in chloroplast biogenesis and development by altering its levels, preforming transcriptomic profiling and conducting chromatin immunoprecipitation. Decreased MpGLK levels impair chloroplast differentiation and disrupt the expression of photosynthesis-associated nuclear genes, while overexpressing MpGLK leads to ectopic chloroplast biogenesis. This demonstrates the MpGLK functions as a bona fide GLK protein, likely representing an ancestral GLK architecture. Altering MpGLK levels directly regulates the expression of genes involved in Chl synthesis and degradation, similar to processes observed in eudicots, and causes various developmental defects in Marchantia, including the formation of dorsal structures such as air pores and gemma cups. MpGLK, also directly activates MpMAX2 gene expression, regulating the timing of gemma cup development. Our study shows that MpGLK functions as a master regulator, potentially coupling chloroplast development with vegetative reproduction. This illustrates the complex regulatory networks governing chloroplast function and plant development communication and highlight the evolutionary conservation of GLK-mediated regulatory processes across plant species.
Collapse
Affiliation(s)
- Arihel Hernández-Muñoz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Kenny Alejandra Agreda-Laguna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ignacio E Ramírez-Bernabé
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Omar Oltehua-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Mario A Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Avenida de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, 91090, Mexico
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
9
|
Jung S, Woo J, Park E. Talk to your neighbors in an emergency: Stromule-mediated chloroplast-nucleus communication in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102529. [PMID: 38604000 DOI: 10.1016/j.pbi.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Hypersensitive response-programmed cell death (HR-PCD) is a response mounted by plants to defend themselves against pathogens. Communication between the chloroplast and the nucleus is critical for the progression of HR-PCD. Tubular protrusions of chloroplasts, known as stromules, are tightly associated with the HR-PCD progression. There is emerging evidence that signaling molecules originating from chloroplasts are transferred to the nucleus through stromules. The translocation of signaling molecules from the chloroplast to the nucleus might trigger defense responses, including transcriptional reprogramming. In this review, we discuss the possible functions of stromules in the rapid transfer of signaling molecules in the chloroplast-nucleus communication.
Collapse
Affiliation(s)
- Seungmee Jung
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Jongchan Woo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Eunsook Park
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
10
|
Goggin FL, Fischer HD. Singlet oxygen signalling and its potential roles in plant biotic interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1957-1970. [PMID: 38372069 DOI: 10.1111/pce.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (SO) is among the most potent reactive oxygen species, and readily oxidizes proteins, lipids and DNA. It can be generated at the plant surface by phototoxins in the epidermis, acting as a direct defense against pathogens and herbivores (including humans). SO can also accumulate within mitochondria, peroxisomes, cytosol and the nucleus through multiple enzymatic and nonenzymatic processes. However, the majority of research on intracellular SO generation in plants has focused on transfer of light energy to triplet oxygen by photopigments from the chloroplast. SO accumulates in response to diverse stresses that perturb chloroplast metabolism, and while its high reactivity limits diffusion distances, it participates in retrograde signalling through the EXECUTER1 sensor, generation of carotenoid metabolites and possibly other unknown pathways. SO thereby reprogrammes nuclear gene expression and modulates hormone signalling and programmed cell death. While SO signalling has long been known to regulate plant responses to high-light stress, recent literature also suggests a role in plant interactions with insects, bacteria and fungi. The goals of this review are to provide a brief overview of SO, summarize evidence for its involvement in biotic stress responses and discuss future directions for the study of SO in defense signalling.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Hillary D Fischer
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
11
|
Shi J, Wang H, Li M, Mi L, Gao Y, Qiang S, Zhang Y, Chen D, Dai X, Ma H, Lu H, Kim C, Chen S. Alternaria TeA toxin activates a chloroplast retrograde signaling pathway to facilitate JA-dependent pathogenicity. PLANT COMMUNICATIONS 2024; 5:100775. [PMID: 38050356 PMCID: PMC10943587 DOI: 10.1016/j.xplc.2023.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.
