1
|
Ruan S, Lin J, Li T, Wu Y, Xu C, Mu L, Liu W, Chen C, Lu J, Ma C, Si H. Characterization of tae-miR156(s) and their response to abiotic stress in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:1165. [PMID: 39633258 PMCID: PMC11616172 DOI: 10.1186/s12870-024-05899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The microRNA156 (miR156) has been widely studied in plants, however, the characterization of the miR156 family of genes in wheat and their expression patterns under abiotic stress are not completely clear. In this study, a total of 20 miR156 family members, referred to as tae-miR156a to tae-miR156t, were identified in wheat with their loci mapped to various chromosomes. These members were divided into five subgroups: miR156a/b/c/d/e/f, miR156g/h/i, miR156j/k, miR156l/m/n/o/p/q, and miR156r/s/t. They were highly conserved during evolution. The prediction of cis-elements in the tae-MIR156(s) promoter region revealed that the tae-MIR156(s) had diverse cis-acting elements; of these, 15 tae-MIR156(s) and 6 tae-MIR156(s) were found to be drought-responsive elements and cold-responsive elements, respectively. And the prediction target genes of tae-miR156(s) are mainly SPL transcription factor genes. Expression analysis based on quantitative real-time polymerase chain reaction (qRT‒PCR) showed that miR156(s) have different expression levels in the various wheat tissues, and the subgroups' response to abiotic stress varied. Among them, miR156g/h/i were strongly induced in the root of cold and heat stress, and miR156a/b/c/d/e/f were significantly increased in roots after drought stress, whereas miR156r/s/t were highly inhibited in leaves and roots after salt stress. These findings imply that tae-miR156(s) are involved in stress response in wheat, and they provide new fundamental knowledge for further analysis of the function of miR156 and its regulatory mechanism in response to abiotic stress.
Collapse
Affiliation(s)
- Shuang Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Juan Lin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Tiantian Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yingjie Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Cheng Xu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Li Mu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Wei Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- China Reclamation Seed Industry Co., LTD, Shanghai, 200086, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| |
Collapse
|
2
|
Hussain SS, Ali A, Abbas M, Sun Y, Li Y, Li Q, Ragauskas AJ. Harnessing miRNA156: A molecular Toolkit for reshaping plant development and achieving ideal architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109071. [PMID: 39186849 DOI: 10.1016/j.plaphy.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Achieving ideal plant architecture is of utmost importance for plant improvement to meet the demands of ever-increasing population. The wish list of ideal plant architecture traits varies with respect to its utilization and environmental conditions. Late seed development in woody plants poses difficulties for their propagation, and an increase in regeneration capacity can overcome this problem. The transition of a plant through sequential developmental stages e.g., embryonic, juvenile, and maturity is a well-orchestrated molecular and physiological process. The manipulation in the timing of phase transition to achieve ideal plant traits and regulation of metabolic partitioning will unlock new plant potential. Previous studies demonstrate that micro RNA156 (miR156) impairs the expression of its downstream genes to resist the juvenile-adult-reproductive phase transition to prolonged juvenility. The phenomenon behind prolonged juvenility is the maintenance of stem cell integrity and regeneration is an outcome of re-establishment of the stem cell niche. The previously reported vital and diverse functions of miR156 make it a more important case of study to explore its functions and possible ways to use it in molecular breeding. In this review, we proposed how genetic manipulation of miR156 can be used to reshape plant development phase transition and achieve ideal plant architecture. We have summarized recent studies on miR156 to describe its functional pattern and networking with up and down-stream molecular factors at each stage of the plant developmental life cycle. In addition, we have highlighted unaddressed questions, provided insights and devised molecular pathways that will help researchers to design their future studies.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Quanzi Li
- Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Arthur J Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
3
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
5
|
Sharif R, Zhu Y, Huang Y, Sohail H, Li S, Chen X, Qi X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108681. [PMID: 38776825 DOI: 10.1016/j.plaphy.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yamei Zhu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yaoyue Huang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Su Li
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
6
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
Wu JW, Zhao ZY, Hu RC, Huang YF. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs. PLANT MOLECULAR BIOLOGY 2024; 114:20. [PMID: 38363403 PMCID: PMC10873456 DOI: 10.1007/s11103-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ren-Chuan Hu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
8
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Ye X, Deng Q, Xu S, Huang Y, Wei D, Wang Z, Zhang H, Wang H, Tang Q. CsSPL13A directly binds and positively regulates CsFT and CsBAM to accelerate flowering in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108395. [PMID: 38290342 DOI: 10.1016/j.plaphy.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Flowering is an important developmental transition that greatly affects the yield of many vegetable crops. In cucumber (Cucumis sativus), flowering is regulated by various factors including squamosa promoter-binding-like (SPL) family proteins. However, the role of CsSPL genes in cucumber flowering remains largely unknown. In this study, we cloned the squamosa promoter-binding-like protein 13A (CsSPL13A) gene, which encodes a highly conserved SBP-domain protein that acts as a transcription factor and localizes to the nucleus. Quantitative real-time PCR (qRT-PCR) analysis showed that CsSPL13A was mainly expressed in flowers, and its expression level increased significantly nearing the flowering stage. Additionally, compared with the wild type(WT), CsSPL13A-overexpressing transgenic cucumber plants (CsSPL13A-OE) showed considerable differences in flowering phenotypes, such as early flowering, increased number of male flowers, and longer flower stalks. CsSPL13A upregulated the expression of the flowering integrator gene Flowering Locus T (CsFT) and the sugar-mediated flowering gene β-amylase (CsBAM) in cucumber. Yeast one-hybrid and firefly enzyme reporter assays confirmed that the CsSPL13A protein could directly bind to the promoters of CsFT and CsBAM, suggesting that CsSPL13A works together with CsFT and CsBAM to mediate flowering in cucumber. Overall, our results provide novel insights into the regulatory network of flowering in cucumber as well as new ideas for the genetic improvement of cucumber varieties.
