1
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
2
|
Ma B, Zhang Y, Fan Y, Zhang L, Li X, Zhang QQ, Shu Q, Huang J, Chen G, Li Q, Gao Q, Zhu XG, He Z, Wang P. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci U S A 2024; 121:e2404199121. [PMID: 39136985 PMCID: PMC11348269 DOI: 10.1073/pnas.2404199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.
Collapse
Affiliation(s)
- Bin Ma
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou225009, China
| | - You Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yanfei Fan
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Lin Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou225009, China
| | - Xiaoyuan Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou310024, China
| | - Qi-Qi Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai200234, China
| | - Genyun Chen
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qun Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qifei Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xin-Guang Zhu
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Zuhua He
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Wang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
3
|
Li L, Li Y, Ding G. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC Genomics 2024; 25:166. [PMID: 38347506 PMCID: PMC10860282 DOI: 10.1186/s12864-024-10054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The carbon metabolism pathway is of paramount importance for the growth and development of plants, exerting a pivotal regulatory role in stress responses. The exacerbation of drought impacts on the plant carbon cycle due to global warming necessitates comprehensive investigation into the response mechanisms of Masson Pine (Pinus massoniana Lamb.), an exemplary pioneer drought-tolerant tree, thereby establishing a foundation for predicting future forest ecosystem responses to climate change. RESULTS The seedlings of Masson Pine were utilized as experimental materials in this study, and the transcriptome, metabolome, and photosynthesis were assessed under varying temperatures and drought intensities. The findings demonstrated that the impact of high temperature and drought on the photosynthetic rate and transpiration rate of Masson Pine seedlings was more pronounced compared to individual stressors. The analysis of transcriptome data revealed that the carbon metabolic pathways of Masson Pine seedlings were significantly influenced by high temperature and drought co-stress, with a particular impact on genes involved in starch and sucrose metabolism. The metabolome analysis revealed that only trehalose and Galactose 1-phosphate were specifically associated with the starch and sucrose metabolic pathways. Furthermore, the trehalose metabolic heat map was constructed by integrating metabolome and transcriptome data, revealing a significant increase in trehalose levels across all three comparison groups. Additionally, the PmTPS1, PmTPS5, and PmTPPD genes were identified as key regulatory genes governing trehalose accumulation. CONCLUSIONS The combined effects of high temperature and drought on photosynthetic rate, transpiration rate, transcriptome, and metabolome were more pronounced than those induced by either high temperature or drought alone. Starch and sucrose metabolism emerged as the pivotal carbon metabolic pathways in response to high temperature and drought stress in Masson pine. Trehalose along with PmTPS1, PmTPS5, and PmTPPD genes played crucial roles as metabolites and key regulators within the starch and sucrose metabolism.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, China, 550001
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China.
| |
Collapse
|
4
|
Cavanagh AP, Ort DR. Transgenic strategies to improve the thermotolerance of photosynthesis. PHOTOSYNTHESIS RESEARCH 2023; 158:109-120. [PMID: 37273092 DOI: 10.1007/s11120-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Warming driven by the accumulation of greenhouse gases in the atmosphere is irreversible over at least the next century, unless practical technologies are rapidly developed and deployed at scale to remove and sequester carbon dioxide from the atmosphere. Accepting this reality highlights the central importance for crop agriculture to develop adaptation strategies for a warmer future. While nearly all processes in plants are impacted by above optimum temperatures, the impact of heat stress on photosynthetic processes stand out for their centrality. Here, we review transgenic strategies that show promise in improving the high-temperature tolerance of specific subprocesses of photosynthesis and in some cases have already been shown in proof of concept in field experiments to protect yield from high temperature-induced losses. We also highlight other manipulations to photosynthetic processes for which full proof of concept is still lacking but we contend warrant further attention. Warming that has already occurred over the past several decades has had detrimental impacts on crop production in many parts of the world. Declining productivity presages a rapidly developing global crisis in food security particularly in low income countries. Transgenic manipulation of photosynthesis to engineer greater high-temperature resilience holds encouraging promise to help meet this challenge.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Departments of Plant Biology and Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Xie Y, Duan H, Wang L, Zhang J, Dong K, Wang X, Zhang Y, Zhou Y, Li W, Qi Y, Zhao W, Dang Z, Wang X, Li W, Zhao L. Phosphorus and naphthalene acetic acid increased the seed yield by regulating carbon and nitrogen assimilation of flax. FRONTIERS IN PLANT SCIENCE 2023; 14:1228755. [PMID: 37719212 PMCID: PMC10499554 DOI: 10.3389/fpls.2023.1228755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023]
