1
|
Liu L, Li C, Liang F, Han S, Li S, Yang C, Liu Y. Global characterization of GH11 family xylanases genes in Neostagonosporella sichuanensis and functional analysis of Nsxyn1 and Nsxyn2. Front Microbiol 2024; 15:1507998. [PMID: 39640849 PMCID: PMC11618621 DOI: 10.3389/fmicb.2024.1507998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Rhombic-spot disease, caused mainly by Neostagonosporella sichuanensis, significantly impacts the yield and quality of fishscale bamboo (Phyllostachys heteroclada). Xylanases are essential for pathogenic fungi infection, yet their specific functions in the physiology and pathogenicity of N. sichuanensis remain unclear. Here, we characterized three xylanase proteins with glycosyl hydrolase 11 domains from the N. sichuanensis SICAUCC 16-0001 genome and examined the function of Nsxyn1 and Nsxyn2. Purified Nsxyn1 and Nsxyn2 proteins displayed specific xylanase activity in vitro and induced cell death in Nicotiana benthamiana, independent of their enzymatic function. Both proteins possessed signal peptides and were confirmed as secreted proteins using a yeast secretion system. Subcellular localization revealed that Nsxyn1 and Nsxyn2 localized in both the cytoplasm and nucleus and can trigger cell death in N. benthamiana through Agrobacterium tumefaciens-mediated transient transformation. qRT-PCR results showed notable upregulation of Nsxyn1 and Nsxyn2 during infection, with Nsxyn1 exhibiting an 80-fold increase at 15 days post-inoculation. Deletion of Nsxyn1 and Nsxyn2 in N. sichuanensis impaired xylan degradation, adaptation to osmotic and oxidative stress, and pathogenic full virulence. Deletion of Nsxyn1 notably slowed fungal growth and reduced spore production, whereas only a reduction in microconidial production was observed in Nsxyn2 mutants. Complementation of Nsxyn1 and Nsxyn2 only partially restored these phenotypic defects in the ∆Nsxyn1 and ∆Nsxyn2 mutants. These findings suggest that Nsxyn1 and Nsxyn2 contribute to N. sichuanensis virulence and induced plant defense responses, providing new insights into the function of xylanases in the interaction between fishscale bamboo and N. sichuanensis.
Collapse
Affiliation(s)
- Lijuan Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chengsong Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang Liang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Li Y, Li Y, Yang Q, Song S, Zhang Y, Zhang X, Sun J, Liu F, Li Y. Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. J Fungi (Basel) 2024; 10:773. [PMID: 39590692 PMCID: PMC11595654 DOI: 10.3390/jof10110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cotton is often threatened by Verticillium wilt caused by V. dahliae. Understanding the molecular mechanism of V. dahlia-cotton interaction is important for the prevention of this disease. To analyze the transcriptome profiles in V. dahliae and cotton simultaneously, the strongly pathogenic strain Vd592 was inoculated into cotton, and the infected cotton roots at 36 h and 3 d post infection were subjected to dual RNA-seq analysis. For the V. dahliae, transcriptomic analysis identified 317 differentially expressed genes (DEGs) encoding classical secreted proteins, which were up-regulated at least at one time point during infection. The 317 DEGs included 126 carbohydrate-active enzyme (CAZyme) and 108 small cysteine-rich protein genes. A pectinesterase gene (VDAG_01782) belonging to CAZyme, designated as VdPE1, was selected for functional validation. VdPE1 silencing by HIGS (host-induced gene silencing) resulted in reduced disease symptoms and the increased resistance of cotton to V. dahliae. For the cotton, transcriptomic analysis found that many DEGs involved in well-known disease resistance pathways (flavonoid biosynthesis, plant hormone signaling, and plant-pathogen interaction) as well as PTI (pattern-triggered immunity) and ETI (effector-triggered immunity) processes were significantly down-regulated in infected cotton roots. The dual RNA-seq data thus potentially connected the genes encoding secreted proteins to the pathogenicity of V. dahliae, and the genes were involved in some disease resistance pathways and PTI and ETI processes for the susceptibility of cotton to V. dahliae. These findings are helpful in the further characterization of candidate genes and breeding resistant cotton varieties via genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China; (Y.L.); (Y.L.); (Q.Y.); (S.S.); (Y.Z.); (X.Z.); (J.S.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China; (Y.L.); (Y.L.); (Q.Y.); (S.S.); (Y.Z.); (X.Z.); (J.S.)