Collapse
Affiliation(s)
- Xu Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Qinlin Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Shicheng Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yifang Huang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hongcheng Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Hebing Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
11
|
Wen S, Zhou C, Tian C, Yang N, Zhang C, Zheng A, Chen Y, Lai Z, Guo Y. Identification and Validation of the miR156 Family Involved in Drought Responses and Tolerance in Tea Plants ( Camellia sinensis (L.) O. Kuntze). PLANTS (BASEL, SWITZERLAND) 2024; 13:201. [PMID: 38256754 PMCID: PMC10819883 DOI: 10.3390/plants13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The microRNA156 (miR156) family, one of the first miRNA families discovered in plants, plays various important roles in plant growth and resistance to various abiotic stresses. Previously, miR156s were shown to respond to drought stress, but miR156s in tea plants (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. Herein, we identify 47 mature sequences and 28 precursor sequences in tea plants. Our evolutionary analysis and multiple sequence alignment revealed that csn-miR156s were highly conserved during evolution and that the rates of the csn-miR156 members' evolution were different. The precursor sequences formed typical and stable stem-loop structures. The prediction of cis-acting elements in the CsMIR156s promoter region showed that the CsMIR156s had diverse cis-acting elements; of these, 12 CsMIR156s were found to be drought-responsive elements. The results of reverse transcription quantitative PCR (RT-qPCR) testing showed that csn-miR156 family members respond to drought and demonstrate different expression patterns under the conditions of drought stress. This suggests that csn-miR156 family members may be significantly involved in the response of tea plants to drought stress. Csn-miR156f-2-5p knockdown significantly reduced the Fv/Fm value and chlorophyll content and led to the accumulation of more-reactive oxygen species and proline compared with the control. The results of target gene prediction showed that csn-miR156f-2-5p targeted SQUAMOSA promoter binding protein-like (SPL) genes. Further analyses showed that CsSPL14 was targeted by csn-miR156f-2-5p, as confirmed through RT-qPCR, 5' RLM-RACE, and antisense oligonucleotide validation. Our results demonstrate that csn-miR156f-2-5p and CsSPL14 are involved in drought response and represent a new strategy for increasing drought tolerance via the breeding of tea plants.
Collapse
Affiliation(s)
- Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Yixing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
12
|
Sun Y, Yue Y, Li X, Li S, Shi Q, Yu Y. Transcription factor VviWOX13C regulates fruit set by directly activating VviEXPA37/38/39 in grape (Vitis vinifera L). PLANT CELL REPORTS 2023; 43:19. [PMID: 38150069 DOI: 10.1007/s00299-023-03107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE VviWOX13C plays a key regulatory role in the expansin during fruit set. Expansins as a type of non-enzymatic cell wall proteins, are responsible for the loosening and extension in cell walls leading to the enlargement of the plant cells. However, the current studies are still lacking in expansin genes associated with promoting fruit set. Here, 29 members of the expansin gene family were identified in the whole genome of grapes (Vitis vinifera L.), and the functional prediction of expansins was based on the gene annotated information. Results showed that the 29 members of grape expansin gene family could be mainly divided into four subfamilies (EXPA, EXPB, LIKE A, and LIKE B), distributed on 16 chromosomes. Replication analysis showed that there were four segmental duplications and two tandem duplications. Each expansins sequence contained two conserved domain features of grape EXPs (DPBB_1 and Expansin_C) through protein sequence analysis. The transcriptome sequencing results revealed that VviEXPA37, VviEXPA38, and VviEXPA39 were induced and upregulated by CPPU. Furthermore, transcriptional regulatory prediction network indicated that VviWOX13C targeted regulates VviEXPA37, VviEXPA38, and VviEXPA39 simultaneously. EMSA and dual luciferase assays demonstrated that VviWOX13C directly activated the expression of VviEXPA37, VviEXPA38, and VviEXPA39 by directly binding to its promoter. These results provide a basis for further studies on the function and regulatory mechanisms of expansin genes in fruit set.
