1
|
Zhan X, Zhang F, Li N, Xu K, Wang X, Gao S, Yin Y, Yuan W, Chen W, Ren Z, Yao M, Wang F. CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3313. [PMID: 39683106 DOI: 10.3390/plants13233313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas have been recognized as powerful genome-editing tools in diverse eukaryotic species, including plants, and thus hold great promise for engineering virus resistance in plants. Nevertheless, further attention is required regarding various issues associated with applying new powerful technologies in the field. This mini-review focuses on the recent advances in using CRISPR/Cas9 and CRISPR/Cas13 systems to combat DNA and RNA viruses in plants. We explored the utility of CRISPR/Cas for targeting the viral genome and editing host susceptibility genes in plants. We also provide insights into the limitations and challenges of using CRISPR/Cas for plant virus interference and propose individual combinatorial solutions. In conclusion, CRISPR/Cas technology has the potential to offer innovative and highly efficient approaches for controlling viruses in important crops in the near future.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaodi Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weiling Yuan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weifang Chen
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiyong Ren
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
3
|
Wang X, Bai Y, Shen Z, Zhang X, Cai C, Qiao C, Jiang C, Cheng L, Liu D, Yang A. Genome-wide analysis of tobacco NtTOM1/TOM3 gene family and identification of NtTOM1a/ NtTOM3a response to tobacco mosaic virus. BMC PLANT BIOLOGY 2024; 24:942. [PMID: 39385089 PMCID: PMC11465672 DOI: 10.1186/s12870-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND TOBAMOVIRUS MULTIPLICATION 1 (TOM1) and its homolog TOBAMOVIRUS MULTIPLICATION 3 (TOM3) play a prominent role in the multiplication of tobacco mosaic virus (TMV) in higher plants. Although homologs of NtTOM1/TOM3 genes have been identified in several plant species, little is known about the characteristics and functions of NtTOM1/TOM3 at the genome-wide level in tobacco (Nicotiana tabacum L.). RESULTS In this study, we performed genome-wide identification and expression pattern analysis of the tobacco NtTOM1/TOM3 gene family. Twelve NtTOM1/TOM3 genes were identified and classified into four groups based on phylogenetic analysis. Sequence and conserved domain analyses showed that all these genes contained a specific DUF1084 domain. Expression pattern analysis showed that NtTOM1a, NtTOM1b, NtTOM1d, NtTOM3a, NtTOM3b, and NtTOM3d were induced by TMV at 1-, 3-, and 9 dpi, whereas the expression of other genes was not responsive to TMV at the early infection stage. TMV virion accumulation showed no obvious difference in either nttom1a or nttom3a mutants compared with the wild type. However, the virus propagation was significantly, but not completely, inhibited in the nttom1atom3a double mutant, indicating that other gene family members may function redundantly, such as NtTOM1b and NtTOM1d. In addition, overexpression of NtTOM1a or NtTOM3a also inhibited the TMV replication to some extent. CONCLUSIONS The present study performed genome-wide analysis of the NtTOM1/TOM3 gene family in tobacco, and identified NtTOM1a and NtTOM3a as important genes involved in TMV multiplication based on functional analysis. These results provide a theoretical basis for further improving TMV resistance in tobacco.
Collapse
Affiliation(s)
- Xuebo Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Tobacco Science Research Institute of Guangdong Province, Shaoguan, 512029, Guangdong, China
| | - Yalin Bai
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhan Shen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xinyao Zhang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, 410007, China
| | - Changchun Cai
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chan Qiao
- Tobacco Research Institute of Mudanjiang, Harbin, 150076, China
| | - Caihong Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
Shawky A, Hatawsh A, Al-Saadi N, Farzan R, Eltawy N, Francis M, Abousamra S, Ismail YY, Attia K, Fakhouri AS, Abdelrahman M. Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2269. [PMID: 39204705 PMCID: PMC11360581 DOI: 10.3390/plants13162269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress.
