1
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
2
|
Jones-Held S, White JF. Effects of endophytes on early growth and ascorbate metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2024; 15:1480387. [PMID: 39726430 PMCID: PMC11669529 DOI: 10.3389/fpls.2024.1480387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of Brassica napus with three different endophytes. The three endophytes used were Bacillus amyloliquefaciens pb1(Bapb1), Micrococcus luteus (Ml) and Pseudomonas fluorescens SLB4 (SLB4). Seeds of Brassica napus cv. trophy were surface sterilized and plated on 1/2 MS Basal salts (pH 5.7 -5.8) + 0.8% agarose. Under sterile conditions, endophyte suspensions or sterile distilled water (controls) were applied to plated seeds. After two days, all plates were scanned to produce digital images for subsequent growth analysis. Then, seedlings were gently removed from the plates and placed in sterile microfuge tubes. For biochemical analyses, extracts were prepared from samples and assayed spectrophotometrically. We detected slight changes in seedling root tip and/or primary root growth with Bapb1 and Ml. Seedlings treated with SLB4 exhibited significantly increased primary root and root tip length after two days of growth. Ascorbate oxidation, however, was the primary significant change common to all endophyte-treated seedlings. In relation to ascorbate oxidation, soluble ascorbate oxidase (AO) was slightly reduced in Bapb1 and Ml-treated seedlings, whereas ionically-bound AO was reduced in Bapb1 and SLB4-treated seedlings. Total AO activity was significantly reduced in Bapb1-treated seedlings. There were no differences in cytosolic APX activity or glutathione levels between endophyte-treated seedlings and controls. Like pathogens, endophytes can trigger an oxidative burst in the plant. A level of ascorbate oxidation seems required to propagate ROS as signaling molecules as part of the plant immune response. The slight to moderate reductions in plant AO activity that we found mimic the inhibitory effects of pathogens on AO activity, but there was still a level of AO activity that may have been sufficient for the apoplastic ascorbate oxidation required for subsequent ROS signaling. Other studies have suggested that endophytes may elicit a more moderate plant immune response relative to pathogens to facilitate colonization. The AO, APX, and glutathione results would be consistent with a moderate plant immune response to endophytes.
Collapse
Affiliation(s)
- Susan Jones-Held
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | | |
Collapse
|
3
|
Ciereszko I, Kuźniak E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. Int J Mol Sci 2024; 25:12134. [PMID: 39596201 PMCID: PMC11595106 DOI: 10.3390/ijms252212134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth-defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant-pathogen interactions. Biotic stress strongly affects plant cells' primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic-photorespiratory metabolism for plant defence against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Iwona Ciereszko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
4
|
Pantaleno R, Scuffi D, Schiel P, Schwarzländer M, Costa A, García-Mata C. Mitochondrial ß-Cyanoalanine Synthase Participates in flg22-Induced Stomatal Immunity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39288437 DOI: 10.1111/pce.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Plants regulate gas exchange with the environment and modulate transpirational water flow through guard cells, which set the aperture of the stomatal pores. External and internal stimuli are detected by guard cells and integrated into a signalling network that modulate turgor pressure and, hence, pore size. Pathogen-associated molecular patterns are among the stimuli that induce stomatal closure, to prevent pathogen entry through the pores, and this response, also referred to as stomatal immunity, is one of the hallmarks of PAMP-triggered immunity. While reactive oxygen species (ROS)-mediated signalling plays a key role in stomatal immunity, also the gasotransmitter hydrogen sulphide (H2S) interacts with key components of the guard cell signalling network to induce stomatal closure. While the role of H2S, produced by the main cytosolic source L-cysteine desulfhydrase 1, has been already investigated, there are additional enzymatic sources that synthesize H2S in different subcellular compartments. Their function has remained enigmatic, however. In this work, we elucidate the involvement of the mitochondrial H2S source, β-cyanoalanine synthase CAS-C1, on stomatal immunity induced by the bacterial PAMP flagellin (flg22). We show that cas-c1 plants are impaired to induce flg22-triggered stomatal closure and apoplastic ROS production, while they are more susceptible to bacterial surface inoculation. Moreover, mitochondrial H2S donor AP39 induced stomatal closure in an RBOHD-dependent manner, while depletion of endogenous H2S, impaired RBOHD-mediated apoplastic ROS production. In addition, pharmacological disruption of mitochondrial electron transport chain activity, affected stomatal closure produced by flg22, indicating its participation in the stomatal immunity response. Our findings add evidence to the emerging realization that intracellular organelles play a decisive role in orchestrating stomatal signalling and immune responses and suggest that mitochondrial-derived H2S is an important player of the stomatal immunity signalling network.
