1
|
An C, Liu Z, Pan X, Li A, Wei W, Yang T, Liao W, Wang C. Effect of histone modifications on fruit ripening. PHYSIOLOGIA PLANTARUM 2024; 176:e14639. [PMID: 39618143 DOI: 10.1111/ppl.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
Histone modifications are canonical epigenetic modifications mediating plant growth and development. Specially, histone modifications play important regulatory roles in plant fruit ripening, directly affecting fruit color changes, soluble sugar accumulation, and fruit softening. In this review, we focus on the effects of histone acetylation and methylation during fruit ripening. In particular, histone acetylation at H3 and H4 accelerates fruit ripening, whereas removal of histone acetylation via histone deacetylases (HDACs) inhibits or delays ripening by regulating the expression of carotenoid and anthocyanin production, glycometabolism, cell wall degradation, ethylene synthesis and signalling, and cell expansin-related genes. In addition, histone methylation is also involved in fruit ripening, in which the emergence of H3K27me3 modifications represses fruit ripening and H3K4me3 modifications promote fruit ripening by affecting multiple ripening-related pathways. However, the relationship between other histone modifications and fruit ripening is currently unclear. Here, we point out that accurate and comprehensive studies concerning the regulatory mechanism of histone modifications in fruit ripening are needed to facilitate the design of high-quality and high-yield fruit.
Collapse
Affiliation(s)
- Caiting An
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ailing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wenying Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tingyue Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Kitagawa M. Can the xenia effect on long-distance mRNA transport be used to improve fruit traits? MOLECULAR PLANT 2024; 17:1501-1503. [PMID: 39180214 DOI: 10.1016/j.molp.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
3
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
4
|
Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, Du X, Zhang X, Wang R, Li H, Zeng Y, Li D, Xie Y, Li M, Hong Y, Liu K, Liu M. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. THE NEW PHYTOLOGIST 2024; 243:2265-2278. [PMID: 39056285 DOI: 10.1111/nph.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yuan Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xumeng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Huajia Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan, 430074, Hubei, China
| | - Yue Xie
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Mingzhang Li
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Yiguo Hong
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
5
|
Xiong J, Liu Y, Wu P, Bian Z, Li B, Zhang Y, Zhu B. Identification and virus-induced gene silencing (VIGS) analysis of methyltransferase affecting tomato (Solanum lycopersicum) fruit ripening. PLANTA 2024; 259:109. [PMID: 38558186 DOI: 10.1007/s00425-024-04384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.
Collapse
Affiliation(s)
- Jiaxin Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zheng Bian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yifan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
6
|
Ochoa-Alejo N, Reyes-Valdés MH, Martínez O. Estimating Transcriptome Diversity and Specialization in Capsicum annuum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:983. [PMID: 38611513 PMCID: PMC11013594 DOI: 10.3390/plants13070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Chili pepper fruits of the genus Capsicum represent excellent experimental models to study the growth, development, and ripening processes in a non-climacteric species at the physiological, biochemical, and molecular levels. Fruit growth, development, and ripening involve a complex, harmonious, and finely controlled regulation of gene expression. The purpose of this study was to estimate the changes in transcriptome diversity and specialization, as well as gene specificities during fruit development in this crop, and to illustrate the advantages of estimating these parameters. To achieve these aims, we programmed and made publicly available an R package. In this study, we applied these methods to a set of 179 RNA-Seq libraries from a factorial experiment that includes 12 different genotypes at various stages of fruit development. We found that the diversity of the transcriptome decreases linearly from the flower to the mature fruit, while its specialization follows a complex and non-linear behavior during this process. Additionally, by defining sets of genes with different degrees of specialization and applying Gene Ontology enrichment analysis, we identified processes, functions, and components that play a central role in particular fruit development stages. In conclusion, the estimation of diversity, specialization, and specificity summarizes the global properties of the transcriptomes, providing insights that are difficult to achieve by other means.