Collapse
Affiliation(s)
- Abdelrahman Shawky
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Nabil Al-Saadi
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Nour Eltawy
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Mariz Francis
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Sara Abousamra
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Yomna Y. Ismail
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Abdulaziz S. Fakhouri
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohamed Abdelrahman
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| |
Collapse
|
5
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
6
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
7
|
Zhang H, Hu Q. TOM1 family conservation within the plant kingdom for tobacco mosaic virus accumulation. MOLECULAR PLANT PATHOLOGY 2023; 24:1385-1399. [PMID: 37443447 PMCID: PMC10576174 DOI: 10.1111/mpp.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A-TOM1-TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
9
|
Sardar A. Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR Genome Editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1260102. [PMID: 37841604 PMCID: PMC10570431 DOI: 10.3389/fpls.2023.1260102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Environmental changes and increasing population are major concerns for crop production and food security as a whole. To address this, researchers had focussed on the improvement of cereals and pulses and have made considerable progress till the beginning of this decade. However, cereals and pulses together, without vegetables and fruits, are inadequate to meet the dietary and nutritional demands of human life. Production of good quality vegetables and fruits is highly challenging owing to their perishable nature and short shelf life as well as abiotic and biotic stresses encountered during pre- and post-harvest. Genetic engineering approaches to produce good quality, to increase shelf life and stress-resistance, and to change the time of flowering and fruit ripening by introducing foreign genes to produce genetically modified crops were quite successful. However, several biosafety concerns, such as the risk of transgene-outcrossing, limited their production, marketing, and consumption. Modern genome editing techniques, like the CRISPR/Cas9 system, provide a perfect solution in this scenario, as it can produce transgene-free genetically edited plants. Hence, these genetically edited plants can easily satisfy the biosafety norms for crop production and consumption. This review highlights the potential of the CRISPR/Cas9 system for the successful generation of abiotic and biotic stress resistance and thereby improving the quality, yield, and overall productivity of vegetables and fruits.
Collapse
Affiliation(s)
- Atish Sardar
- Department of Botany, Jogesh Chandra Chaudhuri College, West Bengal, Kolkata, India
| |
Collapse
|
10
|
Spiegelman Z, Dinesh-Kumar SP. Breaking Boundaries: The Perpetual Interplay Between Tobamoviruses and Plant Immunity. Annu Rev Virol 2023; 10:455-476. [PMID: 37254097 DOI: 10.1146/annurev-virology-111821-122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses of the genus Tobamovirus cause significant economic losses in various crops. The emergence of new tobamoviruses such as the tomato brown rugose fruit virus (ToBRFV) poses a major threat to global agriculture. Upon infection, plants mount a complex immune response to restrict virus replication and spread, involving a multilayered defense system that includes defense hormones, RNA silencing, and immune receptors. To counter these defenses, tobamoviruses have evolved various strategies to evade or suppress the different immune pathways. Understanding the interactions between tobamoviruses and the plant immune pathways is crucial for the development of effective control measures and genetic resistance to these viruses. In this review, we discuss past and current knowledge of the intricate relationship between tobamoviruses and host immunity. We use this knowledge to understand the emergence of ToBRFV and discuss potential approaches for the development of new resistance strategies to cope with emerging tobamoviruses.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel;
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and Genome Center, College of Biological Sciences, University of California, Davis, California, USA
| |
Collapse
|
11
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Jogam P, Sandhya D, Alok A, Peddaboina V, Singh SP, Abbagani S, Zhang B, Allini VR. Editing of TOM1 gene in tobacco using CRISPR/Cas9 confers resistance to Tobacco mosaic virus. Mol Biol Rep 2023; 50:5165-5176. [PMID: 37119416 DOI: 10.1007/s11033-023-08440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species. METHODS AND RESULTS The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV. CONCLUSIONS CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.