Abstract
To evaluate the impact of phosphorus (P) combined with exogenous NAA on flax yield, enhance flax P utilization efficiency and productivity, minimize resource inputs and mitigate negative environmental and human effects. Therefore, it is crucial to comprehend the physiological and biochemical responses of flax to P and naphthylacetic acid (NAA) in order to guide future agronomic management strategies for increasing seed yield. A randomized complete block design trial was conducted under semi-arid conditions in Northwest China, using a factorial split-plot to investigate the effects of three P (0, 67.5, and 135.0 kg P2O5 ha-1) and three exogenous spray NAA levels (0, 20, and 40 mg NAA L-1) on sucrose phosphate synthase (SPS) and diphosphoribulose carboxylase (Rubisco) activities as well as nitrogen (N) and P accumulation and translocation in flax. Results indicated that the SPS and Rubisco activities, N and P accumulation at flowering and maturity along with assimilation and translocation post-flowering, fruiting branches per plant, tillers per plant, capsules per plant, and seed yield were 95, 105, 14, 27, 55, 15, 13, 110, 103, 82, 16, 61, 8, and 13% greater in the P treatments compared to those in the zero P treatment, respectively. Moreover, those characteristics were observed to be greater with exogenous spray NAA treatments compared to that no spray NAA treatment. Additionally, the maximum SPS and Rubisco activities, N and P accumulation, assimilation post-flowering and translocation, capsules per plant, and seed yield were achieved with the application of 67.5 kg P2O5 ha-1 with 20 mg NAA L-1. Therefore, these findings demonstrate that the appropriate combination of P fertilizer and spray NAA is an effective agronomic management strategy for regulating carbon and nitrogen assimilation by maintaining photosynthetic efficiency in plants to increase flax productivity.
Collapse
Affiliation(s)
- Yaping Xie
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Limin Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yangchen Zhou
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjuan Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yanni Qi
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Zhao
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao Dang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xingzhen Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lirong Zhao
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
An YQ, Qin ZT, Li DD, Zhao RQ, Bi BS, Wang DW, Ma DJ, Xi Z. The combined formulation of brassinolide and pyraclostrobin increases biomass and seed yield by improving photosynthetic capacity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1138563. [PMID: 37063198 PMCID: PMC10090558 DOI: 10.3389/fpls.2023.1138563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In the context of global food crisis, applying the phytohormone-brassinosteroids (BRs) in combination with the fungicide-pyraclostrobin (Pyr) was beneficial for plant quality and productivity in several field trials. However, in addition to the benefits of disease control due to the innate fungicidal activity of Pyr, it remains to be understood whether the coapplication of BL+ Pyr exerts additional growth-promoting effects. For this purpose, the effects of BL treatment, Pyr treatment, and BL+ Pyr treatment in Arabidopsis thaliana were compared. The results showed that the yield increased at a rate of 25.6% in the BL+Pyr group and 9.7% in the BL group, but no significant change was observed in the Pyr group. Furthermore, the BL+Pyr treatment increased the fresh weight of both the leaves and the inflorescences. In contrast, the Pyr and BL treatments only increased the fresh weight of leaves and inflorescences, respectively. Additionally, the BL + Pyr treatment increased the Pn, Gs, Tr, Vc, max, Jmax, VTPU, ETR, Fv'/Fm', ΦPSII, Rd, AYE and Rubisco enzyme activity by 26%, 38%, 40%, 16%, 19%, 15%, 9%, 10%, 17%, 179%, 18% and 32%, respectively. While, these paraments did not change significantly by the BL or Pyr treatments. Treatment with BL + Pyr and Pyr, rather than BL, improved the chlorophyll a and chlorophyll b contents by upregulating genes related to chlorophyll biosynthesis and downregulating genes related to chlorophyll degradation. Additionally, according to transcriptomic and metabolomic analysis, the BL+ Pyr treatment outperformed the individual BL or Pyr treatments in activating the transcription of genes involved in photosynthesis and increasing sugar accumulation. Our results first validated that the combined usage of BL and Pyr exerted striking synergistic effects on enhancing plant biomass and yield by increasing photosynthetic efficiency. These results might provide new understanding for the agricultural effects by the co-application of BL and Pyr, and it might stimulate the efforts to develop new environment-friendly replacement for Pyr to minimize the ecotoxicology of Pyr.