| |
Collapse
|
3
|
Sun L, Li X, Zhong J, Wang Y, Li B, Ye Z, Zhang J. Recognition of a Fungal Effector Potentiates Pathogen-Associated Molecular Pattern-Triggered Immunity in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407787. [PMID: 39488762 DOI: 10.1002/advs.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Plants are equipped with multi-layered immune systems that recognize pathogen-derived elicitors to activate immunity. Verticillium dahliae is a soil-borne fungus that infects a broad range of plants and causes devastating wilt disease. The mechanisms underlying immune recognition between plants and V. dahliae remain elusive. Here, a V. dahliae secretory protein, elicitor of plant defense gene (VdEPD1), acts as an elicitor that triggers defense responses in both Nicotiana benthamiana and cotton plants is identified. Targeted gene deletion of VdEPD1 enhances V. dahliae virulence in plants. Expression of VdEPD1 triggers the accumulation of reactive oxygen species (ROS) and the activation of cell death in cotton plants. Gossypium barbadense EPD1-interacting receptor-like cytoplasmic kinase (GbEIR5A) and GbEIR5D interact with VdEPD1. Silencing of GbEIR5A/D significantly impairs VdEPD1-triggered cell death in cotton plants, indicating the contribution of GbEIR5A/D to VdEPD1-activated effector-triggered immunity (ETI). VdEPD1 stimulates the expression of GbEIR5A and GbEIR5D in cotton plants. Interestingly, cotton plants with silenced GbEIR5A/D genes exhibit compromised pathogen-associated molecular patterns (PAMPs)-triggered ROS accumulation, whereas overexpression of GbEIR5A or GbEIR5D enhances PAMP-induced ROS. These findings indicate that recognition of VdEPD1 potentiates GbEIRs to enhance cotton PAMP-triggered immunity (PTI), uncovering a cooperative interplay of PTI and ETI in cotton.
Collapse
Affiliation(s)
- Lifan Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangguo Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajie Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baiyang Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziqin Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Shan Y, Wang D, Zhao FH, Song J, Zhu H, Li Y, Zhang XJ, Dai XF, Han D, Chen JY. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae. BMC Biol 2024; 22:116. [PMID: 38764012 PMCID: PMC11103837 DOI: 10.1186/s12915-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.
Collapse
Affiliation(s)
- Yujia Shan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fu-Hua Zhao
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Yue Li
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Xiao-Jun Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, 100081, China.
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
6
|
Situ J, Song Y, Feng D, Wan L, Li W, Ning Y, Huang W, Li M, Xi P, Deng Y, Jiang Z, Kong G. Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling. PLANT PHYSIOLOGY 2024; 194:1779-1793. [PMID: 38039157 DOI: 10.1093/plphys/kiad638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.
Collapse
Affiliation(s)
- Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dinan Feng
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lang Wan
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yue Ning
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Weixiong Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Liu X, Zhao H, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Jiang D, Cheng J. A Glycosyl Hydrolase 5 Family Protein Is Essential for Virulence of Necrotrophic Fungi and Can Suppress Plant Immunity. Int J Mol Sci 2024; 25:2693. [PMID: 38473940 DOI: 10.3390/ijms25052693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Phytopathogenic fungi normally secrete large amounts of CWDEs to enhance infection of plants. In this study, we identified and characterized a secreted glycosyl hydrolase 5 family member in Sclerotinia sclerotiorum (SsGH5, Sclerotinia sclerotiorum Glycosyl Hydrolase 5). SsGH5 was significantly upregulated during the early stages of infection. Knocking out SsGH5 did not affect the growth and acid production of S. sclerotiorum but resulted in decreased glucan utilization and significantly reduced virulence. In addition, Arabidopsis thaliana expressing SsGH5 became more susceptible to necrotrophic pathogens and basal immune responses were inhibited in these plants. Remarkably, the lost virulence of the ΔSsGH5 mutants was restored after inoculating onto SsGH5 transgenic Arabidopsis. In summary, these results highlight that S. sclerotiorum suppresses the immune responses of Arabidopsis through secreting SsGH5, and thus exerts full virulence for successful infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Qiu P, Zheng B, Yuan H, Yang Z, Lindsey K, Wang Y, Ming Y, Zhang L, Hu Q, Shaban M, Kong J, Zhang X, Zhu L. The elicitor VP2 from Verticillium dahliae triggers defence response in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:497-511. [PMID: 37883523 PMCID: PMC10826990 DOI: 10.1111/pbi.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Zhaoguang Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | | | - Yan Wang