Collapse
Affiliation(s)
- Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, 506009, Telangana, India
| | - Dulam Sandhya
- Department of Biotechnology, Kakatiya University, Warangal, 506009, Telangana, India
| | - Anshu Alok
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, 140306, Punjab, India
| | - Sadanandam Abbagani
- Department of Biotechnology, Kakatiya University, Warangal, 506009, Telangana, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | | |
Collapse
|
13
|
Shi Y, Yang X, Yang L, Li Q, Liu X, Han X, Gu Q, Li H, Chen L, Liu Y, Shi Y. Interaction between cucumber green mottle mosaic virus MP and CP promotes virus systemic infection. MOLECULAR PLANT PATHOLOGY 2023; 24:208-220. [PMID: 36528386 PMCID: PMC9923391 DOI: 10.1111/mpp.13287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The movement protein (MP) and coat protein (CP) of tobamoviruses play critical roles in viral cell-to-cell and long-distance movement, respectively. Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus. The functions of CGMMV MP and CP during viral infection remain largely unclear. Here, we show that CGMMV MP can interact with CP in vivo, and the amino acids at positions 79-128 in MP are vital for the MP-CP interaction. To confirm this finding, we mutated five conserved residues within the residue 79-128 region and six other conserved residues flanking this region, followed by in vivo interaction assays. The results showed that the conserved threonine residue at the position 107 in MP (MPT107 ) is important for the MP-CP interaction. Substitution of T107 with alanine (MPT107A ) delayed CGMMV systemic infection in Nicotiana benthamiana plants, but increased CGMMV local accumulation. Substitutions of another 10 conserved residues, not responsible for the MP-CP interaction, with alanine inhibited or abolished CGMMV systemic infection, suggesting that these 10 conserved residues are possibly required for the MP movement function through a CP-independent manner. Moreover, two movement function-associated point mutants (MPF17A and MPD97A ) failed to cause systemic infection in plants without impacting on the MP-CP interaction. Furthermore, we have found that co-expression of CGMMV MP and CP increased CP accumulation independent of the interaction. MP and CP interaction inhibits the salicylic acid-associated defence response at an early infection stage. Taken together, we propose that the suppression of host antiviral defence through the MP-CP interaction facilitates virus systemic infection.
Collapse
Affiliation(s)
- Ya‐Juan Shi
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xue Yang
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Ling‐Ling Yang
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Qing‐Lun Li
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xiao‐Min Liu
- Institute of Cereal and CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuangChina
| | - Xiao‐Yu Han
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Qin‐Sheng Gu
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Hong‐Lian Li
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Lin‐Lin Chen
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Yiqing Liu
- Guangdong Baiyun UniversityGuangzhouChina
| | - Yan Shi
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
14
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
15
|
Sánchez-Sánchez M, Carrillo-Tripp J, Aispuro-Hernández E, Quintana-Obregón EA, Martínez-Téllez MÁ. Understanding tobamovirus-plant interactions: implications for breeding resistance to tomato brown rugose fruit virus. JOURNAL OF PLANT PATHOLOGY 2023; 105:83-94. [PMCID: PMC9734318 DOI: 10.1007/s42161-022-01287-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 11/07/2024]
Abstract
The genus Tobamovirus comprises a group of single-stranded RNA viruses that affect a wide variety of vegetables of economic importance. Tobamoviruses express a series of proteins that interact with the plant’s cellular machinery, allowing viral infection; during incompatible interactions, active defense is mediated by host proteins encoded by resistance genes. The genes conferring viral resistance and tolerance in non-susceptible hosts have been studied for their ability to transfer desired resistance traits to different crops. The N gene from Nicotiana spp., the repertoire of Tm genes in Solanum spp., the L locus from Capsicum spp., and TOM genes are the most studied genetic sequences for understanding resistance to tobamoviruses. Through classical plant breeding and genetic engineering techniques, it has been possible to introgress these resistance genes (R ) into new species. However, new reports highlight the ability of tobamoviruses to overcome R -mediated defense. One of the most notorious recent cases is the tomato brown rugose fruit virus (ToBRFV). The main characteristic of ToBRFV is its capacity to overcome the resistance mediated by the Tm-2 2 gene, resulting in a limited repertoire of options to combat the virus. To defeat emerging viruses, it is necessary to apply the knowledge from other tobamoviruses-host relationships and use new technologies such as genome-wide association studies (GWAS) to understand and associate the architecture of resistance genes present in the Solanaceae family for the benefit of plant breeding. Although new genomic tools such as CRISPR systems open the possibility of coping with viral diseases, there are no commercial ToBRFV-resistant tomato varieties. Hence, the world’s leading seed suppliers compete to develop and bring these varieties to market.
