1
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
2
|
Miller JR, Adjeroh DA. Machine learning on alignment features for parent-of-origin classification of simulated hybrid RNA-seq. BMC Bioinformatics 2024; 25:109. [PMID: 38475727 DOI: 10.1186/s12859-024-05728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Parent-of-origin allele-specific gene expression (ASE) can be detected in interspecies hybrids by virtue of RNA sequence variants between the parental haplotypes. ASE is detectable by differential expression analysis (DEA) applied to the counts of RNA-seq read pairs aligned to parental references, but aligners do not always choose the correct parental reference. RESULTS We used public data for species that are known to hybridize. We measured our ability to assign RNA-seq read pairs to their proper transcriptome or genome references. We tested software packages that assign each read pair to a reference position and found that they often favored the incorrect species reference. To address this problem, we introduce a post process that extracts alignment features and trains a random forest classifier to choose the better alignment. On each simulated hybrid dataset tested, our machine-learning post-processor achieved higher accuracy than the aligner by itself at choosing the correct parent-of-origin per RNA-seq read pair. CONCLUSIONS For the parent-of-origin classification of RNA-seq, machine learning can improve the accuracy of alignment-based methods. This approach could be useful for enhancing ASE detection in interspecies hybrids, though RNA-seq from real hybrids may present challenges not captured by our simulations. We believe this is the first application of machine learning to this problem domain.
Collapse
Affiliation(s)
- Jason R Miller
- Department of Computer Science, Mathematics, Engineering, Shepherd University, Shepherdstown, WV, USA.
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway.
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA.
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Lu YT, Loue-Manifel J, Bollier N, Gadient P, De Winter F, Carella P, Hoguin A, Grey-Switzman S, Marnas H, Simon F, Copin A, Fischer S, de Leau E, Schornack S, Nishihama R, Kohchi T, Depège Fargeix N, Ingram G, Nowack MK, Goodrich J. Convergent evolution of water-conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death. Curr Biol 2024; 34:793-807.e7. [PMID: 38295796 DOI: 10.1016/j.cub.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.
Collapse
Affiliation(s)
- Yen-Ting Lu
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jeanne Loue-Manifel
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK; Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | | | - Philippe Gadient
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Antoine Hoguin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shona Grey-Switzman
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Hugo Marnas
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Francois Simon
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alice Copin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shelby Fischer
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nathalie Depège Fargeix
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Moritz K Nowack
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
4
|
Doll NM, Van Hautegem T, Schilling N, De Rycke R, De Winter F, Fendrych M, Nowack MK. Endosperm cell death promoted by NAC transcription factors facilitates embryo invasion in Arabidopsis. Curr Biol 2023; 33:3785-3795.e6. [PMID: 37633282 PMCID: PMC7615161 DOI: 10.1016/j.cub.2023.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
In flowering plants, two fertilization products develop within the limited space of the seed: the embryo and the surrounding nutritive endosperm. The final size of the endosperm is modulated by the degree of embryo growth. In Arabidopsis thaliana, the endosperm expands rapidly after fertilization, but later gets invaded by the embryo that occupies most of the seed volume at maturity, surrounded by a single remaining aleurone-like endosperm layer.1,2,3,4 Embryo invasion is facilitated by the endosperm-expressed bHLH-type transcription factor ZHOUPI, which promotes weakening of endosperm cell walls.5,6 Endosperm elimination in zou mutants is delayed, and embryo growth is severely affected; the endosperm finally collapses around the dwarf embryo, causing the shriveled appearance of mature zou seeds.5,6,7 However, whether ZHOUPI facilitates mechanical endosperm destruction by the invading embryo or whether an active programmed cell death (PCD) process causes endosperm elimination has been subject to debate.2,8 Here we show that developmental PCD controlled by multiple NAC transcription factors in the embryo-adjacent endosperm promotes gradual endosperm elimination. Misexpressing the NAC transcription factor KIRA1 in the entire endosperm caused total endosperm elimination, generating aleurone-less mature seeds. Conversely, dominant and recessive higher-order NAC mutants led to delayed endosperm elimination and impaired cell corpse clearance. Promoting PCD in the zhoupi mutant partially rescued its embryo growth defects, while the endosperm in a zhoupi nac higher-order mutant persisted until seed desiccation. These data suggest that a combination of cell wall weakening and PCD jointly facilitates embryo invasion by an active auto-elimination of endosperm cells.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium.
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium; Institute of Biochemistry and Biology, Potsdam University, Potsdam, 14476 OT Golm, Germany
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium; VIB Bioimaging Core, Ghent University, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Matyáš Fendrych
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Bjerkan KN, Alling RM, Myking IV, Brysting AK, Grini PE. Genetic and environmental manipulation of Arabidopsis hybridization barriers uncovers antagonistic functions in endosperm cellularization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229060. [PMID: 37600172 PMCID: PMC10433385 DOI: 10.3389/fpls.2023.1229060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Speciation involves reproductive isolation, which can occur by hybridization barriers acting in the endosperm of the developing seed. The nuclear endosperm is a nutrient sink, accumulating sugars from surrounding tissues, and undergoes coordinated cellularization, switching to serve as a nutrient source for the developing embryo. Tight regulation of cellularization is therefore vital for seed and embryonic development. Here we show that hybrid seeds from crosses between Arabidopsis thaliana as maternal contributor and A. arenosa or A. lyrata as pollen donors result in an endosperm based post-zygotic hybridization barrier that gives rise to a reduced seed germination rate. Hybrid seeds display opposite endosperm cellularization phenotypes, with late cellularization in crosses with A. arenosa and early cellularization in crosses with A. lyrata. Stage specific endosperm reporters display temporally ectopic expression in developing hybrid endosperm, in accordance with the early and late cellularization phenotypes, confirming a disturbance of the source-sink endosperm phase change. We demonstrate that the hybrid barrier is under the influence of abiotic factors, and show that a temperature gradient leads to diametrically opposed cellularization phenotype responses in hybrid endosperm with A. arenosa or A. lyrata as pollen donors. Furthermore, different A. thaliana accession genotypes also enhance or diminish seed viability in the two hybrid cross-types, emphasizing that both genetic and environmental cues control the hybridization barrier. We have identified an A. thaliana MADS-BOX type I family single locus that is required for diametrically opposed cellularization phenotype responses in hybrid endosperm. Loss of AGAMOUS-LIKE 35 significantly affects the germination rate of hybrid seeds in opposite directions when transmitted through the A. thaliana endosperm, and is suggested to be a locus that promotes cellularization as part of an endosperm based mechanism involved in post-zygotic hybrid barriers. The role of temperature in hybrid speciation and the identification of distinct loci in control of hybrid failure have great potential to aid the introduction of advantageous traits in breeding research and to support models to predict hybrid admixture in a changing global climate.
Collapse
Affiliation(s)
- Katrine N. Bjerkan
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Renate M. Alling
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida V. Myking
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne K. Brysting
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Paul E. Grini
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Galindo-Trigo S. Parents, time, and space: The three dimensions of endosperm gene expression. PLANT PHYSIOLOGY 2023; 191:828-830. [PMID: 36493390 PMCID: PMC9922413 DOI: 10.1093/plphys/kiac566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
|