- College of Plant Protection, Nanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Department of Plant Breeding and GeneticsUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural SciencesUrumqiPeople's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| |
Collapse
|
9
|
Yang J, Liu M, Jiao Y, Guo HS, Shan CM, Wang H. An Efficient Homologous Recombination-Based In Situ Protein-Labeling Method in Verticillium dahliae. BIOLOGY 2024; 13:81. [PMID: 38392300 PMCID: PMC10886240 DOI: 10.3390/biology13020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Accurate determination of protein localization, levels, or protein-protein interactions is pivotal for the study of their function, and in situ protein labeling via homologous recombination has emerged as a critical tool in many organisms. While this approach has been refined in various model fungi, the study of protein function in most plant pathogens has predominantly relied on ex situ or overexpression manipulations. To dissect the molecular mechanisms of development and infection for Verticillium dahliae, a formidable plant pathogen responsible for vascular wilt diseases, we have established a robust, homologous recombination-based in situ protein labeling strategy in this organism. Utilizing Agrobacterium tumefaciens-mediated transformation (ATMT), this methodology facilitates the precise tagging of specific proteins at their C-termini with epitopes, such as GFP and Flag, within the native context of V. dahliae. We demonstrate the efficacy of our approach through the in situ labeling of VdCf2 and VdDMM2, followed by subsequent confirmation via subcellular localization and protein-level analyses. Our findings confirm the applicability of homologous recombination for in situ protein labeling in V. dahliae and suggest its potential utility across a broad spectrum of filamentous fungi. This labeling method stands to significantly advance the field of functional genomics in plant pathogenic fungi, offering a versatile and powerful tool for the elucidation of protein function.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengran Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Jiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Bhagat N, Mansotra R, Patel K, Ambardar S, Vakhlu J. Molecular warfare between pathogenic Fusarium oxysporum R1 and host Crocus sativus L. unraveled by dual transcriptomics. PLANT CELL REPORTS 2024; 43:42. [PMID: 38246927 DOI: 10.1007/s00299-023-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Karan Patel
- DNA Xperts Private Limited, Noida, 201301, India
| | - Sheetal Ambardar
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
11
|
Chen L, Ma X, Sun T, Zhu QH, Feng H, Li Y, Liu F, Zhang X, Sun J, Li Y. VdPT1 Encoding a Neutral Trehalase of Verticillium dahliae Is Required for Growth and Virulence of the Pathogen. Int J Mol Sci 2023; 25:294. [PMID: 38203466 PMCID: PMC10778863 DOI: 10.3390/ijms25010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Verticillum dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease. We previously found a trehalase-encoding gene (VdPT1) in V. dahliae being significantly up-regulated after sensing root exudates from a susceptible cotton variety. In this study, we characterized the function of VdPT1 in the growth and virulence of V. dahliae using its deletion-mutant strains. The VdPT1 deletion mutants (ΔVdPT1) displayed slow colony expansion and mycelial growth, reduced conidial production and germination rate, and decreased mycelial penetration ability and virulence on cotton, but exhibited enhanced stress resistance, suggesting that VdPT1 is involved in the growth, pathogenesis, and stress resistance of V. dahliae. Host-induced silencing of VdPT1 in cotton reduced fungal biomass and enhanced cotton resistance against V. dahliae. Comparative transcriptome analysis between wild-type and mutant identified 1480 up-regulated and 1650 down-regulated genes in the ΔVdPT1 strain. Several down-regulated genes encode plant cell wall-degrading enzymes required for full virulence of V. dahliae to cotton, and down-regulated genes related to carbon metabolism, DNA replication, and amino acid biosynthesis seemed to be responsible for the decreased growth of the ΔVdPT1 strain. In contrast, up-regulation of several genes related to glycerophospholipid metabolism in the ΔVdPT1 strain enhanced the stress resistance of the mutated strain.