Collapse
Affiliation(s)
- Ya-Qi An
- *Correspondence: Ya-Qi An, ; Zhen Xi,
| | | | | | | | | | | | | | - Zhen Xi
- *Correspondence: Ya-Qi An, ; Zhen Xi,
| |
Collapse
|
7
|
Waheeda K, Kitchel H, Wang Q, Chiu PL. Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Front Mol Biosci 2023; 10:1125922. [PMID: 36845545 PMCID: PMC9951593 DOI: 10.3389/fmolb.2023.1125922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) enzyme is the limiting step of photosynthetic carbon fixation, and its activation is regulated by its co-evolved chaperone, Rubisco activase (Rca). Rca removes the intrinsic sugar phosphate inhibitors occupying the Rubisco active site, allowing RuBP to split into two 3-phosphoglycerate (3PGA) molecules. This review summarizes the evolution, structure, and function of Rca and describes the recent findings regarding the mechanistic model of Rubisco activation by Rca. New knowledge in these areas can significantly enhance crop engineering techniques used to improve crop productivity.
Collapse
Affiliation(s)
- Kazi Waheeda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| | - Heidi Kitchel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| | - Quan Wang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
9
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Feng YX, Tian P, Li CZ, Zhang Q, Trapp S, Yu XZ. Individual and mutual effects of elevated carbon dioxide and temperature on salt and cadmium uptake and translocation by rice seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1161334. [PMID: 37089641 PMCID: PMC10113512 DOI: 10.3389/fpls.2023.1161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Plant kingdoms are facing increasingly harsh environmental challenges marked by the coexposure of salinity and pollution in the pedosphere and elevated CO2 and temperature in the atmosphere due to the rapid acceleration of industrialization and global climate change. In this study, we deployed a hydroponics-based experiment to explore the individual and mutual effects of different temperatures (low temperature, T1: 23°C; high temperature, T2: 27°C) and CO2 concentrations (ambient CO2: 360 ppm; medium CO2: 450 ppm; high CO2: 700 ppm) on the uptake and translocation of sodium chloride (NaCl, 0.0, 0.2, 0.6, and 1.1 g Na/L) and cadmium nitrate (Cd(NO3)2·4H2O, 0.0, 0.2, 1.8, and 5.4 mg Cd/L) by rice seedlings. The results indicated that Cd and Na exposure significantly (P< 0.05) inhibited plant growth, but T2 and medium/high CO2 alleviated the effects of Cd and Na on plant growth. Neither significant synergistic nor antagonistic effects of Cd and Na were observed, particularly not at T1 or high CO2. At increasing temperatures, relative growth rates increased despite higher concentrations of Cd and Na in both rice roots and shoots. Similarly, higher CO2 stimulated the growth rate but resulted in significantly lower concentrations of Na, while the Cd concentration was highest at medium CO2. Coexposure experiments suggested that the concentration of Cd in roots slightly declined with additional Na and more at T2. Overall, our preliminary study suggested that global climate change may alter the distribution of mineral and toxic elements in rice plants as well as the tolerance of the plants.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Qing Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Stefan Trapp, ; Xiao-Zhang Yu,
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, China
- *Correspondence: Stefan Trapp, ; Xiao-Zhang Yu,
| |
Collapse
|
11
|
Suzuki Y, Konno Y, Takegahara-Tamakawa Y, Miyake C, Makino A. Effects of suppression of chloroplast phosphoglycerate kinase on photosynthesis in rice. PHOTOSYNTHESIS RESEARCH 2022; 153:83-91. [PMID: 35635654 DOI: 10.1007/s11120-022-00923-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
As chloroplast phosphoglycerate kinase (cpPGK) is one of the enzymes which has the highest capacity among the Calvin-Benson cycle enzymes, it has not been regarded as a determinant for photosynthetic capacity. However, it was reported that the rate of CO2 assimilation decreased under high irradiance and normal [CO2] levels in the Arabidopsis cpPGK-knockdown mutant, implying that cpPGK has a control over photosynthetic capacity at a normal [CO2] level. In the present study, the contribution of cpPGK to photosynthetic capacity was evaluated in transgenic rice plants with decreased amounts of cpPGK protein under high irradiance and various [CO2] levels. The gene encoding cpPGK was suppressed using RNA interference techniques. Two lines of transgenic plants, Pi3 and Pi5, in which the amount of cpPGK protein decreased to 21% and 76% of that in wild-type plants, respectively, were obtained. However, there was no substantial difference in the rates of CO2 assimilation between wild-type and transgenic plants. The rates of CO2 assimilation decreased only slightly at elevated [CO2] levels in the transgenic line Pi3 and did not differ between wild-type plants and the transgenic line Pi5, irrespective of [CO2] level. These results clearly indicate that cpPGK does not have a strong control over photosynthetic capacity at various [CO2] levels in rice.