Collapse
Affiliation(s)
- Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liru Mi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yazhi Gao
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinbin Dai
- Bioinformatics and Computational Biology Laboratory, Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zhang ZW, Fu YF, Yang XY, Yuan M, Zheng XJ, Luo XF, Zhang MY, Xie LB, Shu K, Reinbothe S, Reinbothe C, Wu F, Feng LY, Du JB, Wang CQ, Gao XS, Chen YE, Zhang YY, Li Y, Tao Q, Lan T, Tang XY, Zeng J, Chen GD, Yuan S. Singlet oxygen induces cell wall thickening and stomatal density reducing by transcriptome reprogramming. J Biol Chem 2023; 299:105481. [PMID: 38041932 PMCID: PMC10731243 DOI: 10.1016/j.jbc.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiao-Jian Zheng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Feng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Meng-Yao Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xue-Song Gao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yan-Yan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
13
|
Lv A, Su L, Fan N, Wen W, Wang Z, Zhou P, An Y. Chloroplast-targeted late embryogenesis abundant 1 increases alfalfa tolerance to drought and aluminum. PLANT PHYSIOLOGY 2023; 193:2750-2767. [PMID: 37647543 DOI: 10.1093/plphys/kiad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are important stress-response proteins that participate in protecting plants against abiotic stresses. Here, we investigated LEA group 3 protein MsLEA1, containing the typically disordered and α-helix structure, via overexpression and RNA interference (RNAi) approaches in alfalfa (Medicago sativa L.) under drought and aluminum (Al) stresses. MsLEA1 was highly expressed in leaves and localized in chloroplasts. Overexpressing MsLEA1 increased alfalfa tolerance to drought and Al stresses, but downregulating MsLEA1 decreased the tolerance. We observed a larger stomatal aperture and a lower water use efficiency in MsLEA1 RNAi lines compared with wild-type plants under drought stress. Photosynthetic rate, Rubisco activity, and superoxide dismutase (SOD) activity increased or decreased in MsLEA1-OE or MsLEA1-RNAi lines, respectively, under drought and Al stress. Copper/zinc SOD (Cu/Zn-SOD), iron SOD (Fe-SOD), and Rubisco large subunit proteins (Ms1770) were identified as binding partners of MsLEA1, which protected chloroplast structure and function under drought and Al stress. These results indicate that MsLEA1 recruits and protects its target proteins (SOD and Ms1770) and increases alfalfa tolerance against drought and Al stresses.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
14
|
Yang X, Guan H, Yang Y, Zhang Y, Su W, Song S, Liu H, Chen R, Hao Y. Extra- and intranuclear heat perception and triggering mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1276649. [PMID: 37860244 PMCID: PMC10582638 DOI: 10.3389/fpls.2023.1276649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Seo S, Kim Y, Park K. NPR1 Translocation from Chloroplast to Nucleus Activates Plant Tolerance to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12051118. [PMID: 37237984 DOI: 10.3390/antiox12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Chloroplasts play crucial roles in biotic and abiotic stress responses, regulated by nuclear gene expression through changes in the cellular redox state. Despite lacking the N-terminal chloroplast transit peptide (cTP), nonexpressor of pathogenesis-related genes 1 (NPR1), a redox-sensitive transcriptional coactivator was consistently found in the tobacco chloroplasts. Under salt stress and after exogenous application of H2O2 or aminocyclopropane-1-carboxylic acid, an ethylene precursor, transgenic tobacco plants expressing green fluorescent protein (GFP)-tagged NPR1 (NPR1-GFP) showed significant accumulation of monomeric nuclear NPR1, irrespective of the presence of cTP. Immunoblotting and fluorescence image analyses indicated that NPR1-GFP, with and without cTP, had similar molecular weights, suggesting that the chloroplast-targeted NPR1-GFP is likely translocated from the chloroplasts to the nucleus after processing in the stroma. Translation in the chloroplast is essential for nuclear NPR1 accumulation and stress-related expression of nuclear genes. An overexpression of chloroplast-targeted NPR1 enhanced stress tolerance and photosynthetic capacity. In addition, compared to the wild-type lines, several genes encoding retrograde signaling-related proteins were severely impaired in the Arabidopsis npr1-1 mutant, but were enhanced in NPR1 overexpression (NPR1-Ox) transgenic tobacco line. Taken together, chloroplast NPR1 acts as a retrograding signal that enhances the adaptability of plants to adverse environments.
Collapse
Affiliation(s)
- Soyeon Seo
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Yumi Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Kyyoung Park
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| |
Collapse
|
16
|
Méteignier LV. Exfiltration from the chloroplast: A shuttle protein shows the way to the nucleus. THE PLANT CELL 2023; 35:634-635. [PMID: 36427254 PMCID: PMC9940861 DOI: 10.1093/plcell/koac332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Louis-Valentin Méteignier
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
17
|
Cresta A, D’Alessandro S. Arabidopsis ANAC102, Chloroplastic or Nucleocytosolic Localization? Genes (Basel) 2023; 14:438. [PMID: 36833365 PMCID: PMC9956179 DOI: 10.3390/genes14020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
ANAC102 is a transcription factor involved in stress response and brassinosteroids signaling, with circadian regulation controlled by phytochromes. ANAC102 has been proposed to have a role in downregulating chloroplast transcription, which may be very useful in reducing photosynthesis and chloroplast energy demand under stress conditions. However, its localization in the chloroplast has mainly been demonstrated by using constitutive promoters. In this work, we recapitulate the literature, clarify which are ANAC102 isoforms in Arabidopsis and analyze their expressions under control conditions and in response to stress. Based on our results, the most highly expressed ANAC102 isoform encodes for a nucleocytoplasmic protein and the N-terminal chloroplast-targeting peptide appears to be present only in Brassicaceae, and not involved in stress response.
Collapse
Affiliation(s)
| | - Stefano D’Alessandro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10135 Turin, Italy
| |
Collapse
|