Collapse
Affiliation(s)
- Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Guanajuato, Mexico;
| | - M. Humberto Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Octavio Martínez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
7
|
Jin J, Wang W, Fan D, Hao Q, Jia W. Emerging Roles of Mitogen-Activated Protein Kinase Signaling Pathways in the Regulation of Fruit Ripening and Postharvest Quality. Int J Mol Sci 2024; 25:2831. [PMID: 38474080 DOI: 10.3390/ijms25052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wensuo Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
9
|
Zhang RX, Liu Y, Zhang X, Chen X, Sun J, Zhao Y, Zhang J, Yao JL, Liao L, Zhou H, Han Y. Two adjacent NAC transcription factors regulate fruit maturity date and flavor in peach. THE NEW PHYTOLOGIST 2024; 241:632-649. [PMID: 37933224 DOI: 10.1111/nph.19372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Although maturity date (MD) is an essential factor affecting fresh fruit marketing and has a pleiotropic effect on fruit taste qualities, the underlying mechanisms remain largely unclear. In this study, we functionally characterized two adjacent NAM-ATAF1/2-CUC2 (NAC) transcription factors (TFs), PpNAC1 and PpNAC5, both of which were associated with fruit MD in peach. PpNAC1 and PpNAC5 were found capable of activating transcription of genes associated with cell elongation, cell wall degradation and ethylene biosynthesis, suggesting their regulatory roles in fruit enlargement and ripening. Furthermore, PpNAC1 and PpNAC5 had pleiotropic effects on fruit taste due to their ability to activate transcription of genes for sugar accumulation and organic acid degradation. Interestingly, both PpNAC1 and PpNAC5 orthologues were found in fruit-producing angiosperms and adjacently arranged in all 91 tested dicots but absent in fruitless gymnosperms, suggesting their important roles in fruit development. Our results provide insight into the regulatory roles of NAC TFs in MD and fruit taste.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jinyun Zhang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hui Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
10
|
Gao Y, Chen X, Liu C, Zhao H, Dai F, Zhao J, Zhang J, Kong L. Involvement of 5mC DNA demethylation via 5-aza-2'-deoxycytidine in regulating gene expression during early somatic embryo development in white spruce ( Picea glauca). FORESTRY RESEARCH 2023; 3:30. [PMID: 39526256 PMCID: PMC11543301 DOI: 10.48130/fr-0023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 11/16/2024]
Abstract
DNA methylation plays a crucial role in the development of somatic embryos (SEs) through the regulation of gene expression. To examine the impact of DNA methylation on gene expression during early SE development in Picea glauca, the demethylation reagent 5-aza-dC (5-aza-2'-deoxycytidine) was employed to modify DNA methylation regions and levels during the pre-maturation stage of somatic embryogenesis. The application of 2.0 µM 5-aza-dC did not induce toxicity to SEs in early development. Following treatment, the global DNA methylation level decreased significantly on the 7th day of pre-maturation and the 1st week of maturation. Methylated DNA immunoprecipitation (MeDIP) sequencing revealed that differentially methylated regions, as analyzed through Gene Ontology (GO), were related to plant development and reproduction and that they were hypomethylated on the 3rd day but hypermethylated on the 7th day in 5-aza-dC-treated embryogenic tissues. These findings indicate that 5-aza-dC treatment positively impacts early SE development, which was inhibited following 7 d of treatment. The expression of MSH7, JMJ14, and CalS10 was associated with DNA methylation, epigenetic regulation, and somatic embryogenesis. Further analysis of methylated regions revealed that the expression profiles of MSH7, JMJ14, and CalS10 were correlated with altered DNA methylation, suggesting DNA methylation at 5 mC may play a role in controlling the expression of these genes and regulating the early development of SEs in P. glauca. This study offers new insights into the regulation of somatic embryogenesis in conifers.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chengbi Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Huanhuan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fengbin Dai
- Zoucheng Improved Variety Experiment and Extension Center, Zoucheng 273518, China
| | - Jian Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinfeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lisheng Kong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
11
|
Yu Y, Liufu Y, Ren Y, Zhang J, Li M, Tian S, Wang J, Liao S, Gong G, Zhang H, Guo S. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon ( Citrullus lanatus). Int J Mol Sci 2023; 24:15333. [PMID: 37895011 PMCID: PMC10607834 DOI: 10.3390/ijms242015333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Yuxiang Liufu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| |
Collapse
|
12
|
Ming Y, Jiang L, Ji D. Epigenetic regulation in tomato fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1269090. [PMID: 37780524 PMCID: PMC10539587 DOI: 10.3389/fpls.2023.1269090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Fruit ripening is a crucial stage in quality development, influenced by a diverse array of internal and external factors. Among these factors, epigenetic regulation holds significant importance and has garnered substantial research attention in recent years. Here, this review aims to discuss the breakthrough in epigenetic regulation of tomato (Solanum lycopersicum) fruit ripening, including DNA methylation, N6-Methyladenosine mRNA modification, histone demethylation/deacetylation, and non-coding RNA. Through this brief review, we seek to enhance our understanding of the regulatory mechanisms governing tomato fruit ripening, while providing fresh insights for the precise modulation of these mechanisms.
Collapse
Affiliation(s)
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
13
|
Wu J, Cheng L, Espley R, Ma F, Malnoy M. Focus on fruit crops. PLANT PHYSIOLOGY 2023; 192:1659-1665. [PMID: 37148289 PMCID: PMC10315308 DOI: 10.1093/plphys/kiad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Espley
- New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland 1025, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all’Adige 38098, Italy
| |
Collapse
|