Collapse
Affiliation(s)
- Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| | - Yume Konno
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | | | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572, Japan
| |
Collapse
|
12
|
Abstract
Multiple proof-of-principle experiments and successful field trials have demonstrated that engineering photosynthesis is a viable strategy for improving crop yields. Advances to engineering technologies have accelerated efforts to improve photosynthesis, generating a large volume of published literature: this Review therefore aims to highlight the most promising results from the period February 2021 to January 2022. Recent research has demonstrated the importance of understanding the impact of changing climates on photosynthesis to ensure that proposed engineering strategies are resilient to climate change. Encouragingly, there have been several reports of strategies that have benefits at temperatures higher than current ambient conditions. There has also been success in engineering synthetic bypass pathways, providing support for the feasibility of a synthetic biology approach. Continued developments in all areas of engineering photosynthesis will be necessary for sustainably securing sufficient crop yields for the future. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie L. Johnson
- Department of Plant Sciences, University of Oxford,Oxford, OX1 3RB,UK
| |
Collapse
|
13
|
Ranjan A, Rajput VD, Kumari A, Mandzhieva SS, Sushkova S, Prazdnova EV, Zargar SM, Raza A, Minkina T, Chung G. Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities. PLANTS (BASEL, SWITZERLAND) 2022; 11:692. [PMID: 35270162 PMCID: PMC8912566 DOI: 10.3390/plants11050692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/05/2023]
Abstract
The "Zero Hunger" goal is one of the key Sustainable Development Goals (SDGs) of the United Nations. Therefore, improvements in crop production have always been a prime objective to meet the demands of an ever-growing population. In the last decade, studies have acknowledged the role of photosynthesis augmentation and enhancing nutrient use efficiency (NUE) in improving crop production. Recently, the applications of nanobionics in crop production have given hope with their lucrative properties to interact with the biological system. Nanobionics have significantly been effective in modulating the photosynthesis capacity of plants. It is documented that nanobionics could assist plants by acting as an artificial photosynthetic system to improve photosynthetic capacity, electron transfer in the photosystems, and pigment content, and enhance the absorption of light across the UV-visible spectrum. Smart nanocarriers, such as nanobionics, are capable of delivering the active ingredient nanocarrier upon receiving external stimuli. This can markedly improve NUE, reduce wastage, and improve cost effectiveness. Thus, this review emphasizes the application of nanobionics for improving crop yield by the two above-mentioned approaches. Major concerns and future prospects associated with the use of nanobionics are also deliberated concisely.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Saglara S. Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Evgenya V. Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar 190025, India;
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
14
|
Suzuki Y, Ishiyama K, Yoon DK, Takegahara-Tamakawa Y, Kondo E, Suganami M, Wada S, Miyake C, Makino A. Suppression of chloroplast triose phosphate isomerase evokes inorganic phosphate-limited photosynthesis in rice. PLANT PHYSIOLOGY 2022; 188:1550-1562. [PMID: 34893891 PMCID: PMC8896644 DOI: 10.1093/plphys/kiab576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
The availability of inorganic phosphate (Pi) for ATP synthesis is thought to limit photosynthesis at elevated [CO2] when Pi regeneration via sucrose or starch synthesis is limited. We report here another mechanism for the occurrence of Pi-limited photosynthesis caused by insufficient capacity of chloroplast triose phosphate isomerase (cpTPI). In cpTPI-antisense transgenic rice (Oryza sativa) plants with 55%-86% reductions in cpTPI content, CO2 sensitivity of the rate of CO2 assimilation (A) decreased and even reversed at elevated [CO2]. The pool sizes of the Calvin-Benson cycle metabolites from pentose phosphates to 3-phosphoglycerate increased at elevated [CO2], whereas those of ATP decreased. These phenomena are similar to the typical symptoms of Pi-limited photosynthesis, suggesting sufficient capacity of cpTPI is necessary to prevent the occurrence of Pi-limited photosynthesis and that cpTPI content moderately affects photosynthetic capacity at elevated [CO2]. As there tended to be slight variations in the amounts of total leaf-N depending on the genotypes, relationships between A and the amounts of cpTPI were examined after these parameters were expressed per unit amount of total leaf-N (A/N and cpTPI/N, respectively). A/N at elevated [CO2] decreased linearly as cpTPI/N decreased before A/N sharply decreased, owing to further decreases in cpTPI/N. Within this linear range, decreases in cpTPI/N by 80% led to decreases up to 27% in A/N at elevated [CO2]. Thus, cpTPI function is crucial for photosynthesis at elevated [CO2].