Collapse
Affiliation(s)
- Mario Sánchez-Sánchez
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Jimena Carrillo-Tripp
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California México
| | - Emmanuel Aispuro-Hernández
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Eber Addí Quintana-Obregón
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Miguel Ángel Martínez-Téllez
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| |
Collapse
|
16
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
17
|
Rivera-Márquez K, Núñez-Muñoz LA, Calderón-Pérez B, De La Torre-Almaraz R, Vargas-Hernández BY, Ruiz-Medrano R, Xoconostle-Cázares B. Bioinformatic-based approach for mutagenesis of plant immune Tm-2 2 receptor to confer resistance against tomato brown rugose fruit virus (ToBRFV). FRONTIERS IN PLANT SCIENCE 2022; 13:984846. [PMID: 36247646 PMCID: PMC9562835 DOI: 10.3389/fpls.2022.984846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) plant immune receptors mediate the recognition and activation of defense signaling pathways in response to intra- and extracellular pathogens. Several NLR such as Tm-2 and Tm-22 have been introgressed into commercial solanaceous varieties to confer protection against different tobamoviruses. Particularly, Tm-22 was used during recent decades to confer resistance against tobacco mosaic virus, tomato mottle mosaic virus and tomato mosaic virus, which recognizes the viral movement protein (MP). However, tomato brown rugose fruit virus(ToBRFV), a novel tobamovirus, can avoid the protection conferred by Tm-22 due to the presence of key substitutions in the MP. The aim of this work was to identify the key amino acid residues involved in the interaction between Tm-22 and ToBRFV MP through bioinformatic analyses, and to identify potential Tm-22 mutations that could generate greater binding affinity. In silico 3D structure prediction, molecular docking, and computational affinity methods were performed. We predicted that R350, H384 and K385 Tm-22 residues are relevant for the interaction with MP, and two mutations (H384W and K385L) were identified as putative sites to increase the affinity of Tm-22 to the MP with the potential elicitation of resistance against ToBRFV.
Collapse
Affiliation(s)
- Karla Rivera-Márquez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Rodolfo De La Torre-Almaraz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | | | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
18
|
Kravchik M, Shnaider Y, Abebie B, Shtarkman M, Kumari R, Kumar S, Leibman D, Spiegelman Z, Gal‐On A. Knockout of SlTOM1 and SlTOM3 results in differential resistance to tobamovirus in tomato. MOLECULAR PLANT PATHOLOGY 2022; 23:1278-1289. [PMID: 35706371 PMCID: PMC9366062 DOI: 10.1111/mpp.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 05/15/2023]
Abstract
During tobamovirus-host coevolution, tobamoviruses developed numerous interactions with host susceptibility factors and exploited these interactions for replication and movement. The plant-encoded TOBAMOVIRUS MULTIPLICATION (TOM) susceptibility proteins interact with the tobamovirus replicase proteins and allow the formation of the viral replication complex. Here CRISPR/Cas9-mediated mutagenesis allowed the exploration of the roles of SlTOM1a, SlTOM1b, and SlTOM3 in systemic tobamovirus infection of tomato. Knockouts of both SlTOM1a and SlTOM3 in sltom1a/sltom3 plants resulted in an asymptomatic response to the infection with recently emerged tomato brown rugose fruit virus (ToBRFV). In addition, an accumulation of ToBRFV RNA and coat protein (CP) in sltom1a/sltom3 mutant plants was 516- and 25-fold lower, respectively, than in wild-type (WT) plants at 12 days postinoculation. In marked contrast, sltom1a/sltom3 plants were susceptible to previously known tomato viruses, tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), indicating that SlTOM1a and SlTOM3 are not essential for systemic infection of TMV and ToMV in tomato plants. Knockout of SlTOM1b alone did not contribute to ToBRFV and ToMV resistance. However, in triple mutants sltom1a/sltom3/sltom1b, ToMV accumulation was three-fold lower than in WT plants, with no reduction in symptoms. These results indicate that SlTOM1a and SlTOM3 are essential for the replication of ToBRFV, but not for ToMV and TMV, which are associated with additional susceptibility proteins. Additionally, we showed that SlTOM1a and SlTOM3 positively regulate the tobamovirus susceptibility gene SlARL8a3. Moreover, we found that the SlTOM family is involved in the regulation of plant development.