Collapse
Affiliation(s)
- Rosario Pantaleno
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Paula Schiel
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
5
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
6
|
Müller-Schüssele SJ. Chloroplast thiol redox dynamics through the lens of genetically encoded biosensors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5312-5324. [PMID: 38401159 DOI: 10.1093/jxb/erae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Chloroplasts fix carbon by using light energy and have evolved a complex redox network that supports plastid functions by (i) protecting against reactive oxygen species and (ii) metabolic regulation in response to environmental conditions. In thioredoxin- and glutathione/glutaredoxin-dependent redox cascades, protein cysteinyl redox steady states are set by varying oxidation and reduction rates. The specificity and interplay of these different redox-active proteins are still under investigation, for example to understand how plants cope with adverse environmental conditions by acclimation. Genetically encoded biosensors with distinct specificity can be targeted to subcellular compartments such as the chloroplast stroma, enabling in vivo real-time measurements of physiological parameters at different scales. These data have provided unique insights into dynamic behaviours of physiological parameters and redox-responsive proteins at several levels of the known redox cascades. This review summarizes current applications of different biosensor types as well as the dynamics of distinct protein cysteinyl redox steady states, with an emphasis on light responses.
Collapse
|
7
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
9
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
10
|
Bohle F, Klaus A, Ingelfinger J, Tegethof H, Safari N, Schwarzländer M, Hochholdinger F, Hahn M, Meyer AJ, Acosta IF, Müller-Schüssele SJ. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2299-2312. [PMID: 38301663 DOI: 10.1093/jxb/erae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Alina Klaus
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Julian Ingelfinger
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Hendrik Tegethof
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Nassim Safari
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Matthias Hahn
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | |
Collapse
|
11
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
12
|
Furuta Y, Yamamoto H, Hirakawa T, Uemura A, Pelayo MA, Iimura H, Katagiri N, Takeda-Kamiya N, Kumaishi K, Shirakawa M, Ishiguro S, Ichihashi Y, Suzuki T, Goh T, Toyooka K, Ito T, Yamaguchi N. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases. Nat Commun 2024; 15:1098. [PMID: 38321030 PMCID: PMC10847506 DOI: 10.1038/s41467-024-45371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.
Collapse
Affiliation(s)
- Yuki Furuta
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Haruka Yamamoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akira Uemura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Smurfit Institute of Genetics, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
13
|
Ahmed J, Ismail A, Ding L, Yool AJ, Chaumont F. A new method to measure aquaporin-facilitated membrane diffusion of hydrogen peroxide and cations in plant suspension cells. PLANT, CELL & ENVIRONMENT 2024; 47:527-539. [PMID: 37946673 DOI: 10.1111/pce.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Plant aquaporins (AQPs) facilitate the membrane diffusion of water and small solutes, including hydrogen peroxide (H2 O2 ) and, possibly, cations, essential signalling molecules in many physiological processes. While the determination of the channel activity generally depends on heterologous expression of AQPs in Xenopus oocytes or yeast cells, we established a genetic tool to determine whether they facilitate the diffusion of H2 O2 through the plasma membrane in living plant cells. We designed genetic constructs to co-express the fluorescent H2 O2 sensor HyPer and AQPs, with expression controlled by a heat shock-inducible promoter in Nicotiana tabacum BY-2 suspension cells. After induction of ZmPIP2;5 AQP expression, a HyPer signal was recorded when the cells were incubated with H2 O2 , suggesting that ZmPIP2;5 facilitates H2 O2 transmembrane diffusion; in contrast, the ZmPIP2;5W85A mutated protein was inactive as a water or H2 O2 channel. ZmPIP2;1, ZmPIP2;4 and AtPIP2;1 also facilitated H2 O2 diffusion. Incubation with abscisic acid and the elicitor flg22 peptide induced the intracellular H2 O2 accumulation in BY-2 cells expressing ZmPIP2;5. We also monitored cation channel activity of ZmPIP2;5 using a novel fluorescent photo-switchable Li+ sensor in BY-2 cells. BY-2 suspension cells engineered for inducible expression of AQPs as well as HyPer expression and the use of Li+ sensors constitute a powerful toolkit for evaluating the transport activity and the molecular determinants of PIPs in living plant cells.
Collapse
Affiliation(s)
- Jahed Ahmed
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ahmed Ismail
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Lei Ding
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Andrea J Yool
- School of Biomedicine, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Buratti S, Grenzi M, Tortora G, Nastasi SP, Dell'Aglio E, Bassi A, Costa A. Noninvasive In Planta Live Measurements of H 2O 2 and Glutathione Redox Potential with Fluorescent roGFPs-Based Sensors. Methods Mol Biol 2024; 2798:45-64. [PMID: 38587735 DOI: 10.1007/978-1-0716-3826-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In this protocol, we present a noninvasive in planta bioimaging technique for the analysis of hydrogen peroxide (H2O2) and glutathione redox potential in adult Arabidopsis thaliana plants. The technique is based on the use of stereo fluorescence microscopy to image A. thaliana plants expressing the two genetically encoded fluorescent sensors roGFP2-Orp1 and Grx1-roGFP2. We provide a detailed step-by-step protocol for performing low magnification imaging with mature plants grown in soil or hydroponic systems. This protocol aims to serve the scientific community by providing an accessible approach to noninvasive in planta bioimaging and data analysis.
