1
|
Zambonini D, Savi T, Rosner S, Petit G. Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1414448. [PMID: 38988629 PMCID: PMC11234846 DOI: 10.3389/fpls.2024.1414448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Introduction Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.
Collapse
Affiliation(s)
- Dario Zambonini
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Giai Petit
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| |
Collapse
|
2
|
Paligi SS, Lichter J, Kotowska M, Schwutke RL, Audisio M, Mrak K, Penanhoat A, Schuldt B, Hertel D, Leuschner C. Water status dynamics and drought tolerance of juvenile European beech, Douglas fir and Norway spruce trees as dependent on neighborhood and nitrogen supply. TREE PHYSIOLOGY 2024; 44:tpae044. [PMID: 38662576 DOI: 10.1093/treephys/tpae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.
Collapse
Affiliation(s)
- Sharath S Paligi
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Jens Lichter
- Chair of Statistics, University of Goettingen, Humboldtallee 3, 37073 Goettingen, Germany
| | - Martyna Kotowska
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, 4-6 Eastern Road Macquarie Park NSW 2109, Sydney, Australia
| | - Rebecca L Schwutke
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Michela Audisio
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, D-37077 Goettingen, Germany
| | - Klara Mrak
- Soil Science of Temperate Ecosystems, University of Goettingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Alice Penanhoat
- Department of Spatial Structures and Digitization of Forests, University of Goettingen, Büsgenweg 1, 37077 Goettingen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Street 7, 01737 Tharandt, Germany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
3
|
Knüver T, Bär A, Ganthaler A, Gebhardt T, Grams TEE, Häberle K, Hesse BD, Losso A, Tomedi I, Mayr S, Beikircher B. Recovery after long-term summer drought: Hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1240-1253. [PMID: 35611757 PMCID: PMC10084041 DOI: 10.1111/plb.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to increase the frequency and intensity of summer droughts. Sufficient drought resistance, the ability to acclimate to and/or recover after drought, is thus crucial for forest tree species. However, studies on the hydraulics of mature trees during and after drought in natura are scarce. In this study, we analysed trunk water content (electrical resistivity: ER) and further hydraulic (water potential, sap flow density, specific hydraulic conductivity, vulnerability to embolism) as well as wood anatomical traits (tree ring width, conduit diameter, conduit wall reinforcement) of drought-stressed (artificially induced summer drought via throughfall-exclusion) and unstressed Picea abies and Fagus sylvatica trees. In P. abies, ER indicated a strong reduction in trunk water content after 5 years of summer drought, corresponding to significantly lower pre-dawn leaf water potential and xylem sap flow density. Vulnerability to embolism tended to be higher in drought-stressed trees. In F. sylvatica, only small differences between drought-stressed and control trees were observed. Re-watering led to a rapid increase in water potentials and xylem sap flow of both drought-stressed trees, and to increased growth rates in the next growing season. ER analyses revealed lower trunk water content in P. abies trees growing on throughfall-exclusion plots even 1 year after re-watering, indicating a limited capacity to restore internal water reserves. Results demonstrated that P. abies is more susceptible to recurrent summer drought than F. sylvatica, and can exhibit long-lasting and pronounced legacy effects in trunk water reserves.
Collapse
Affiliation(s)
- T. Knüver
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Bär
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Ganthaler
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - T. Gebhardt
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - T. E. E. Grams
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - K.‐H. Häberle
- Technical University of MunichSchool of Life SciencesChair of Restoration EcologyFreisingGermany
| | - B. D. Hesse
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - A. Losso
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondAustralia
| | - I. Tomedi
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - S. Mayr
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - B. Beikircher
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Johnson DM, Katul G, Domec J. Catastrophic hydraulic failure and tipping points in plants. PLANT, CELL & ENVIRONMENT 2022; 45:2231-2266. [PMID: 35394656 PMCID: PMC9544843 DOI: 10.1111/pce.14327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/12/2023]
Abstract
Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to 'catastrophe theory' in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell-wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed.
Collapse
Affiliation(s)
- Daniel M. Johnson
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Gabriel Katul
- Department of Civil and Environmental EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - Jean‐Christophe Domec
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Department of ForestryBordeaux Sciences Agro, UMR INRAE‐ISPA 1391GradignanFrance
| |
Collapse
|
5
|
Losso A, Bär A, Unterholzner L, Bahn M, Mayr S. Branch water uptake and redistribution in two conifers at the alpine treeline. Sci Rep 2021; 11:22560. [PMID: 34799592 PMCID: PMC8604952 DOI: 10.1038/s41598-021-00436-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
During winter, conifers at the alpine treeline suffer dramatic losses of hydraulic conductivity, which are successfully recovered during late winter. Previous studies indicated branch water uptake to support hydraulic recovery. We analyzed water absorption and redistribution in Picea abies and Larix decidua growing at the treeline by in situ exposure of branches to δ2H-labelled water. Both species suffered high winter embolism rates (> 40-60% loss of conductivity) and recovered in late winter (< 20%). Isotopic analysis showed water to be absorbed over branches and redistributed within the crown during late winter. Labelled water was redistributed over 425 ± 5 cm within the axes system and shifted to the trunk, lower and higher branches (tree height 330 ± 40 cm). This demonstrated relevant branch water uptake and re-distribution in treeline conifers. The extent of water absorption and re-distribution was species-specific, with L. decidua showing higher rates. In natura, melting snow might be the prime source for absorbed and redistributed water, enabling embolism repair and restoration of water reservoirs prior to the vegetation period. Pronounced water uptake in the deciduous L. decidua indicated bark to participate in the process of water absorption.
Collapse
Affiliation(s)
- Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | | | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| |
Collapse
|