Collapse
Affiliation(s)
- Lihua Chen
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xiaohu Ma
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia;
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| |
Collapse
|
12
|
Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y, Liu S, Long L, Gu J, Zhang X, Lindsey K, Gao W, Wu H, Zhu L. Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat Commun 2023; 14:7392. [PMID: 37968319 PMCID: PMC10651998 DOI: 10.1038/s41467-023-43192-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiayue Li
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianmin Shao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Qi
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Yue
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jiangjiang Gu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- School of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
14
|
Yang H, Weng P, Liu Z, Yan Y, Tang L, Li J, Mao Y, Mo Z. Glycoside hydrolase family 5 gene Pp07886 in Pythium porphyrae: Identification, characterization, expression pattern, and activation of the host immunity. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
VdGAL4 Modulates Microsclerotium Formation, Conidial Morphology, and Germination To Promote Virulence in Verticillium dahliae. Microbiol Spectr 2023; 11:e0351522. [PMID: 36475739 PMCID: PMC9927093 DOI: 10.1128/spectrum.03515-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.
Collapse
|
16
|
Verticillium dahliae Effector VdCE11 Contributes to Virulence by Promoting Accumulation and Activity of the Aspartic Protease GhAP1 from Cotton. Microbiol Spectr 2023; 11:e0354722. [PMID: 36656049 PMCID: PMC9927275 DOI: 10.1128/spectrum.03547-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Verticillium dahliae is a soilborne plant fungal pathogen that causes Verticillium wilt, a disease that reduces the yields of many economically important crops. Despite its worldwide distribution and harmful impacts, much remains unknown regarding how the numerous effectors of V. dahliae modulate plant immunity. Here, we identified the intracellular effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana to counter leaf pathogens such as Sclerotinia sclerotiorum and Botrytis cinerea. VdCE11 also contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity, since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further, VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. Taken together, these results indicate a novel mechanism regulating virulence whereby the secreted effector VdCE11 increases cotton susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1. IMPORTANCE Verticclium dahliae is a plant fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, we identified a V. dahliae effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana. Meanwhile, VdCE11 contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further research showed that VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. These results suggested that a novel mechanism regulating virulence whereby VdCE11 increases susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1 in the host.
Collapse
|
17
|
Lv J, Liu S, Zhang X, Zhao L, Zhang T, Zhang Z, Feng Z, Wei F, Zhou J, Zhao R, Feng H, Zhu H, Li C, Zhang Y. VdERG2 was involved in ergosterol biosynthesis, nutritional differentiation and virulence of Verticillium dahliae. Curr Genet 2023; 69:25-40. [PMID: 36416932 DOI: 10.1007/s00294-022-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tao Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhigang Zhang
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruiyuan Zhao
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Caihong Li
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China.
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
18
|
Wang D, Liu E, Liu H, Jin X, Niu C, Gao Y, Su X. A droplet digital PCR assay for detection and quantification of Verticillium nonalfalfae and V. albo-atrum. Front Cell Infect Microbiol 2023; 12:1110684. [PMID: 36710974 PMCID: PMC9874294 DOI: 10.3389/fcimb.2022.1110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Verticillium nonalfalfae and V. albo-atrum are notorious pathogenic fungi that cause a destructive vascular disease called Verticillium wilt worldwide. Thus, timely and quantitative monitoring of fungal progression is highly desirable for early diagnosis and risk assessment. In this study, we developed a droplet digital polymerase chain reaction (ddPCR) assay to detect and quantify V. nonalfalfae and V. albo-atrum. The performance of this assay was validated in comparison with that of a quantitative real-time polymerase chain reaction (qPCR) assay. The standard curve analysis of the ddPCR assay showed good linearity. The ddPCR assay indicated similar detection sensitivity to that of qPCR on pure genomic DNA, while it enhanced the positive rate for low-abundance fungi, especially in alfalfa stems. Receiver operating characteristic analysis revealed that ddPCR provided superior diagnostic performance on field tissues compared to qPCR, and the area under curve values were 0.94 and 0.90 for alfalfa roots and stems, respectively. Additionally, the quantitative results of the two methods were highly concordant (roots: R2 = 0.91; stems: R2 = 0.76); however, the concentrations determined by ddPCR were generally higher than those determined by qPCR. This discrepancy was potentially caused by differing amplification efficiencies for qPCR between cultured and field samples. Furthermore, the ddPCR assays appreciably improved quantitative precision, as reflected by lower coefficients of variation. Overall, the ddPCR method enables sensitive detection and accurate quantification of V. nonalfalfae and V. albo-atrum, providing a valuable tool for evaluating disease progression and enacting effective disease control.