Collapse
Affiliation(s)
- Stefano Buratti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Matteo Grenzi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Sara Paola Nastasi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Elisa Dell'Aglio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Alex Costa
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
- Institute of Biophysics, National Research Council of Italy (CNR), Milan, Italy.
| |
Collapse
|
15
|
Arnaud D, Deeks MJ, Smirnoff N. RBOHF activates stomatal immunity by modulating both reactive oxygen species and apoplastic pH dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:404-415. [PMID: 37421599 PMCID: PMC10952706 DOI: 10.1111/tpj.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Stomatal defences are important for plants to prevent pathogen entry and further colonisation of leaves. Apoplastic reactive oxygen species (ROS) generated by NADPH oxidases and apoplastic peroxidases play an important role in activating stomatal closure upon perception of bacteria. However, downstream events, particularly the factors influencing cytosolic hydrogen peroxide (H2 O2 ) signatures in guard cells are poorly understood. We used the H2 O2 sensor roGFP2-Orp1 and a ROS-specific fluorescein probe to study intracellular oxidative events during stomatal immune response using Arabidopsis mutants involved in the apoplastic ROS burst. Surprisingly, the NADPH oxidase mutant rbohF showed over-oxidation of roGFP2-Orp1 by a pathogen-associated molecular pattern (PAMP) in guard cells. However, stomatal closure was not tightly correlated with high roGFP2-Orp1 oxidation. In contrast, RBOHF was necessary for PAMP-mediated ROS production measured by a fluorescein-based probe in guard cells. Unlike previous reports, the rbohF mutant, but not rbohD, was impaired in PAMP-triggered stomatal closure resulting in defects in stomatal defences against bacteria. Interestingly, RBOHF also participated in PAMP-induced apoplastic alkalinisation. The rbohF mutants were also partly impaired in H2 O2 -mediated stomatal closure at 100 μm while higher H2 O2 concentration up to 1 mm did not promote stomatal closure in wild-type plants. Our results provide novel insights on the interplay between apoplastic and cytosolic ROS dynamics and highlight the importance of RBOHF in plant immunity.
Collapse
Affiliation(s)
- Dominique Arnaud
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Michael J. Deeks
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Nicholas Smirnoff
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| |
Collapse
|
16
|
Sivaramakrishnan M, Goel S, Ratnaparkhi N, Chandrasekar B. Chemiluminescence-Based Assay to Monitor Early Oxidative Bursts in Soybean (Glycine max) Lateral Roots. Curr Protoc 2023; 3:e869. [PMID: 37625015 DOI: 10.1002/cpz1.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The reactive oxygen species (ROS) burst assay is a valuable tool for studying pattern-triggered immunity (PTI) in plants. During PTI, the interaction between pathogen recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) leads to the rapid production of ROS in the apoplastic space. The resultant ROS can be measured using a chemiluminescent approach that involves the usage of horseradish peroxidase and luminol. Although several methods and protocols are available to detect early ROS bursts in leaf tissues, no dedicated method is available for root tissues. Here, we have established a reliable method to measure the PAMP-triggered ROS burst response in soybean lateral roots. In plants, lateral roots are the potential entry and colonization sites for pathogens in the rhizosphere. We have used important PAMPs such as chitohexaose, flagellin 22 peptide fragment, and laminarin to validate our method. In addition, we provide a detailed methodology for the isolation and application of fungal cell wall components to monitor the oxidative burst in soybean lateral roots. Furthermore, we provide methodology for performing ROS burst assays in soybean leaf discs with laminarin and fungal cell walls. This approach could also be applied to leaf and root tissues of other plant species to study the PTI response upon elicitor treatment. © 2023 Wiley Periodicals LLC. Basic Protocol: Reactive oxygen species (ROS) burst assay in soybean lateral root tissues Alternate Protocol: ROS burst assay in soybean leaf discs Support Protocol: Isolating fungal cell wall fractions.
Collapse
Affiliation(s)
| | - Sakshi Goel
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| | - Nikhil Ratnaparkhi
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| | - Balakumaran Chandrasekar
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| |
Collapse
|
17
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Ugalde JM. The echo from outside: ASCORBATE PEROXIDASE 1 modulates cytosolic effector-triggered reactive oxygen species. PLANT PHYSIOLOGY 2023; 192:23-24. [PMID: 36788776 PMCID: PMC10152679 DOI: 10.1093/plphys/kiad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Affiliation(s)
- José Manuel Ugalde
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, Rockville, USA
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|