Collapse
Affiliation(s)
- Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Dong-Kyung Yoon
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | | | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
15
|
Takagi D, Ishiyama K, Suganami M, Ushijima T, Fujii T, Tazoe Y, Kawasaki M, Noguchi K, Makino A. Manganese toxicity disrupts indole acetic acid homeostasis and suppresses the CO 2 assimilation reaction in rice leaves. Sci Rep 2021; 11:20922. [PMID: 34686733 PMCID: PMC8536708 DOI: 10.1038/s41598-021-00370-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the essentiality of Mn in terrestrial plants, its excessive accumulation in plant tissues can cause growth defects, known as Mn toxicity. Mn toxicity can be classified into apoplastic and symplastic types depending on its onset. Symplastic Mn toxicity is hypothesised to be more critical for growth defects. However, details of the relationship between growth defects and symplastic Mn toxicity remain elusive. In this study, we aimed to elucidate the molecular mechanisms underlying symplastic Mn toxicity in rice plants. We found that under excess Mn conditions, CO2 assimilation was inhibited by stomatal closure, and both carbon anabolic and catabolic activities were decreased. In addition to stomatal dysfunction, stomatal and leaf anatomical development were also altered by excess Mn accumulation. Furthermore, indole acetic acid (IAA) concentration was decreased, and auxin-responsive gene expression analyses showed IAA-deficient symptoms in leaves due to excess Mn accumulation. These results suggest that excessive Mn accumulation causes IAA deficiency, and low IAA concentrations suppress plant growth by suppressing stomatal opening and leaf anatomical development for efficient CO2 assimilation in leaves.
Collapse
Affiliation(s)
- Daisuke Takagi
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Keiki Ishiyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Mao Suganami
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.443549.b0000 0001 0603 1148Present Address: Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296 Japan
| | - Tomokazu Ushijima
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Takeshi Fujii
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Youshi Tazoe
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.505732.60000 0004 6417 4827Present Address: Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Niigata 959-2702 Japan
| | - Michio Kawasaki
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Ko Noguchi
- grid.410785.f0000 0001 0659 6325Department of Applied Life Science, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 Japan
| | - Amane Makino
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| |
Collapse
|
16
|
Wijewardene I, Shen G, Zhang H. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. STRESS BIOLOGY 2021; 1:2. [PMID: 37676541 PMCID: PMC10429496 DOI: 10.1007/s44154-021-00002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 09/08/2023]
Abstract
With the rapid growth of world population, it is essential to increase agricultural productivity to feed the growing population. Over the past decades, many methods have been used to increase crop yields. Despite the success in boosting the crop yield through these methods, global food production still needs to be increased to be on par with the increasing population and its dynamic consumption patterns. Additionally, given the prevailing environmental conditions pertaining to the global temperature increase, heat stress will likely be a critical factor that negatively affects plant biomass and crop yield. One of the key elements hindering photosynthesis and plant productivity under heat stress is the thermo-sensitivity of the Rubisco activase (RCA), a molecular chaperone that converts Rubisco back to active form after it becomes inactive. It would be an attractive and practical strategy to maintain photosynthetic activity under elevated temperatures by enhancing the thermo-stability of RCA. In this context, this review discusses the need to improve the thermo-tolerance of RCA under current climatic conditions and to further study RCA structure and regulation, and its limitations at elevated temperatures. This review summarizes successful results and provides a perspective on RCA research and its implication in improving crop yield under elevated temperature conditions in the future.
Collapse
Affiliation(s)
- Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|