Collapse
Affiliation(s)
- Yadan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yihan Yue
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Xufei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Songqi Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
| |
Collapse
|
13
|
Li K, Cheng Y, Fang C. OsDWARF10, transcriptionally repressed by OsSPL3, regulates the nutritional metabolism of polished rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1322463. [PMID: 38130489 PMCID: PMC10733476 DOI: 10.3389/fpls.2023.1322463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Strigolactone (SL) plays essential roles in plant development and the metabolism of rice leaves. However, the impact of SL on the accumulation of nutritional metabolites in polished rice, as well as the transcription factors directly involved in SL synthesis, remains elusive. In this study, we performed a metabolome analysis on polished rice samples from mutants of an SL biosynthetic gene, OsDWARF10 (OsD10). Compared with those in the wild type plants, primary and secondary metabolites exhibited a series of alterations in the d10 mutants. Notably, the d10 mutants showed a substantial increase in the amino acids and vitamins content. Through a yeast one-hybridization screening assay, we identified OsSPL3 as a transcription factor that binds to the OsD10 promoter, thereby inhibiting OsD10 transcription in vivo and in vitro. Furthermore, we conducted a metabolic profiling analysis in polished rice from plants that overexpressed OsSPL3 and observed enhanced levels of amino acids and vitamins. This study identified a novel transcriptional repressor of the SL biosynthetic gene and elucidated the regulatory roles of OsSPL3 and OsD10 on the accumulation of nutritional metabolites in polished rice.
Collapse
Affiliation(s)
- Kang Li
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yan Cheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chuanying Fang
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
14
|
Liu H, Yuan K, Hu Y, Wang S, He Q, Feng C, Liu J, Wang Z. Construction and analysis of the tapping panel dryness-related lncRNA/circRNA-miRNA-mRNA ceRNA network in latex of Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108156. [PMID: 37979576 DOI: 10.1016/j.plaphy.2023.108156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Tapping panel dryness (TPD) results in a severe reduction in latex yield in Hevea brasiliensis. However, the molecular regulatory mechanisms of TPD occurrence are still largely unclear. In this study, whole-transcriptome sequencing was carried out on latex from TPD and healthy trees. In total, 7078 long noncoding RNAs (lncRNAs), 3077 circular RNAs (circRNAs), 4956 miRNAs, and 25041 mRNAs were identified in latex, among which 435 lncRNAs, 68 circRNAs, 320 miRNAs, and 1574 mRNAs were differentially expressed in the latex of TPD trees. GO and KEGG analyses indicated that plant hormone signal transduction, MAPK signaling pathway, and ubiquitin-mediated proteolysis were the key pathways associated with TPD onset. Phytohormone profiling revealed significant changes in the contents of 28 hormonal compounds, among which ACC, ABA, IAA, GA, and JA contents were increased, while SA content was reduced in TPD latex, suggesting that hormone homeostasis is disrupted in TPD trees. Furthermore, we constructed a TPD-related competitive endogenous RNA (ceRNA) regulatory network of lncRNA/circRNA-miRNA-mRNA with 561 edges and 434 nodes (188 lncRNAs, 5 circRNAs, 191 miRNAs, and 50 mRNAs) and identified two hub lncRNAs (MSTRG.11908.1 and MSTRG.8791.1) and four hub miRNAs (hbr-miR156, miR156-x, miRf10477-y, and novel-m0452-3p). Notably, the lncRNA-miR156/157-SPL module containing three hubs probably plays a crucial role in TPD onset. The expression of network hubs and the lncRNA-miR156/157-SPL module were further validated by qRT-PCR. Our results reveal the TPD-associated ceRNA regulatory network of lncRNA/circRNA-miRNA-mRNA in latex and lay a foundation for further investigation of molecular regulatory mechanisms for TPD onset in H. brasiliensis.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Kun Yuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yiyu Hu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuai Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qiguang He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chengtian Feng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Zhenhui Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
15
|
Zhou C, Tian C, Wen S, Yang N, Zhang C, Zheng A, Tan J, Jiang L, Zhu C, Lai Z, Lin Y, Guo Y. Multiomics Analysis Reveals the Involvement of JsLHY in Controlling Aroma Production in Jasmine Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930796 DOI: 10.1021/acs.jafc.3c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayao Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
16
|
Wu J, Cheng L, Espley R, Ma F, Malnoy M. Focus on fruit crops. PLANT PHYSIOLOGY 2023; 192:1659-1665. [PMID: 37148289 PMCID: PMC10315308 DOI: 10.1093/plphys/kiad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Espley
- New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland 1025, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all’Adige 38098, Italy
| |
Collapse
|