Collapse
Affiliation(s)
- Michael Kravchik
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Meital Shtarkman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| |
Collapse
|
19
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
20
|
Marin-Montes IM, Rodríguez-Pérez JE, Robledo-Paz A, de la Cruz-Torres E, Peña-Lomelí A, Sahagún-Castellanos J. Haploid Induction in Tomato ( Solanum lycopersicum L.) via Gynogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1595. [PMID: 35736746 PMCID: PMC9230027 DOI: 10.3390/plants11121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
The generation of new hybrid varieties of tomato (Solanum lycopersicum L.) is the most widely used breeding method for this species and requires at least seven self-fertilization cycles to generate stable parent lines. The development of doubled haploids aims at obtaining completely homozygous lines in a single generation, although, to date, routine commercial application has not been possible in this species. In contrast, obtaining doubled haploid lines via gynogenesis has been successfully implemented in recalcitrant crops such as melon, cucumber, pumpkin, loquat and walnut. This review provides an overview of the requirements and advantages of gynogenesis as an inducer of haploidy in different agricultural crops, with the purpose of assessing the potential for its application in tomato breeding. Successful cases of gynogenesis variants involving in vitro culture of unfertilized ovules, use of 60Co-irradiated pollen, in vivo haploid inducers and wide hybridization are presented, suggesting that these methodologies could be implemented in tomato breeding programs to obtain doubled haploids.
Collapse
Affiliation(s)
- Ivan Maryn Marin-Montes
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Juan Enrique Rodríguez-Pérez
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Alejandrina Robledo-Paz
- Posgrado en Recursos Genéticos y Productividad, Colegio de Postgraduados, Montecillo 56230, Mexico;
| | | | - Aureliano Peña-Lomelí
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Jaime Sahagún-Castellanos
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| |
Collapse
|
21
|
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses 2022; 14:1251. [PMID: 35746722 PMCID: PMC9228091 DOI: 10.3390/v14061251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tomato is the most economically important vegetable crop worldwide and the second most important for Mexico. However, viral diseases are among the main limiting factors that affect the productivity of this crop, causing total losses in some cases. This review provides key information and findings on the symptoms, distribution, transmission, detection, and management of diseases caused by viruses of major importance in tomato crops in Mexico. Currently, about 25 viruses belonging to nine different families have been reported infecting tomato in Mexico, but not all of them cause economically significant diseases. Viruses of economic importance include tomato brown rugose fruit virus (ToBRFV), tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), pepino mosaic virus (PepMV), and tomato marchitez virus (ToMarV). The topics discussed here will provide updated information about the status of these plant viruses in Mexico as well as diverse management strategies that can be implemented according to the specific circumstances of each viral pathosystem. Additionally, a list of tomato-affecting viruses not present in Mexico that are continuous threats to the crop health is included.
Collapse
Affiliation(s)
- Raymundo Saúl García-Estrada
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| | - Alfredo Diaz-Lara
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Vivian Hayde Aguilar-Molina
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| |
Collapse
|