Collapse
Affiliation(s)
- Di Wang
- 1Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Enliang Liu
- 2Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyang Liu
- 3Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xi Jin
- 4Hebei Technology Innovation Center for Green Management of Soil-Borne Diseases, Baoding University, Hebei, China
| | - Chunyan Niu
- 1Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yunhua Gao
- 1Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yunhua Gao, ; Xiaofeng Su,
| | - Xiaofeng Su
- 5Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Yunhua Gao, ; Xiaofeng Su,
| |
Collapse
|
19
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
20
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
21
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
22
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
23
|
Blaze a New Trail: Plant Virus Xylem Exploitation. Int J Mol Sci 2022; 23:ijms23158375. [PMID: 35955508 PMCID: PMC9368924 DOI: 10.3390/ijms23158375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Viruses are trailblazers in hijacking host systems for their own needs. Plant viruses have been shown to exploit alternative avenues of translocation within a host, including a challenging route through the xylem, to expand their niche and establish systemic spread, despite apparent host-imposed obstacles. Recent findings indicate that plant viruses from many families could successfully hack xylem cells in a broad range of plant hosts, including herbaceous and perennial woody plants. Similar to virus-related structures present in the phloem, virus particles and membrane-containing viral replication complexes are often observed in the xylem. Except for a few single-stranded DNA viruses in the family Geminiviridae and a negative-sense single-stranded RNA rhabdovirus, Lettuce necrotic yellows virus, the majority of the viruses that were detected in the xylem belong to the group of positive-sense RNA viruses. The diversity of the genome organization and virion morphology of those viruses indicates that xylem exploitation appears to be a widely adapted strategy for plant viruses. This review outlines the examples of the xylem-associated viruses and discusses factors that regulate virus inhabitation of the xylem as well as possible strategies of virus introduction into the xylem. In some cases, plant disease symptoms have been shown to be closely related to virus colonization of the xylem. Inhibiting viral xylem invasion could raise potential attractive approaches to manage virus diseases. Therefore, the identification of the host genes mediating virus interaction with the plant xylem tissue and understanding the underlying mechanisms call for more attention.
Collapse
|
24
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
25
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
26
|
Zhu W, Yu M, Xu R, Bi K, Yu S, Xiong C, Liu Z, Sharon A, Jiang D, Wu M, Gu Q, Gong L, Chen W, Wei W. Botrytis cinerea BcSSP2 protein is a late infection phase, cytotoxic effector. Environ Microbiol 2022; 24:3420-3435. [PMID: 35170184 DOI: 10.1111/1462-2920.15919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/14/2023]
Abstract
Botrytis cinerea is a broad-host-range necrotrophic phytopathogen responsible for serious diseases in leading crops. To facilitate infection, B. cinerea secretes a large number of effectors that induce plant cell death. In screening secretome data of B. cinerea during infection stage, we identified a phytotoxic protein (BcSSP2) that can also induce immune resistance in plants. BcSSP2 is a small, cysteine-rich protein without any known domains. Transient expression of BcSSP2 in leaves caused chlorosis that intensifies with time and eventually leads to death. Point mutations in eight of 10 cysteine residues abolished phytotoxicity, but residual toxic activity remained after heating treatment, suggesting contribution of unknown epitopes to protein phytotoxicity. The expression of bcssp2 was low during the first 36 h after inoculation and increased sharply upon transition to late infection stage. Deletion of bcssp2 did not cause statistically significant changes in lesions size on bean and tobacco leaves. Further analyses indicated that the phytotoxicity of BcSSP2 is negatively regulated by the receptor-like kinases BAK1 and SOBIR1. Collectively, our findings show that BcSSP2 is an effector protein that toxifies the host cells, but is also recognized by the plant immune system.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Mengxue Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Shuang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiongnan Gu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Ling Gong
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Weidong Chen
- Department of Plant Pathology/United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Wei Wei
- Department of Plant Pathology/United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
27
|
Zhang Y, Gao Y, Wang HL, Kan C, Li Z, Yang X, Yin W, Xia X, Nam HG, Li Z, Guo H. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. MOLECULAR PLANT 2021; 14:1901-1917. [PMID: 34303024 DOI: 10.1016/j.molp.2021.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|